

纳豆提取物对实验性高脂血症的作用研究?

段智变1 江 晓2 江汉湖1 张书霞3 董明盛1 赵晓燕1 B2 A

1(南京农业大学食品科技学院,南京,210095) 2(南京市疾病控制中心,南京,210003)) 3(南京农业大学动物医学院,南京,210095)

摘 要 成功建立实验性高血脂症免模型,观察纳豆提取物对机体抗氧化及血脂水平的影响。结果表明,模型建立第8周时,均豆提取物组 TC、TG、LDL-C、MDA、AL 值分别比模型 组降低了 39.88% (p<0.05)、44.54% (p<0.05)、48.84% (P<0.05)、48.25% (p<0.01)、70.20%,而 HDL-C、SOD 值分别提高了 75.81% (p<0.01)、38.32% (p<0.01),结论表明纳 巨提取物可降低血脂水平,通过升高 HDL-C、降低 LDL-C 调节脂质代谢,具有抗脂质过氧化作用,可预防动脉钙样硬化的形成。

关键词 纳豆,高脂血症,抗氧化

纳豆是日本传统发酵食品之一,由枯草芽孢杆菌(Bacillus subtilis)的一些种或纳豆牙孢杆菌(Bacillus natto)发酵大豆制成[1]、具有抗氧化[2]、降血压[3]、溶血栓[4]、防止骨质疏松、促凝血等多种功能,常用以预防和治疗心脑血管性疾病。本实验在筛选到纳豆优良菌株等前期工作基础上[5.6],目前正着手对纳豆保健功能及其机理进行深入研究,本文研究了纳豆提取物对实验性高脂血症动物模型的降血脂、抗氧化效果,为将纳豆在我国开发成为保健食品提供理论依据,具有重要的现实意义。

1 材料与方法

1.1 材料

1.1.1 纳豆菌种

B.N. 1~12 来自江汉湖教授从澳大利亚、日本带回的菌种及董明盛、陆兆新教授、盖钧镒院士以及日本大学森地敏树教授惠赠菌种,还包括本实验室自行分离、筛选保存的菌种。B.N. 10 为筛选高产菌株。

1.1.2 大 豆

为南京农业大学国家大豆品种改良中心

提供的'菜豆5号'品种。

1.1.3 主要试剂

胆固醇为白色结晶粉末、新鲜猪油炼制 后冷藏备用。

1.1.4 实验动物

日本大耳白兔(南京东南大学医学院实验动物中心提供),许可症号 SCXK(苏)2002-0006,体重 2.0~2.5 kg,共 18 只,雌雄各半。

1.2 方 法

1.2.1 纳豆制作工艺

大豆→清洗、浸泡→灭菌→接种→发酵 →后熟→纳豆,严格控制生产工艺条件,保证 产品质量稳定。

1.2.2 纳豆提取物的制备

取成熟纳豆 100 g, 粉碎后加灭菌水 200 mL, 搅拌, 静置过夜, 4 000 r/min 离心 30 min, 收集上清液冷冻保存, 1 mL 相当于 0.5 g 成熟纳豆剂量。

1.2.3 实验性高血脂症兔模型的建立

按文献[7]报道略作改动。每只兔每天除给约150g基础饲料外,定时给2g猪油,从第10d起加入0.3g胆固醇,4周后增到

第一作者;博士研究生,讲师。

^{*} 江苏省自然科学基金资助项目(No. BJ9835) 收稿时间:2002 - 08 - 29,改回时间:2002 - 12 - 25

差异显著性分析。 2 结果与分析

2.1 体重变化

体重变化结果见表 1。

表 1 各组体重变化(n=6, X ± SD) kg

组別	0 周	4周	8周
正常组	2.23 + 0.26	2.79 ± 0.28	2.87 + 0.49
模型组	2.19 + 0.22	2.93 ± 0.22	3.18 + 0.38
提取物组	2.21 + 0.18	3.01 + 0.27	2.91 + 0.42

结果显示,各组兔体重随实验发展都有所增加,但同期各组之间无统计学差异(P>0.05),说明喂饲胆固醇未影响兔的生长,各组兔生长发育基本一致。

2.2 纳豆提取物对兔血脂水平的影响

血脂主要包括甘油三酯、胆固醇、胆固醇酯、磷脂和游离脂肪酸等。高血脂症(hyperlipidemias)主要是指胆固醇、甘油三酯高于正常值上限的脂代谢障碍病症。HDL和LDL在机体胆固醇的转运、代谢中发挥重要作用,且作用的结果完全相反。纳豆提取物对TC、TG、HDL、LDL的作用结果见表2、表3。

0.5g,实验期8周。

1.2.4 分组及给药方式

根据体重和血清 TC 值随机分为 3 组, 每组 6 只。

正常对照组: 伺喂基础颗粒饲料。模型组: 饲喂法同高血脂症模型建立。纳豆提取物组: 造模型前 4 周每天清晨及下午投料时将提取物拌于饲料中,每天每只200 mL,吃完后再加基础饲料。4 周后造模型饲喂法同高血脂症模型组,同时拌喂提取物,实验期 8 周。

1.2.5 观测指标及检测方法

实验开始后密切观察各组动物的体毛、活动及采食情况,定期称量体重变化;于实验0,4、8 周后经耳静脉采血 3 mL,测定血清总胆固醇(TC)、甘油 三酯(TG)、内二醛(MDA),第 8 周时测定高密度脂蛋白胆固醇(HDL-C)、超氧化物歧化酶(SOD),并按公式计算低密度脂蛋白胆固醇(LDL-C)=TC-(1/2.2TG+HDL-C),动脉粥样硬化指数(atherogenic index, AL)=(TC-HDL-C)/HDL-C。TC、TG、HDL-C、MDA、SOD测定试剂盒购自南京建成生物公司研究所。

1.2.6 数据处理

表 2 纳豆提取物对 $TC \times TG$ 的影响 $(n=6, \overline{X} \pm SD)$

mmol/L

-	6H 5H		TC			TG	
组別	0 周	4 周	8 周	0周	4 周	8周	
_	正常组	1.74 + 0.28	2.43 + 0.38	3.04 + 0.89	0.98 + 0.36	0.84 + 0.23	0.72 + 0.25
	模型组	1.61 + 0.31	5.56 + 1.68*	9.78 + 1.15 * *	0.92 ± 0.18	1.01 + 0.26	2.29 + 1.03 * *
	提取物组	1.43 ± 0.23	3.02 + 1.03 #	5.88 1.06#	0.88 ± 0.28	0.93 ± 0.36	1.27 + 0.71 #

注: *P<0.05, **P<0.01,与正常组比较; #P<0.05,与模型组比较。

表 3 纳豆提取物对 HDL-C、LDL-C、AL 的影响 (n = 6, X ± SD)

组别	HLD-C /mmol·L ·1	LDL = C /mmol·L = 1	AL
正常组	1.17 + 0.31	1.54 + 0.68	1.60 + 0.43
模型组	0.62 + 0.24 * *	8.21 + 1.96 * *	14.73 + 0.97
提取物组	1.09 0.38 # #	4.20 + 1.51 #	4.39 0.06

注: ``P < 0.01, 与正常组比较; $^{\#}P < 0.05$, $^{\#\#}P < 0.01$, 与模型组比较。

结果表明,与模型组相比,第4周时纳豆 提取物组 TC 含量明显降低(P<0.05),第8 周时 TC、TG 分别降低了 39.88%、44.54%, 差异显著(P<0.05)。

AL 值增大是反映动脉粥样硬化的重要指标。实验结果表明,第 8 周时与模型组相比,纳 豆 提 取 物 组 HDL-C 值 提 高 了75.81%,LDL-C 值降低了 48.84%,差异均显著(P < 0.01, P < 0.05), AL 值降低了70.20%。

2.3 纳豆提取物对兔抗氧化性能的影响 MDA 是脂质过氧化反应的稳定终产物,

全 · NH · 上

其水平高低反映了机体脂质过氧化反应的状态。SOD 是机体内酶类自由基清除剂之一,可清除体内过多积累的自由基对生物膜和其他组织造成的损伤,其含量高低可指示机体抗氧化系统的功能水平。结果见表 4。

表 4 纳豆提取物对 SOD、MDA 的影响

 $(n = 6, \overline{X} \pm SD)$

组 别 -	MDA/n	SOD/u·ml. 1	
	4周	8周	8周
对照组	5.66 ± 0.68	6.29 + 0.98	156.86 + 13.42
模型组	12.46 + 3.27 *	21.47 + 3.29 * *	88.63 + 8.28 * *
提取物组	7.88 ± 2.12 #	11.11 ± 1.98 # #	122.59 + 12.31 # #

注:*P<0.05,**P<0.01,与正常组比较,*P<0.05,**P<0.01,与再组比较。

结果表明,与模型组相比,纳豆提取物组MDA含量虽高于同期对照组水平,但明显低于同期模型组(P<0.05, P<0.01),第8周时,MDA降低了48.25%,而SOD水平提高了38.32%,说明纳豆提取物有良好的抗脂质过氧化作用。

3 讨论

(1)实验性高血脂模型有轻重之分,根据 我们的科研需要,为观察纳豆提取物的预防 和控制作用,我们在实验前期给予小剂量的 胆固醇(0.3g/只·d), 后期增到 0.5g/只·d, 使血清 TC 的含量维持在 10 mmol/L 左右. 避免模型造得过重,掩盖纳豆提取物的生物 效应。实验结果表明, 第8周时模型组的血 脂变化极为显著,其血清 TC、TG、LDL-C 含 量及 AL 值分别为正常对照组动物的 3.22 倍、3.18 倍、5.33 倍和 8.93 倍, HDL-C 值降 低了 47.01%, 差异均显著(P<0.05, P< 0.01),且模型组 MDA 随病理模型发展而持 续上升, SOD 值则明显降低, 第8周时差异 均极显著(P<0.01), 说明模型组脂质代谢 失调,也证实了高胆固醇血症可促进脂质过 氧化反应,高脂血症模型复制成功。

(2)脂质代谢紊乱或脂蛋白组成异常引起的高脂血症,是动脉粥样硬化病理改变的 重要危险因素之一。大量资料表明,血清中 高 TC、TG 及 LDL C 能促进动脉粥样硬化的 发生。目前,从血液流变学角度研究防治 AS (atheros clerosis)的机理,主要是观察研究材 料对全血粘度即血脂水平(TC、TG)、纤维蛋 自原水平及活性等因素的影响。

血粘度升高可增加血管壁上的切应力,增多动脉壁遭受外来应激的机会,导致 AS 形成,纤维蛋白原(fibrinogen, Fig)水平升高可增高血小板聚集率^[8],且转化成纤维蛋白沉积于血管壁,促进动脉粥样硬化斑的发生、发展,并且还可与纤维蛋白发生桥联作用提高血液粘性,增加血栓发生的危险性^[9],并且纤维蛋白原活性升高,也是 AS 形成的危险因素之一^[10]。我们的研究结果表明,纳豆提取物不仅可显著降低 TC、TG 水平,还可降低 Fig 含量,有关这方面实验结果另待发表。

研究表明,纳豆提取物可使血脂和纤维蛋白原水平降低,阻止全血粘度升高,同时升高 HDL-C、降低 LDL-C,从而对脂质代谢失调有明显的改善和调节作用,延缓或减轻动脉粥样硬化的发生和发展,甚至促进已有病变的消退。

(3)生物膜上的多不饱和脂肪酸易被自由基(free radical)攻击,引发脂质过氧化反应,产生的大量过氧化脂质能直接损伤内皮细胞,破坏前列腺素/血栓素 A2 的平衡,促使血小板聚集,对低密度脂蛋白进行化学修饰,引发纤溶系统失衡,因此,氧自由基介导

研究报告

的脂质过氧化反应在 AS 发生、发展中具有重要的致病作用^[12]。另外,据文献报道高胆固醇血症也可促进脂质过氧化反应^[13]。因此,若能阻断脂质过氧化反应即具有抗 AS 的作用。大量实验结果已证明抗氧化剂可延缓 AS 的发生、发展^[14]。

LDL有致 AS 的作用, 但经过氧化修饰 的 LDL 具有更强的致 AS 的作用, 即被氧化 修饰的 LDL 可能改变其本身的生化特性, 而 不能与成纤维细胞上的载脂蛋白 B 受体特 异结合,只能被巨噬细胞上的清道夫受体辨 认和接受,从而最终导致泡沫细胞形成,而泡 沫细胞是 AS 早期阶段具有特征性的细胞。 本研究表明, 纳豆提取物可降低机体血脂水 平,尤其是 LDL-C 的含量,升高 HDL-C 的含 量,同时提高机体自身抗氧化酶 SOD 活性, 强化机体的抗氧化作用,减轻脂质过氧化损 伤作用,从而减轻和防止动脉粥样硬化初期 泡沫细胞的形成,这可能与其对 LDL 氧化修 饰的保护作用有关,也可能是纳豆具有溶栓 等保健功效的机制之一,这在国内是首次报 道。

纳豆的生物学功能与其功能因子密切相关。纳豆及其周围粘性物质中含有多种营养成分,其中蛋白质 50%以上呈水溶性,含有人体全部必需氨基酸,且氨基酸半衡性良好,

另外含有不饱和脂肪酸、磷脂、蛋白酶、维生素 E、染料木素、染料木苷、皂苷等多种生物活性物质, 本研究中纳豆提取物表现的降血脂、抗氧化功能可能是多种功能因子综合作用的结果, 其中所含的功能成分有待进一步研究。

参考文献

- 1 康明官,中外著名发酵食品生产工艺手册,北京:化学工业出版社 1997.157~158
- Tamura Y, Takenaka T. Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46(9):561 ~ 569
- 3 Okamoro A, Hanagata H, Kawamura Y et al. Plant Foods Hum. Nutr., 1995, 47(1);39~47
- 4 Urano T, Ihara H, Umenura K et al. J. Biol. Chem., 2001,276(27):24690~24696
- 5 江 晓, 产酶纳豆菌株的筛选及纳豆激酶特性 研究,南京农业大学硕士学位论文,1999.6
- 6 刘 城, 纳豆激酶液体发酵条件及其酶学稳定性研究, 南京农业大学硕士学位论文, 2000.6
- 7 刘玉军, 孙明堂, 张枢泉等, 营养学报, 1994 (16)1; 6~11
- 8 Meade T W, Vickers M V, Thompson S G et al. Thromb. Res., 1985, 38:527~534
- 9 Hamsten A. Thromb. Res., 1993, 70:1~38.
- 10 Chien H. Clin. Hemorheol., 1982, 2:137
- 11 Hoff H F, O Neil J. Atversclerosis, 1988, 70:29
- 12 Keaney J F, Vita J A. Prog. Cardiovasc. Discasc, 1995, 38:129-148.
- 13 黄河清,吴伟康,程 超.中国动脉硬化杂志, 2000, 8: 302~304.
- 14 田庆印,潘其兴. 心血管病学进展, 1997, 18: 325~328.

Effects of Extract from Natto on Experimental Hyperlipidemia

Duan Zhibian¹ Jiang Xiao² Jiang Hanhu¹ Zhang Shuxia³ Dong Mingsheng¹ Zhao Xiaoyan¹

1(College of Food Science and Technology, Nanjing Agric. Univ., Nanjing, 210095) 2(Nanjing Center of Disease Control, Nanjing, 210003) 3(College of Veterinary Medicine, Nanjing Agric. Univ., Nanjing, 210095)

ABSTRACT The mechanism of water soluble extract from natto with *Bacillus natto* on preventing experimental hyperlipidemia was studied. The results showed that the extract could reduce the blood TC, TG, LDL-C, MDA, AL of experimental rabbits 39.88% (p < 0.05), 44.54% (p < 0.05), 48.84% (p < 0.05), 48.25% (p < 0.01), 70.20% respectively, and improve HDL-C, SOD, 75.81% (p < 0.01), 38.32% (p < 0.01) respectively. It indicates that natto can efficiently interfere in the formation of experimental hyperlipidemia.

Key words natto, hyperlipidemia, antioxidation