基于染料Genefinder的荧光传感体系检测玉米赤霉烯酮

郭婷,陈金航,周鸿媛,张宇昊,马良*

(西南大学 食品科学学院,重庆,400715)

玉米赤霉烯酮(zearalenone,ZEN)是由镰刀菌属真菌产生的一种毒素,具有生殖毒性、免疫毒性、肝肾毒性及致癌性,对人类健康造成严重威胁。该研究通过构建一种简单、灵敏的荧光传感体系检测ZEN,其中核酸适配体作为识别元件,对目标物ZEN具有特异性识别作用;Genefinder染料作为荧光传感信号,当染料与ZEN适配体及其互补链形成的双链结构作用时,染料荧光信号增强,然而加入ZEN后,适配体特异性识别ZEN,导致双链打开,染料荧光强度降低。研究结果表明,该传感体系对ZEN具有较好的选择性,在最优条件下,这种简单快速的荧光传感体系的线性范围是0.1~200 μg/L,实际检出限为0.1 μg/L。以玉米粉为实际样品,ZEN的加标回收率为100.4%~105.8%,该荧光传感体系成功用于实际样品检测,具有广阔的应用前景。

关键词 玉米赤霉烯酮;核酸适配体;染料Genefinder;荧光传感体系;高灵敏

玉米赤霉烯酮(zearalenone, ZEN)是由镰刀菌属真菌产生的一种毒素[1],广泛存在于玉米、小麦、大米等谷物、饲料和动物制品中。ZEN具有类雌激素作用,进而影响人体和动物的生殖系统[2-3]。此外,ZEN还具有免疫毒性、肝肾毒性及致癌性[4-5]。我国国标规定小麦及玉米中ZEN含量不超过60 μg /kg,饲料中ZEN含量不超过500 μg/kg。目前,食品中ZEN的检测方法有高效液相色谱法(high performance liquid chromatography,HPLC)[6-10]、免疫法[11-14]、生物传感器法[15-18]等。高效液相色谱法准确度和稳定性较高,但需要复杂的样品前处理及昂贵的仪器设备,不能满足食品安全快速检测的要求。免疫分析法具有高效、快速的特点,但其会出现假阳性问题,并且抗体的制备周期较长、稳定性差,限制了该方法的应用。

适配体是一种单链DNA或RNA,通过指数富集(systematic evolution of ligands by exponential enrichment,SELEX)系统筛选产生,能够与靶标进行特异性结合,稳定且易制备,在4 ℃条件下能保存半年甚至更久,不会影响其结构[19-21],目前已广泛应用于食品安全检测及疾病诊断方面。HE等[22]利用适配体的特异性构建基于内滤效应的荧光比率分析法检测ZEN和伏马毒素,该方法选择性高,实际样品加标回收率在89.9%~106.6%。ZHANG等[23]通过SELEX法筛选出ZEN适配体,并建立基于纳米金的无标记可视化方法检测ZEN。HE等[24]构建基于纳米材料和适配体的高灵敏的电化学传感方法成功用于ZEN检测,其中纳米材料(CoSe2/AuNRs和DNA-PtNi@Co-MOF)的主要作用是放大检测信号,该方法的检出限为1.37 fg/mL。另有新型3D樱花状金属有机框架材料也可用于电化学信号放大,该方法检出限可达0.45 fg/mL[25]。本课题组也开发了多种适配体荧光传感器检测黄曲霉毒素、展青霉毒素等真菌毒素[26-28]

Genefinder染料是一种新型花青素类核酸染料,与双链DNA作用后荧光会增强800~1 000倍,毒性低、灵敏度高[29-30],可以有效保护实验人员和环境,常用于电泳中核酸染色[30-31],在检测方面的研究较少。因此,本研究利用核酸适配体的特异性,结合荧光染料Genefinder特殊的荧光特性构建荧光传感体系,用于简单、高灵敏、快速检测ZEN。

1 材料与方法

1.1 仪器与试剂

UV-2450紫外分光光度计,日本岛津公司;F-2500荧光分光光度计,日本日立公司;台式高速离心机,德国Eppendorf公司。

ZEN适配体(5′-TCATCTATCTATGGTACATTACTATCTGTAATGTGATATG-3′)[32],互补链(5′- TCAAATTAAAGATAATAATGTATTATAGAT-3′),生工生物工程(上海)有限公司;染料Genefinder,合肥博美生物科技有限责任公司;ZEN、黄曲霉毒素B1(aflatoxin B1,AFB1)、黄曲霉毒素G1(aflatoxin G1,AFG1)、赭曲霉毒素A(ochratoxin A,OTA)、单端孢霉烯(T-2)毒素标准品,美国Sigma公司;玉米粉购于本地超市。

1.2 试验方法

1.2.1 DNA浓度测定

DNA浓度以单链浓度表示,利用紫外-可见分光光度计测定DNA在260 nm处的吸光度,依据朗伯比尔定律(A=εbc)计算得DNA的浓度,于-20 ℃备用。

1.2.2 荧光传感器对ZEN的检测

DNA备用溶液解冻后,水浴90 ℃处理10 min,逐渐冷却至室温备用。将ZEN适配体与等体积等浓度互补链混合,再加入一定浓度ZEN孵育一段时间后,加入2 μL Genefinder100×,测定荧光光谱(激发波长500 nm)。

1.2.3 实际样品中ZEN的检测

向玉米粉样品中加入一定量ZEN,分别配成质量浓度为5、20 μg/L的阳性样本。用90%(体积分数)乙腈水溶液超声提取30 min,离心后取上清液,氮吹吹干后加入缓冲溶液,按照构建的荧光传感体系检测ZEN。

2 结果与分析

2.1 检测原理

本研究利用Genefinder的特性构建荧光传感体系用于快速检测ZEN。检测原理图如图1-A,ZEN适配体与其互补链形成双链结构,Genefinder染料与双链结构DNA作用后产生较强的荧光,当加入毒素ZEN后,适配体优先识别ZEN,双链打开,Genefinder染料荧光猝灭。首先研究方法的可行性,以500 nm作为激发波长,观察不同条件下体系荧光信号的变化情况。图1-B显示单链适配体(a)及互补链(b)与Genefinder作用后显示出较微弱的荧光信号。ZEN适配体与其互补链形成双链结构,Genefinder染料与双链结构DNA结合后荧光信号明显增强(d),加入毒素ZEN后,适配体与ZEN结合,双链打开,Genefinder染料荧光强度降低(e)。根据荧光强度的改变检测目标物ZEN的含量。

a-ZEN适配体+Genefinder;b-互补链+Genefinder;c-40 μg/L ZEN;
d-ZEN适配体+互补链+Genefinder;e-ZEN适配体+互补链+
40 μg/L ZEN+Genefinder
A-传感体系的检测原理图;B-不同条件下荧光光谱
图1 传感体系原理图及可行性分析
Fig.1 Schematic of sensing system and feasibility

2.2 检测条件优化

2.2.1 孵育时间

实验中适配体需要与目标物孵育一段时间才能更好地识别目标物。因此本试验研究孵育时间对荧光信号的影响。如图2所示,随着孵育时间的延长,荧光猝灭量逐渐增强,当孵育时间60 min时,荧光猝灭量达到最大,说明体系中ZEN适配体与ZEN结合已达到饱和。因此,本实验选择60 min为最佳孵育时间。

图2 孵育时间对荧光强度的影响
Fig.2 Effect of incubated time on the fluorescence
注:F0F分别表示没有目标物和添加目标物时的荧光强度(下同)

2.2.2 适配体用量

适配体用量会影响荧光传感体系的灵敏度。图3显示适配体浓度对荧光传感体系的影响。结果表明,随着ZEN适配体用量的增加,荧光猝灭程度迅速增加,当适配体浓度达到100 nmol/L时,荧光猝灭量趋于稳定。因此,适配体用量选择100 nmol/L作为后续实验用量。

图3 适配体用量对荧光强度的影响
Fig.3 Effect of aptamer on the fluorescence

2.3 荧光传感体系的构建

在上述最佳的实验条件下,以ZEN为目标物构建荧光传感体系。结果如图4-A所示,随着ZEN浓度的增加,传感体系荧光强度逐渐减弱,这是由于ZEN的加入破坏了双链结构,从而造成荧光减弱。然而当ZEN浓度达到一定值时,荧光强度不再明显降低,达到平衡。从图4-B可以看出,1-F/F0与ZEN浓度的对数在0.1~200 μg/L呈线性关系,实际可检测的检出限为0.1 μg/L。结果表明该荧光传感体系具有较高的灵敏度。

a-0 μg/L;b-0.1 μg/L;c-0.5 μg/L;d-1 μg/L;e-5 μg/L;
f-10 μg/L;g-50 μg/L;h-100 μg/L;i-200 μg/L;j-500 μg/L
A-不同浓度ZEN对所构建传感体系荧光响应变化;
B-1-F/F0与ZEN浓度对数的线性关系
图4 传感体系对ZEN的荧光响应
Fig.4 Fluorescence resptnse of sensor with ZEN

2.4 荧光传感体系选择性

为了考察荧光传感体系的选择性,本研究以黄曲霉毒素B1(AFB1)、黄曲霉毒素G1(AFG1)、赭曲霉毒素A(OTA)、单端孢霉烯毒素(T-2)为对照毒素研究该传感体系的特异性,结果如图5所示。加入40 μg/L ZEN时,荧光传感体系的荧光强度猝灭量显著增加,而加入同浓度的对照毒素并未造成荧光体系明显的荧光猝灭,这是因为传感体系中使用的适配体与ZEN可以特异性结合,而与其他毒素无明显作用。结果表明该传感体系对ZEN具有较好的选择性。

图5 方法选择性
Fig.5 Selectively of sensing system
注:ZEN质量浓度为40 μg/L,其他对照毒素质量浓度均为40 μg/L

2.5 实际样品测定

为了考察传感体系实际测定效果,以玉米粉作为实际阴性样品,研究加标回收情况。结果如表1所示,利用传感体系检测的加标回收率在100.4%~105.8%,这说明该荧光传感体系可用于真实复杂样品中ZEN的测定。

表1 实际样品加标回收率(n=3)
Table 1 Real sample spike recovery (n=3)

质量浓度/(μg·L-1)回收率/%RSD/%5105.813.720100.414.4

3 结论

本研究构建了一种基于Genefinder和适配体的荧光传感体系检测ZEN,在最优条件下,传感体系的线性范围为0.1~200 μg/L,实际检出限为0.1 μg/L,并成功用于出玉米粉中ZEN的测定,加标回收率在100.4%~105.8%。本方法为开发简单、快速、灵敏的生物传感体系开辟了新的途经。

参考文献

[1] MALLY A, SOLFRIZZO M, DEGEN G H.Biomonitoring of the mycotoxin zearalenone:current state-of-the art and application to human exposure assessment[J].Archives of Toxicology, 2016, 90(6):1-12.

[2] KUIPER G T, SCOTT P M, WATANABE H.Risk assessment of the mycotoxin zearalenone[J].Regulatory Toxicology and Pharmacology, 1987, 7(3):253-306.

[3] WANG J J, WEI Z K, HAN Z, et al.Zearalenone induces estrogen-receptor-independent neutrophil extracellular trap release in vitro[J].Journal of Agricultural and Food Chemistry, 2019, 67(16):4 588-4 594.

[4] BECCI P J, VOSS K A, HESS F G, et al.Long-term carcinogenicity and toxicity study of zearalenone in the rat[J].Journal of Applied Toxicology, 1982, 2(5):247-254.

[5] LIOI M B, SANTORO A, BARBIERI R B, et al.Ochratoxin A and zearalenone:A comparative study on genotoxic effects and cell death induced in bovine lymphocytes[J].Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 557(1):19-27.

[6] 邵瑞婷, 张丽华, 史娜, 等.免疫亲和净化-超高效液相色谱-串联质谱法测定食品中玉米赤霉烯酮类真菌毒素[J].食品科学, 2017, 38(16):274-279.

SHAO R T, ZHANG L H, SHI N, et al.Determination of zeranols in food by ultra performance liquid chromatography-tandem mass spectrometr[J].Food Sience, 2017, 38(16):274-279.

[7] OK H E, CHOI S W, KIM M, et al.HPLC and UPLC methods for the determination of zearalenone in noodles, cereal snacks and infant formula[J].Food Chemistry, 2014, 163:252-257.

[8] 黎睿, 谢刚, 王松雪.高效液相色谱法同时检测粮食中常见8种真菌毒素的含量[J].食品科学, 2015, 26(6):206-210.

LI R, XIE G, WANG S X.Simultaneous analysis of 8 mycotoxins in grains by high performance liquid chromatography[J].Food Science, 2015, 26(6):206-210.

[9] GIOVANNI D, JAVIER H B, HERRERA A V, et al.Determination of estrogenic compounds in milk and yogurt samples by hollow-fibre liquid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry[J].Analytical and Bioanalytical Chemistry, 2016, 408(26):1-13.

[10] WANG S W, NIU R, YANG Y M, et al.Development and evaluation of rapid immunomagnetic extraction for effective detection of zearalenone in agricultural products[J].Food Control, 2020, 110:106 973-106 978.

[11] 李晓波, 李慧娟, 宋鸽, 等.竞争性酶联免疫快速检测高产奶牛精料补充料中玉米赤霉烯酮[J].食品安全质量检测学报, 2020, 11(1):280-284.

LI X B, LI H J, SONG G, et al.Rapid detection of zearalenone in high-yielding dairy concentrate supplements by competitive enzyme-linked immunosorbent assay[J].Journal of Food Safety Quality, 2020,11(1):280-284.

[12] FANG D D, ZENG B S, ZHANG S P, et al.A self-enhanced electrochemiluminescent ratiometric zearalenone immunoassay based on the use of helical carbon nanotubes[J].Microchimica Acta, 2020, 187(5):303-311.

[13] CHEN Y J, ZHANG S P, HONG Z S, et al.A mimotope peptide-based dual-signal readout competitive enzyme-linked immunoassay for nontoxic detection of zearalenone[J].Journal of Materials Chemistry B, 2019, 7(44):6 972-6 980.

[14] 俞大海, 毛佳甜, 王一铭, 等.可食包装纸原料中玉米赤霉烯酮的快速检测研究[J].包装工程, 2019,40(1):87-92.

YU D H, MAO J T, WANG Y M, et al.Rapid detection of zearalenone in edible packaging materials[J].Packaging Engineering, 2019,40(1):87-92.

[15] 张天磊, 周奕华, 曹晟.碳点荧光探针在农产品快速检测中的应用进展[J].包装工程, 2020,41(3):82-91.

ZHANG T L, ZHOU Y H, CAO S.Advances in application of CDs fluorescent probe in rapid detection of agriculture products[J].Packaging Engineering, 2020,41(3):82-91.

[16] AZRI F A, EISSA S, ZOUROB M, et al.Electrochemical determination of zearalenone using a label-free competitive aptasensor[J].Microchimica Acta, 2020, 187(5):266-275.

[17] HAN Z, TANG Z M, JIANG K Q, et al.Dual-target electrochemical aptasensor based on co-reduced molybdenum disulfide and AuNPs (rMoS-Au) for multiplex detection of mycotoxins[J].Biosensors and Bioelectronics, 2020, 150:111 894-111 901.

[18] MA L Y, BAI L J, ZHAO M, et al.An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS 2-MWCNTs nanocomposite for signal enhancement [J].Analytica Chimica Acta, 2019, 1 060:71-78.

[19] ELLINGTON A D, SZOSTAK J W.In vitro selection of RNA molecules that bind specific ligands[J].Nature, 1990, 346:818-822.

[20] GUO T, LIN X D, LIU Y Q, et al.Target-induced DNA machine amplification strategy for high sensitive and selective detection of biotoxin[J].Sensors and Actuators B:Chemical, 2018, 262:619-624.

[21] TUERK C, GOLD L.Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J].Science, 1990, 249:505-510.

[22] HE D Y, WU Z Z, CUI B, et al.A fluorometric method aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearlenone and fumonisin B-1 making use of gold nanorods and upconversion nanoparticles[J].Microchimica Acta, 2020, 187(4):254-261.

[23] ZHANG Y Y, LU T F, WANG Y, et al.Selection of a DNA aptamer against zearalenone and docking analysis for highly sensitive rapid visual detection with label-free aptasensor[J].Journal of Agricultural and Food Chemistry, 2018, 66(5):12 102-12 110.

[24] HE B S, YAN X H.Ultrasensitive electrochemical aptasensor based on CoSe2/AuNRs and 3D structured DNA-PtNi@Co-MOF networks for the detection of zearalenone[J].Sensors and Actuators:B chemical, 2020, 306:127 558-127 565.

[25] JI X D, YU C, WEN Y L, et al.Fabrication of pioneering 3D sakura-shaped metal-organic coordination polymers Cu@L-Glu phenomenal for signal amplification in highly sensitive detection of zearalenone[J].Biosensors and Bioelectronics, 2019, 129:139-146.

[26] 郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.

GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.

[27] TAN H X, MA L, GUO T, et al.A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1[J].Analytica Chimica Acta, 2019, 1 068:87-95.

[28] MA L, GUO T, PAN S L, et al.A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification[J].Microchimica Acta, 2018, 185(10):487-492.

[29] ZHAN S S, XU H C, ZHANG D W, et al.Fluorescent detection of Hg2+ and Pb2+ using Genefinder (TM) and an integrated functional nucleic acid[J].Biosensors and Bioelectronics, 2015, 72:95-99.

[30] HONG G H, PARK Y G, JIN H W, et al.Comparison of the clinical performance of Omniplex-HPV and Genefinder HPV for the detection and genotyping of human papillomaviruses in cervical specimens[J].Journal of Medical Microbiology, 2018, 67(9):1 279-1 286.

[31] ALMASI M A, MANESH M E, JAFARY H, et al.Visual detection pZENto leafroll virus by loop-mediated isothermal amplification of DNA with the Genefinder (TM) dye[J].Journal of Virological Methods, 2013, 192(1-2):51-54.

[32] CHEN X J, HUANG Y K, DUAN N, et al.Selection and identification of ssDNA aptamers recognizing zearalenone[J].Analytical and Bioanalytical Chemistry, 2013, 405(20):6 573-6 581.

A fluorescent sensing system based on Genefinder for detection of zearalenone

GUO Ting,CHEN Jinhang,ZHOU Hongyuan,ZHANG Yuhao,MA Liang*

(College of Food Science, Southwest University, Chongqing 400715, China)

Abstract Zearalenone (ZEN) is a kind of toxin produced by Fusarium fungi. It has reproductive toxicity, immunotoxicity, hepatorenal toxicity and carcinogenicity, and poses a serious threat to human health. In this work, a facile and sensitive fluorescence sensing system was developed for the detection of ZEN. Aptamer as recognition element could recognize the target ZEN. Genefinder was chosen as the sensing signal, the fluorescence signal will increase due to the interaction between Genefinder and double DNA which formed by ZEN aptamer and its complementary strand. But in the presence of ZEN, the aptamer could recognize the ZEN, leading to decrease of fluorescence. The results showed that the sensing system was high selectivity for ZEN, and the detection linear range was 0.1-200 μg/L with 0.1 μg/L the detection limit under the optimized condition. For real corn flour sample, the standard recovery ranges from 100.4% to 105.8%. The fluorescence sensing system has been successfully used for the detection of ZEN in the real sample which showed a wide application potential.

Key words zearalenone;aptamer;Genefinder;fluorescence sensing system;high sensitive

DOI:10.13995/j.cnki.11-1802/ts.025904

引用格式:郭婷,陈金航,周鸿媛,等.基于染料Genefinder的荧光传感体系检测玉米赤霉烯酮[J].食品与发酵工业,2021,47(10):203-206;213.GUO Ting,CHEN Jinhang,ZHOU Hongyuan, et al.A fluorescent sensing system based on Genefinder for detection of zearalenone[J].Food and Fermentation Industries,2021,47(10):203-206;213.

第一作者:博士,讲师(马良教授为通讯作者,E-mail:zhyhml@163.com)

基金项目:中央高校基本科研业务费专项资金(XDJK2020C052;XDJK2020B044)

收稿日期:2020-10-20,改回日期:2020-12-03