Please wait a minute...
食品与发酵工业  2018, Vol. 44 Issue (9): 275-281    DOI: 10.13995/j.cnki.11-1802/ts.017350
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
路玲, 李莉, 罗自生*
浙江大学 生物系统工程与食品科学学院,浙江 杭州,310058
Application and development of nano antimicrobial agent in food
LU Ling, LI Li, LUO Zi-sheng*
College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China
下载:  PDF (939KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物可引起食品腐败变质,影响食品的外观品质及质量安全。纳米技术是利用纳米结构物质的尺寸效应、表面效应等特点,在食品、农业、医药等领域都有巨大的发展潜质。文章综述了常见纳米抗菌剂纳米Ag、纳米ZnO、纳米TiO2、纳米MgO、纳米CaCO3、纳米山梨酸的抗菌机理和近几年国内外对于纳米抗菌剂在食品抗菌膜中的相关应用与发展前景。
E-mail Alert
关键词:  纳米技术  抗菌剂  食品    
Abstract: Microorganism growing on the food surface not only spoils and deteriorates food, but also affects the presentation, quality and safety of food. Nanotechnology has a huge potential for development in the fields of food, agriculture and medicine, due to its excellent advantages such as size effect and surface effect. In this paper, the antimicrobial properties and mechanisms of Nanoparticles (NPs) as antimicrobial agents such as nano-ZnO, nano-TiO2, nano-MgO, nano-CaCO3 and nano-sorbic acid were reviewed. The approaches employing NPs as effective antimicrobial agent, and associated challenges and problems in developing NPs as effective antibiofilm agents, were also discussed.
Key words:  nanotechnology    antimicrobial agent    food
收稿日期:  2018-03-22                出版日期:  2018-09-25      发布日期:  2018-10-30      期的出版日期:  2018-09-25
基金资助: 十三五重点研发计划(2017YFD0401304);国家自然科学基金(31571895)
作者简介:  本科(罗自生教授为通讯作者,。
路玲,李莉,罗自生. 纳米抗菌剂在食品中的应用研究进展[J]. 食品与发酵工业, 2018, 44(9): 275-281.
LU Ling,LI Li,LUO Zi-sheng. Application and development of nano antimicrobial agent in food[J]. Food and Fermentation Industries, 2018, 44(9): 275-281.
链接本文:  或
[1] MALAGURSKI I, LEVIC S, NESIC A, et al. Dimitrijevic-Brankovic S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties[J]. Carbohydrate Polymers, 2017, 175: 55-62.
[2] ELEFTHERIADOU M, PYRGIOTAKIS G, DEMOKRITOU P. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality[J]. Biotachnology, 2017, 44: 87-93.
[3] KADRI H E, DEVANTHI P V P, OVERTONA T W, et al. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria[J]. Food Research International, 2017,101:114-128.
[4] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38(10-11): 1 629-1 652.
[5] BAN G H, LEE J, CHOI C H, et al. Nano-patterned aluminum surface with oil-impregnation for improved antibacterial performance[J]. LWT-Food Science and Technology, 2017, 84: 359-363.
[6] FOSTER H A , DITTA I B, VARGHESE S, et al. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1 847-1 868.
[7] ZHANG X D, XIAO G, WANG Y Q, et al. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications[J]. Carbohydrate Polymers, 2017,169:101-107.
[8] KASINATHAN K, KENNEDY J, ELAYAPERUMAL M, et al. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications[J]. Scientific Report, 2016, 6: 38 064.
[9] APONIENE K, LUKSIENE Z. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (-) bacteria[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 142: 257-263.
[10] KHAN A, HUQ T, KHAN R A, et al. Nanocellulose-based composites and bioactive agents for food packaging[J]. Critical Reviews in Food Science & Nutrition, 2014, 54(2):163-174.
[11] BURT S. Essential oils: their antibacterial properties and potential applications in foods-a review.[J]. International Journal of Food Microbiology, 2004, 94(3):223-253.
[12] LIAKOS I, RIZZELLO L, BAYER I S, et al. Controlled antiseptic release by alginate polymer films and beads[J]. Carbohydrate Polymers, 2013, 92(1):176-183.
[13] 罗自生, 张莉. 壳聚糖/纳米SiOx复合物涂膜对鲜切竹笋品质和生理的影响[J]. 2010, 43(22): 4 694-4 700.
[14] LIU M C, GUO M J, YAN M X, et al. Antimicrobial nanomaterials against biofilms: an alternative strategy[J]. Environmental Reviews, 2016, 25(2): 225-244.
[15] YEMMIREDDY V K, HUNG Y C. Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges[J]. Comprehensive Reviews in Food Science & Food Safety, 2017, 16(4):617-631.
[16] KIM J S, KUK E, YU K N, et al. Antimicrobial effects of silver nanoparticles.[J]. Nanomedicine Nanotechnology Biology & Medicine, 2007, 3(1):95-101.
[17] PAL S, YU K T, SONG J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli[J]. Applied & Environmental Microbiology, 2007, 73(6):1 712-1 720.
[18] CAVALIERE E, CESARI S D, LANDINI G, et al. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition[J]. Nanomedicine Nanotechnology Biology & Medicine, 2015, 11(6):1 417-1 423.
[19] SHANKAR S, RHIM J W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films[J]. Carbohydrate Polymers, 2015, 130:353-363.
[20] HOSSEINI R, AHARI H, MAHASTI P, et al. Measuring the migration of silver from silver nanocomposite polyethylene packaging based on (TiO2) into Penaeus semisulcatus, using titration comparison with migration methods[J]. Fisheries Science, 2017, 83(4):649-659.
[21] KANMANI P, RHIM J W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films[J]. Food Chemistry, 2014, 148(2):162-169.
[22] ABREU A S, OLIVEIRA M, DE S A, et al. Antimicrobial nanostructured starch based films for packaging[J]. Carbohydrate Polymers, 2015, 129:127.
[23] LI W, ZHANG C, CHI H, et al. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles[J]. Molecules, 2017, 22(7):1 170.
[24] MCEVOY J G, ZHANG Z. Antibacterial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2014, 19(1):62-75.
[25] GUO L, YUAN W, LU Z, et al. Polymer/nanosilver composite coatings for antibacterial applications[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 439(2):69-83.
[26] ISHIHARA M, NGUYEN V Q, MORI Y, et al. Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities[J]. International Journal of Molecular Sciences, 2015, 16(6):13 973-13 988.
[27] LATIF U, AL-RUBEAAN K, SAEB A T M. A review on antimicrobial chitosan-silver nanocomposites: A roadmap toward pathogen targeted synthesis[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2015, 64(9):448-458.
[28] LIU Y, ROSENFIELD E, HU M, et al. Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles.[J]. Water Research, 2013, 47(9):2 949-2 958.
[29] KERNBERGER-FISCHER I, KEHRENBERG C, KLEIN G, et al. Influence of modified atmosphere and vacuum packaging with and without nanosilver-coated films on different quality parameters of pork[J]. Journal of Food Science & Technology, 2017, 54(10):3 251-3 259.
[30] LI J H, HONG R Y, LI M Y, et al. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings[J]. Progress in Organic Coatings, 2009, 64(4):504-509.
[31] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3):219-242.
[32] MORITZ M, GESZKE-MORITZ M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228(14):596-613.
[33] PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Science & Technology of Advanced Materials, 2008, 9(3):035004.
[34] ALI A, AMBREEN S, JAVED R, et al. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties[J]. Materials Science & Engineering C, 2017, 74:137-145.
[35] ESPITIA P J P, SOARES N D F F, COIMBRA J S D R, et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications[J]. Food & Bioprocess Technology, 2012, 5(5):1 447-1 464.
[36] OUN A A, RHIM J W. Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties[J]. Food Hydrocolloids, 2017, 67:45-53.
[37] 匡衡峰, 胡长鹰, 温晓敏. 等. 纳米 ZnO /壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业, 2017, 43(4): 251-256.
[38] LI D, LI L, LUO Z, et al. Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage[J]. Scientia Horticulturae, 2017, 225:128-133.
[39] UHM S H, SONG D H, KWON J S, et al. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2014, 102(3):592-603.
[40] XING Y, LI X, ZHANG L, et al. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film[J]. Progress in Organic Coatings, 2012, 73(2):219-224.
[41] LI D, YE Q, JIANG L, et al. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature[J]. Journal of the Science of Food & Agriculture, 2017, 97(4):1 116.
[42] 罗自生, 叶轻飏, 李栋栋. 纳米二氧化钛改性 LDPE 薄膜包装对草莓品质的影响[J]. 现代食品科技, 2013, 29(10): 2 340-2 344.
[43] LUO ZS, YU Q, YE QY. Effect of nano-TiO2-LDPE packaging on microbiological andphysicochemical quality of Pacific white shrimp during chilledstorage[J]. International Journal of Food Science and Technology, 2015, 50: 1 567-1 573.
[44] 路红艳, 李莉, 罗自生. 纳米TiO2改性低密度聚乙烯包装保持山核桃贮藏品质[J]. 农业工程学报, 2017, 33(3): 288-293.
[45] 吴朝凌, 郝文婷, 孙彤,等. 纳米镁化合物对壳聚糖复合涂膜性能的影响[J]. 中国食品学报, 2016, 16(3):51-57.
[46] LUO Z, WANG Y, WANG H, et al. Impact of nano-CaCO3 -LDPE packaging on quality of fresh-cut sugarcane[J]. Journal of the Science of Food & Agriculture, 2014, 94(15):3 273.
[47] 徐庭巧, 魏云潇, 王毅, 等. 纳米碳酸钙改性聚乙烯膜对杨梅贮藏品质和生理的影响[J]. 现代食品科技, 2016, 32(10): 205-210.
[48] 徐晓玲, 梅安待, 罗自生,等. 壳聚糖添加纳米碳酸钙助剂涂膜对枇杷品质的影响[J]. 食品与发酵工业, 2008, 34(4):142-145.
[49] 门真真. 纳米化山梨酸制备及其在香肠中应用的研究[D]. 无锡:江南大学. 2010.
[50] 武陶, 丁武. 山梨酸纳米防腐颗粒的制备、表征及其缓释性能[J]. 食品科学, 2014, 35(10):57-61.
[1] 乐莉, 张亚青, 宋尔群, 陶晓奇. 一种荧光DNA生物传感器用于食品中非洲猪瘟病毒的检测[J]. 食品与发酵工业, 2021, 47(9): 268-274.
[2] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[3] 刘琦, 毛燚杰, 蔡铭. “专业思政”视阈下思政元素的挖掘与融入路径探索——以食品质量与安全专业为例[J]. 食品与发酵工业, 2021, 47(9): 343-348.
[4] 陈敦武, 刘翠翠, 陈雄, 代俊, 王志, 姚鹃, 李沛, 李欣. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
[5] 侯钰柯, 石金明, 曾宪明, 尹家琪, 田惠鑫, 白云, 唐长波, 韩敏义, 徐幸莲. 类蛋白反应及其在肉类中的应用[J]. 食品与发酵工业, 2021, 47(8): 261-267.
[6] 刘素素, 沙磊. 植物蛋白基肉制品的营养安全性分析[J]. 食品与发酵工业, 2021, 47(8): 297-303.
[7] 贾雪颖, 黄明泉, 张雨萌, 张璟琳, 孙宝国. 食用油与氯化钠模型反应中氯丙醇酯的消长规律[J]. 食品与发酵工业, 2021, 47(7): 86-93.
[8] 易媛, 左勇, 黄雪芹, 杨建飞, 徐佳, 马倩, 胡琨. 食用植物酵素开发关键技术研究进展[J]. 食品与发酵工业, 2021, 47(7): 316-321.
[9] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[10] 晏明兴, 陈芸, 吕廷保, 关鼎儒, 李杜慧, 何俊蓉, 梁微, 杨玲春, 胡永金, 朱仁俊. 云南边贸进口即食食品中金黄色葡萄球菌的分离与鉴定[J]. 食品与发酵工业, 2021, 47(6): 208-213.
[11] 孙聿尧, 谢晶, 王金锋. 超声波解冻与传统解冻方式的比较与竞争力评估[J]. 食品与发酵工业, 2021, 47(6): 253-258.
[12] 石俊杰, 鲁晓翔. 植物精油微乳技术及在食品保鲜中的应用[J]. 食品与发酵工业, 2021, 47(6): 267-273.
[13] 王力, 蔡思学, 洪诚毅, 刘光明, 倪辉, 周磊, 郑斌. 《食品安全追溯体系》课程的改革与成效[J]. 食品与发酵工业, 2021, 47(6): 306-311.
[14] 陶海腾, 崔波, 王存芳, 曲静然. 疫情期间食品专业课程线上教学探索与创新——以《食品营养与安全》为例[J]. 食品与发酵工业, 2021, 47(6): 312-317.
[15] 冮洁, 陈晨, 姜爱丽, 齐海萍, 田密霞. 《食品营养学》课程思政教学设计与实践[J]. 食品与发酵工业, 2021, 47(6): 318-324.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持