苦瓜中植物胰岛素的分离及其氨基酸序列测定

盛清凯1 姚惠源1 徐华军2

1(江南大学食品学院, 无锡 214036) 2(广西北生药业股份有限公司, 北海市, 536000)

采用有机酸、醇提取 Sephadex G-50 筛分、RP-HPLC 色谱分离 从苦瓜中分离出植物胰岛 素,并报道了植物胰岛素的氨基酸序列。

关键词 苦瓜 降糖多肽 氨基酸序列

苦瓜中存在植物胰岛素、皂苷等功能成分, 因此具有降血糖,增强机体免疫力的功 **效**[1~4]

1981 年 Khanna 2]采用有机酸、醇提取 ,薄 层层析方法从苦瓜中分离出降糖多肽-P(ppolypeptide) 皮下注射该肽可降低试验型鼠、 猴和糖尿病人的高血糖。苦瓜多肽-P 为 166 个氨基酸残基 分子量约为 11 ku。因提取方式 与动物胰岛素相似 ,且薄层层析迁移率与动物 胰岛素一致,故多肽-P 又称植物胰岛素(p-insulin)。薄层层析方法分离度高,但样品上样量 低、难于大规模制备。作者采用有机酸、醇提 取 凝胶柱层析和反相高效液相色谱技术(RP-HPLC),分离出苦瓜植物胰岛素,为工业化生 产提供了可能。文中还首次对植物胰岛素的氨 基酸序列进行了报道。

1 试验材料与设备

1.1 材料

苦瓜:广西北生药业股份有限公司提供。

1.2 主要设备

7000D 透析袋:美国 Spectrum 公司;LC-2010 高效液相色谱仪:日本岛津公司;835-50型氨 基酸分析仪:日本日立公司:PPSQ-23 蛋白序 列分析仪:日本岛津公司。

苦瓜多肽的提取与纯化

2.1 苦瓜多肽的提取

第一作者:博士研究生 助理研究员。 收稿时间 2004-02-26

将苦瓜粉碎,按 Khanna 方法^{2]}采用酸醇 提取 ,丙酮沉淀 ,沉淀物用 7000 ku 透析袋透析 48 h 后冷冻干燥 得苦瓜多肽粗提物。

2.2 凝胶柱层析

按常规方法将 Sephadex G-50 装柱 ,将苦 瓜多肽粗提物溶于缓冲液中配成 18 mg/mL 的 浓度,进行凝胶柱分离,得到2个洗脱峰,收集 冻干。由图 1 可知 ,收集的 P₁、P₂ 两组分中 ,P₂ 为主导组分。凝胶层析条件为:缓冲液为 pH 5.0、0.2 mol/L 醋酸-醋酸钠 凝胶柱 80×2 cm, UV 280 nm 检测。每管装液 3.2 mL。

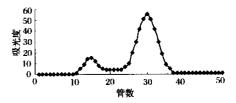


图 1 苦瓜多肽凝胶柱层析图

将组分 P₁、P₂ 冻干粉分别溶于水中 ,皮下 注射正常小鼠和四氧嘧啶高血糖模型小鼠。试 验结果表明 月 无降血糖效果 丹 可显著降低 正常小鼠、四氧嘧啶高血糖模型小鼠的血糖。

2.3 采用反相高效液相色谱进行纯化

将 P2 冻干粉溶于超纯水中 配成 5 mg/mL 的浓度 超声波脱气后用 Cis 反相高效液相色 谱纯化 线性梯度洗脱(见图 2), 收集组分 PA、 PB、PC、PD 冻干。实验条件为:上样量 10μ L, 流速 0.8 mL/min,洗脱液为 A 液(5% 乙腈、 0.05%三氟乙酸) B液(80%乙腈、0.05%三氟

乙酸 》。线性洗脱梯度为 0→1 min A 液 85%、B 液 15% ,1→40 min A 液 50%、B 液 50% ,温度 30℃ 220 nm 检测。

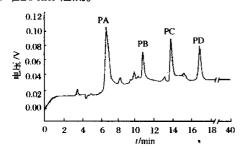


图 2 苦瓜多肽 C18 RP-HPLC 色谱图

将 PA、PB、PC、PD 溶于水 ,与胰岛素溶液一起进行硅胶 G 薄层层析 ,茚三酮溶液显色。 展开剂为 V(正丁醇): V(水): V(乙酸)=12:5:1。结果显示 PA、PB、PC、PD 的相对迁移率分别为 0.19、0.10、0、0。 PA 的相对迁移率与胰岛素迁移率一致。推测 PA 可能为 Khanna 报道的苦瓜多肽-I²¹。

2.4 苦瓜多肽氨基酸组成分析

将 PA 完全水解 进行氨基酸组成分析(表1)。 PA 氨基酸组成分析结果与 Khanna ² 报道

结果一致。根据 PA 的薄层层析和氨基酸组成分析结果判定 PA 即为植物胰岛素。

表 1 苦瓜多肽 PA 氨基酸组成分析

以1 日本シル1A 女坐政治ルカ カ		
氨基酸	μMoles/mg	分子个数
天冬氨酸	0.273	17
苏氨酸	0.138	8.7
丝氨酸	0.195	12
谷氨酸	0.305	19
脯氨酸	0.159	10
甘氨酸	0.225	19
丙氨酸	0.240	15
缬氨酸	0.174	11
1/2 半胱氨酸	0.058	3.6
蛋氨酸	0.031	2
异亮氨酸	0.116	7
亮氨酸	0.207	13
酪氨酸	0.016	1
苯丙氨酸	0.082	5
组氨酸	0.066	4
赖氨酸	0.209	13
精氨酸	0.161	10
氨	0.431	27
总 计		166

3 苦瓜植物胰岛素的氨基酸序列

将 PA 进行 Edman 降解 ,测定其氨基酸序列为:

1	10	20	
H-Gly-Cys-Asp-Glu-Ala-Leu-Phe-Lys-Arg-Ser-Thr-Pro-Gly-Val-Ile-Pro-Thr-Arg-His-Met			
21	30	40	
-Asp-Asp-Pro-Thr-Gly-Gly-Val-Cys-Leu-Tyr-Glu-Ser-Ile-Arg-Asp-Thr-Ser-Glu-Pro-Gly			
41	50	60	
-Ala-Val-Ala-Leu-Arg-Asp-Glu-Gly-Lys-Val-Asp-Glu-Ser-Met-Thr-Asp-Gly-Lys-Asp-Asp			
61	70	80	
-Gly-His-Leu-Ala-Glu-Arg-Lys-Pro-Val-Ala-Gly-Asp-Leu-Val-Ala-Glu-Lys-Asp-Phe-Gly			
81	90	100	
$\hbox{-Ala-Ser-Gly-Asp-Val-Glu-Cys-Ile-Thr-Pro-Phe-Gly-Asp-Thr-Asp-Glu-Leu-Glu-Pro-Gly-Constraint} \\$			
101	110	120	
-Gly-Gly-Gly-Leu-Ile-Val-Ala-Pro-Ser-Thr-Asp-Arg-Lys-Leu-Lys-Ser-Pro-Leu-Phe-Val			
121	130	140	
-Ala-Glu-Ser-Ala-Glu-Leu-Lys-His-Ala-Ser-Glu-Val-Lys-Arg-Ser-Ile-His-Glu-Pro-Glu			
141	150	160	
-Ala-Leu-Ala-Asp-Ser-Glu-Gly-Arg-Lys-Phe-Leu-Ala-Gly-Glu-Lys-Ala-Ile-Arg-Arg-Lys			
161	166		
-Lys-Val -Ile -Leu-Glu -Ser-(Ol	H)		

- Lesile Taylor. Herbal secrets of the rainforest (2nd edition [R]. Austin (USA): Sage Press Inc. 2002. 4
- Khanna Pushpa, Jain S.C., Panagariya A et al. Hypoglycemic activity of polypeptide from a plant source
- [J]. J Nat Prod, 1981 $44(6):648\sim655$
- 3 王先远 金 宏 许志勤等 苦瓜皂甙降血糖作用及 其机制初探[]] 氨基酸和生物资源 ,2001 ,23(3): $42 \sim 45$
- 4 Khanna Pushpa. Protein/polypeptide-k obtained from Momordica charantia and a process for the extraction thereof P]. WO 100/61619, 2000 October, 19

Isolation and Amino Acid Sequencing of Plant Insulin from Momordica charantia

Sheng Qingkai¹ Yao Huivuan¹ Xu Huaiun²

1 (School of Food Science and Technology, Southern Yangtze University, Wuxi 214036) 2 Guangxi Beisheng Pharmaceutical Co. Ltd , 536000 , Beihai)

ABSTRACT Plant insulin was extracted with organic acid and ethanol, purified with Sephadex G-50 gel filtration and RP-HPLC from Momordica charantia. Amino acid sequence of the plant insulin was reported in this paper.

Key words Momordica charantia, plant insulin, amino acid sequence

韩国对从我国进口调味品、辣椒及辣椒面有新要求

日前 据韩国驻华大使馆通报 韩方决定加强对中国出口韩国调味品(干、湿泡菜调味料)、辣椒及辣椒 面的入境检查。

为避免中国调味品、辣椒及辣椒面对韩出口贸易受阻,检验检疫部门提醒相关生产出口企业:一是出 口韩国的调味品使用食品添加剂辣椒红和红曲红,必须在产品标识上予以标注。二是出口企业在向检验 检疫部门报检时要如实,申报出口韩国的调味品、辣椒及辣椒面中食品添加剂使用情况,如未如实申报而 导致被韩方通报违规的,暂停报检并及时整改。 三是要严格按照韩方的规定进行产品加工,确保出口韩国 的产品符合其要求。

日本推崇特保茶饮料

信 息

政策

法规

目前, 日本的茶饮料市场规模近70亿美元, 2003年度增长了3.4%, 继续保持上升趋势。在饮料市场 中 茶饮料所占比率为 31%。

目前 在日本茶饮料市场 蒸与功能性水将呈持续上升趋势 强化儿茶素的绿茶作为功能性茶饮料将 成为热销产品、功能性茶饮料与重视香气、滋味的茶饮料将呈两极分化、茶以外的植物多酚、单宁等成分将受到关 注。

在日本市场上,众多厂家把目光集中在特保饮料上。1997年添加有降低血压作用的"Lacto Tri Peptide"的含乳 饮料是首次畅销的特保饮料 ;1998 年添加对糖的吸收有抑制作用的'蕃石榴多酚'的茶饮料是在日本首例畅销的特 保茶饮料 2003 年强化添加茶多酚的特保绿茶饮料十分畅销 其原因在于瘦身意识 大众熟知绿茶和饮用后效果明 显。

针对市场的变化,日本各饮料生产厂家着力开发特保饮料,不断开发新的植物功能性成分,不仅追求功能性, 还寻求独特的香气、滋味 同时对提取液、粉体原料等的使用进行深入的研究。