竹笋于2 500年前被用于传统医学之中,使它赢得了“森林蔬菜之王”的称号,其特性被记载在《本草纲目》一书中[1]。至今,竹笋仍广泛用于各种药物中,以改善消化,减轻高血压,预防癌症和心血管疾病等[2]。竹笋富含蛋白质、氨基酸、矿物质和膳食纤维[3],还含有维生素、黄酮、多酚和植物甾醇等活性物质,尤其是竹笋纤维在控制代谢性疾病方面显现出了治疗潜力[4],已被推荐为一种新型功能性食品成分[5],被认为是一种健康有益的蔬菜和未来的保健食品之一。
金佛山方竹(Chimonobambusa utilis)为禾本科竹亚科寒竹属植物[6],因竹杆呈方形而得名。金佛山方竹笋以独特的鲜、香、嫩、脆品质享誉全球,被喻为 “笋中之王”[7]。它含有多种微量元素和维生素,质嫩肉厚,色美味鲜,被历代美食家誉为美食。它是中国西南地区特有竹种[8],主要分布在贵州、四川、重庆和云南,以贵州的面积最大,达5.3×104 hm2,在海拔1 000~2 100 m处可形成纯林,集中分布于大娄山山脉中段的桐梓、正安和绥阳等县。每年在“中秋节”前后出笋,弥补了竹笋的淡季。目前,对金佛山方竹研究主要集中在生长育种[9]及其特性、栽培技术和发展策略[10]等方面,但对其鲜笋营养和功能成分的研究报道较少。所以,本文拟对比分析贵州金佛山方竹鲜笋的营养及功能成分,并通过主成分分析进行品质评价,旨为后续产品开发提供科学依据。
9个方竹笋样品均采样于贵州,将采样的样品在24 h内剥壳切碎用液氮处理-80 ℃保存备用,一个月内进行分析。详细信息见表1。
表1 试样笋详细信息
Table 1 Details of sample bamboo shoots
样品编号采样地点采样点海拔高度/mQ-1遵义市桐梓县木瓜镇核桃湾1 901Q-2桐梓县仙人山1 780Q-3正安县新洲镇顶箐村小垭口组1 778Q-4桐梓县娄山关1 600Q-5贵阳市清镇林场1 352Q-6遵义市绥阳县太白镇1 137Q-7桐梓县狮溪镇瓮生村1 130Q-8贵阳市花溪区上水村1 080Q-9桐梓县狮溪镇大兴村658
芦丁、没食子酸、γ-氨基丁酸、β谷甾醇、豆甾醇,美国Sigma公司;乙睛和甲醇为色谱级,北京百灵威公司;磷酸氢二钾、磷酸二氢钾、碳酸钠、2,4-二硝基氟苯、氢氧化钠、磺基水杨酸、亚硝酸钠、三氯化铝,均为分析纯,天津市永大化学试剂有限公司。
1260 Infinity 高效液相色谱仪,美国安捷伦公司;RE-2000B 旋转蒸发仪,上海亚荣生化仪器厂;H2-16KR 台式高速冷冻离心机,湖南可成仪器设备有限公司;L-8800 氨基酸自动分析仪,日立公司;Spectra Max190 光吸收酶标仪,美谷分子仪器有限公司;JK9870全自动凯氏定氮仪,上海仪电分析仪器有限公司。
1.3.1 基本营养素分析
水分测定参照GB/T 5009.3—2016;蛋白质测定参照GB/T 5009.5—2016;膳食纤维测定参照GB 5009.88—2014;矿物质元素测定:钾测定参照GB 5009.91—2017,钙测定参照GB 5009.92—2016,铁测定参照GB 5009.90—2016,镁测定参照GB 5009.241—2017,磷测定参照GB 5009.87—2016,锌和硒测定参照GB 5009.268—2016;脂肪测定参照GB 5009.6—2016;单宁测定参照NY/T 1600—2008;总糖采用蒽酮硫酸法测定。
1.3.2 总游离氨基酸(total free amino acid,TFAA)分析
样品前处理参照WEN等[11]的方法,测定条件:色谱柱:LCAK06/Na(4.6 mm×150 mm);流动相A:0.12 mol/L柠檬酸钠溶液(pH=3.45);流动相B:0.2 mol/L柠檬酸钠溶液(pH=10.85);柱温:58~74 ℃梯度控温,反应器温度:130 ℃;流速:洗脱泵0.45 mL/min,衍生泵0.25 mL/min,检测波长:570 和440 nm。
1.3.3 功能成分测定
多酚黄酮测定:3 g样品,加入15 mL 70%(体积分数)乙醇振荡提取1 h,10 000 r/min,4 ℃,离心10 min,滤渣重复3次,合并上清液,45 ℃旋干定容至10 mL。用Folin-Ciocalteau法测定多酚,参照BEAK等[12]的方法,取1 mL提取液加人1 mL福林酚,3 mL去离子水,暗反应6 min,加入4 mL 100 g/L碳酸钠,去离子水定容到10 mL,暗反应90 min,760 nm测吸光度。参照孙小青[13]的方法测定黄酮,取1 mL提取液,加入1 mL去离子水,加入0.5 mL 50 g/L亚硝酸钠摇匀反应6 min,加入0.5 mL 100 g/L三氯化铝,反应6 min,最后加入1 mL 1 mol/L氢氧化钠摇匀,去离子水定容到10 mL。静置15 min,510 nm测定吸光度。
植物甾醇测定:3 g样品加入10 mL无水乙醇,35 ℃超声提取50 min。10 000 r/min 离心10 min,上清液定容到10 mL,过0.22 μm膜准备上机。测定条件参照吕国提[14]的方法稍作修改,色谱柱:Agilent SB-C18(4.6 mm×250 mm,5 μm),进样量10 μL,流速0.8 mL/min,流动相:甲醇,进样时间25 min,柱温30 ℃,吸光度205 nm。
γ-氨基丁酸(γ-aminobutyric acid,GABA)测定:参照XU等 [15]的方法,取1 mL所得提取液加入1 mL 0.5 mol/L碳酸氢钠(pH 9.0)和1 mL 2,4-二硝基氟苯(1%)混匀于10 mL容量瓶在暗处60 ℃反应1 h,反应后用0.02 mol/L的磷酸缓冲液(pH 7.0)定容至10 mL。过0.22 μm膜过滤,测定条件:色谱柱:Agilent SB-C18(4.6 mm×250 mm,5 μm);流动相:A(50%乙睛);B[磷酸缓冲液(0.02 mol/L,pH 7.0)];0~5 min:16%~40%A;5~15 min:40%~70%A;15~20 min:70%~100%A;20~26 min:100%~16%A;26~30 min:16%A。柱温35 ℃,进样量20 μL,波长360 nm,流速0.8 mL/min。
多糖测定:参照郑炯等[16]的方法稍作修改,超声波辅助提取麻竹笋多糖,取1 g脱脂笋,加入40 mL去离子水,超声30 min,温度55 ℃,功率400 W,10 000 r/min 离心10 min,重复上述操作,合并上清液,旋干定容至25 mL。加入100 mL乙醇沉淀多糖,无水乙醇、丙酮和石油醚抽洗,定容至100 mL。采用硫酸苯酚法测定。
每个样品重复3次,数据处理和主成分分析采用SPSS 26软件处理,结果均以平均值±标准差表示,采用Origin 2018进行绘图。
方竹笋基本营养素含量如表2所示,100 g鲜笋中9个鲜笋水分达到为90.03~93.14 g。笋是人类潜在的蛋白质来源,9个方竹笋蛋白质含量丰富,Q-2含量为42.30 g/100g DW,含量最低为Q-5(32.23 g/100g DW),高于WANG等[2]所统计的不同竹种蛋白质为21.1~25.8 g/100g和19.01~33.4 g/100g,且竹笋中蛋白质高于一些常见的豆科植物,如扁豆(20.6%)、鹰嘴豆(23.6%)、芸豆(24.0%)等[17]。SAYANIKA等[18]研究表明,竹笋中的优势蛋白质分子质量较低(20.10~15.50 kDa),在防御、应激和发育中发挥重要作用。鲜笋中含有丰富的膳食纤维,9个方竹笋膳食纤维含量为17.87~38.11 g/100g DW,高于普通蔬菜。PARK等[19]研究结果表明,竹笋膳食纤维具有调节血脂和肠道功能的作用。竹笋纤维与水结合后可达到自身重量的3~5倍,因此也有助于解决水分迁移问题,在高水分和中水分食品中加入竹纤维可有效缓解水分流失[3]。竹笋中总糖与其口感有直接联系,总糖含量高,竹笋口感较佳[20],9个方竹笋间总糖含量有显著性差异(P<0.05),说明其口感可能有一定差异。竹笋是一种低脂肪的健康食物,9个方竹笋粗脂肪含量为0.94~2.17 mg/100g DW,低于詹卉等[21]研究的沧源龙竹(4.62%)和牡竹属竹笋 (2.46%~2.86%)。Q-5(0.26 g/100g)单宁含量略低于Q-6,显著低于其他样品。大量单宁对人体有不利影响,但少量单宁对人体是有利的。
表2 方竹笋基本营养素含量 单位:g/100 g
Table 2 Basic nutrient content of square bamboo shoots
指标Q-1Q-2Q-3Q-4Q-5Q-6Q-7Q-8Q-9水分91.99±0.05bc90.47±0.17d90.30±0.66d91.28±0.29c92.45±0.15b93.14±0.27a91.31±0.22c92.07±0.26bc92.11±0.63bc总糖3.74±0.05b3.61±0.05c2.28±0.03h4.20±0.02a3.35±0.06e3.49±0.03d3.38±0.04e2.98±0.05g3.16±0.05f粗脂肪1.82±0.03b1.20±0.07e1.33±0.04d0.94±0.05f1.82±0.06b1.79±0.03b2.21±0.03a2.17±0.07a1.61±0.05c蛋白质35.99±1.01e42.30±0.96a42.24±0.36a37.10±1.60de32.23±0.68f38.44±0.96cd37.57±0.70de40.61±0.68ab39.61±0.44bc膳食纤维34.96±0.69b20.15±0.84f17.87±1.14g22.48±0.23e31.74±0.20c37.71±0.59a26.70±1.56d37.12±1.07a38.11±0.26a单宁0.29±0.01g0.44±0.01b0.50±0.01a0.41±0.01c0.26±0.01h0.27±0.01h0.39±0.01d0.31±0.01f0.34±0.01e
注:结果以平均值±标准差表示;不同小写字母表示组间差异显著(P<0.05)(下同)
有研究表明矿物质会参与细胞能量的产生,可体现在人体功能和生理感知上,包括感觉到的身心疲劳和认知功能[22]。由表3可知,9个方竹笋矿物质含量丰富,含有人体必需的K、P、Ca和Mg等常量元素。9个竹笋中K含量最高,其次是P、Ca和Mg。K是心脏健康的重要矿物质,在酸碱平衡,渗透压调节,神经冲动传导,肌肉收缩(尤其是心肌和细胞膜功能)方面起作用。9个方竹笋的K含量为3 571.43~9 620.00 mg/100g DW,高于WAIKHOM等[23]研究的15种竹笋中的K元素含量(1 310~3 533 mg/100g)。P是人体中第二丰富的元素,是DNA和RNA的主要
表3 方竹笋矿物质含量
Table 3 Mineral content of square bamboo shoots
样品钾/[mg·(100g)-1]磷/[mg·(100g)-1]钙/[mg·(100g)-1]镁/[mg·(100g)-1]铁/[mg·(100g)-1]锌/[mg·(100g)-1]硒/(mg·kg-1)Q-18 566.77±130.04b2 231.20±52.54a265.03±13.77b162.58±2.63c6.39±0.18b9.20±0.73cNAQ-29 620.31±55.14a1 465.78±112.65b533.77±7.65a144.68±0.90d8.70±0.47a9.11±0.68cNAQ-34 508.59±46.49g562.20±11.36g82.59±2.72e90.62±2.32f4.23±0.10c11.26±0.67bNAQ-44 763.00±120.46f946.87±5.66de109.60±2.09d101.41±1.67e4.40±0.29c8.17±0.23cNAQ-57 788.08±126.35c1207.95±14.75c206.62±10.73c103.80±11.92e8.74±0.40a15.63±0.87aNAQ-63 571.43±60.35h863.46±39.39e531.61±10.00a45.72±2.02g5.59±0.95b6.59±0.58dNAQ-74 921.37±86.37e719.98±24.39f67.59±2.07a307.25±8.69a4.37±0.41c8.73±0.52cNAQ-86 393.44±63.05d954.60±13.87de104.92±1.33d226.73±4.25b3.49±0.19c8.75±0.19c0.80±0.01aQ-96 501.90±34.85d1 028.31±11.78d73.97±1.47d172.71±8.24c8.49±0.83a8.52±0.35cNA
注:NA表示未检出(下同)
成分,9个方竹笋中的P含量为562.20~2 231.20 mg/100g DW。竹笋是Mg和Ca的最佳来源之一,9个方竹笋Mg的中含量为45.72~307.25 mg/100g DW,Ca的含量为67.59~533.77 mg/100g DW。9 个方竹笋中的微量矿物质元素Fe含量为3.49~8.74 mg/100g DW,Zn含量为6.59~15.63 mg/100g DW,Se只有Q-8样品检测到。Fe和Zn是人体不可缺少的元素,Fe参与了多个代谢过程。Zn缺乏是一个全球性的营养问题,马铃薯,豆类,卷心菜,黄瓜和胡萝卜等蔬菜中的锌含量都低于1 mg/100g,竹笋中的中的Zn和Fe含量高于这些蔬菜[24]。
游离氨基酸(free amino acids,FAA)能够被人体直接吸收,它的含量与食品的营养价值紧密相关[25]。由表4可知,9个方竹笋样品中共检测到17种氨基酸,各个样品总游离氨基酸存在显著差异(P<0.05),其中Q-5总游离氨基酸含量高达到5 683.72 mg/100g DW,最低Q-4含量为821.27 mg/100g DW。总必需氨基酸(essential amino acid,EAA)含量为280.87~2 058.74 mg/100g DW,Q-5含量(2 058.74 mg/100g DW)显著高于其他样本(P<0.05)。根据FAO/WHO的模式标准,质量较好的蛋白质氨基酸组成中EAA/TFAA应在40.0%左右[26],9个样品中EAA/TFAA的比例为17.64%~37.20%,其中Q-1、Q-9和Q-8达到37.20%、37.02%和36.69%,基本符合FAO/WHO的模式标准。而Q-3、Q4和Q-7的EAA/TFAA值低于30%,可能是因为其中的谷氨酸比例较高(高于50%),从而影响EAA/TFAA的比值,但谷氨酸是一种重要的功能性氨基酸,具有调节神经中枢及大脑皮质功能、参与蛋白质的合成、增强肠道屏障功能和抗氧化能力的作用[27]。
表4 方竹笋游离氨基酸含量 单位:mg/100g
Table 4 Free amino acid content of bamboo shoots
氨基酸种类Q-1Q-2Q-3Q-4Q-5Q-6Q-7Q-8Q-9天冬氨酸357.77±16.96bNANANANANANA433.62±21.50a270.69±12.17c苏氨酸116.20±2.50a55.61±4.20c59.77±5.74c81.42±9.80b78.18±4.78b110.35±13.15a87.49±13.28b109.66±9.52a103.46±8.90a丝氨酸117.87±10.02e36.38±2.18g71.45±8.76f95.57±6.91f177.12±11.42d210.50±10.95c74.44±5.19g397.48±20.80b360.22±13.31a谷氨酸935.45±17.51e318.29±14.55g2 699.08±36.45b1 975.15±26.78c1 604.67±21.89d802.62±27.72f3 082.87±67.53a154.20±11.44h273.23±9.51g甘氨酸60.39±6.29b33.93±4.37c34.35±3.15c37.46±4.03c94.52±5.52a29.65±3.67c37.99±2.30c22.69±1.26d16.89±1.94d丙氨酸169.10±8.13b58.76±3.15e128.82±3.09c130.35±12.26c374.56±18.61a86.53±13.23d124.33±10.98c93.70±6.34d107.69±6.70cd半胱氨酸14.58±1.91dNA23.36±3.62b19.11±0.66c32.24±3.33aNANANANA缬氨酸308.62±8.19b51.07±3.97g292.34±9.90b254.20±8.61cd454.50±10.60a110.84±17.68f247.89±8.64d221.43±13.88e270.27±8.44c甲硫氨酸62.89±3.82bNA170.05±9.45a32.11±1.15c64.93±3.98b25.77±0.84cdNA57.14±5.09b22.80±3.35d异亮氨酸221.16±10b37.43±1.60e344.56±10.83a162.46±14.34cd348.50±9.28a162.37±12.57cd178.82±6.55c144.54±12.11d149.92±8.90d亮氨酸309.46±5.63b42.32±4.73g221.57±11.48c201.83±14.64d427.56±15.36a105.49±13.86f7.94±0.64h157.98±13.48e171.03±7.05e酪氨酸302.38±24.39bNA246.65±8.33d248.09±14.43d547.70±16.78a262.03±3.04cd301.99±16.13b282.77±11.71bc311.23±13.43b苯丙氨酸175.76±6.88b47.92±5.28eNA164.37±5.17c363.51±2.02a198.35±17.68b166.54±11.76c145.80±11.44d132.60±8.90d组氨酸159.10±13.36c63.31±6.15d243.90±70.69b235.47±14.97b386.04±11.27a79.24±3.67d133.15±11.59c147.90±9.46c233.53±11.43b赖氨酸194.50±5.20b46.52±2.64g129.51±8.27d150.99±8.05c321.55±12.59a71.95±11.70f132.77±13.73d105.88±5.04e127.11±9.51d精氨酸178.26±13.76bNA93.78±7.21c86.01±11.06c299.91±3.83a57.36±10.24d80.97±10.94c94.12±5.09c89.11±7.74c脯氨酸49.56±3.14b29.73±4.37dNA42.81±1.75c108.22±6.80aNANANANATFAA3 733.04±18.76e821.27±10.35i4 759.21±35.89b3 917.43±59.02d5 683.72±31.25a2 313.07±10.21h4 657.20±23.81c2 568.92±22.93g2 639.79±30.02fEAA1 388.59±8.51b280.87±1.60i1 217.80±17.53c1 047.40±42.68d2 058.74±29.82a785.12±2.23h821.45±11.82g942.44±16.79f977.20±11.43eEAA/TFAA37.20±0.06a34.20±0.46b25.59±0.55d26.73±0.69c36.22±0.72a33.94±0.15b17.64±0.16f36.69±0.85a37.02±0.23a
注:TFAA为游离氨基酸总量,EAA为必需氨基酸总量
竹笋是植物中酚类化合物的来源之一,由图1-a可知,9个鲜笋中Q-2多酚含量为854.07 mg/100g DW,显著高于其他样品(P<0.05),最低含量为602.83 mg/100g DW。高于毛竹中的总酚含量(5.48 mg/g),毛竹中检测出8种酚酸,分别是原儿茶酸、对羟基苯甲酸、儿茶素、咖啡酸、绿原酸、丁香酸、对香豆酸和阿魏酸[28]。黄酮类化合物主要以不溶性形式的游离糖苷配基或类黄酮配体存在于不同的竹组织中,9个不同方竹笋中黄酮含量为299.35~638.86 mg/100g DW。与竹笋相比,竹笋壳中总酚和总黄酮更高及种类更丰富。
植物甾醇,是植物界自然存在的亲脂甾醇家族,具有降胆固醇、抗溃疡、抗癌、抗炎、免疫调节等多种保健作用,被认为是具有价值的膳食补充剂[29]。竹笋是植物甾醇的良好来源,被检测出多达17种甾醇,但常检测到只有6种植物甾醇,其中β-谷甾醇占比最高(80%左右)。由图1-b可知9个方竹笋中β-谷甾醇含量为208.99~306.77 mg/100g DW,豆甾醇含量为81.89~130.36 mg/100g DW。9种鲜笋中β-谷甾醇和豆甾醇含量总和为299.42~436.79 mg/100g DW,高于LU等[30]报道的毛竹中总甾醇含量(279.6 mg/100g DW)、苦竹总甾醇含量(227.1 mg/100g DW)和INGUDAM等[31]报道的印度12种竹笋中总甾醇含量 (40.5~293.8 mg/100g),说明方竹笋中植物甾醇也具有一定研究价值。
GABA是由谷氨酸经谷氨酸脱羧酶催化形成的一种的非蛋白质氨基酸[32],它是一种神经递质,因具有降血压、利尿、镇静等作用而备受关注。但是人体内GABA含量会因年龄和环境改变而日益减少,因此在日常饮食中补充GABA对改善人体健康具有重要意义。由图1-c可知,9个方竹笋中的GABA含量为70.06~704.94 mg/100g DW,其中Q-1(704.94 mg/100g DW)显著高于其他鲜笋(P<0.05),高于已有研究的8种蔬菜GABA水平[33]。
竹笋多糖是竹笋主要活性成分之一,被证明具有多种生物活性,如抗氧化、抗糖尿病、促进肠道益生菌健康、增强免疫力等[34]。由图1-d可知9个竹笋中Q-7多糖(1 798.31 mg/100g DW)和Q-1(1 399.39 mg/100g DW)显著高于其他样品(P<0.05)。
a-多酚和黄酮含量;b-植物甾醇含量;c-GABA含量;d-多糖含量
图1 方竹笋功能成分含量
Fig.1 Functional component content of bamboo shoots
采用SPSS 26对9个金佛山方竹笋的22项指标进行主成分分析,首先需对原始数据进行降维处理,再根据累积方差贡献率>80%和初始特征值>1的原则[35],从而确定主成分的数目。由表5可知,提取到6个主成分因子,特征值大于1,累计贡献率达到93.377%,说明可运用提取的6个主成分代替方竹笋的22个指标来对方竹笋进行比较。
表5 方竹笋品质评价因子的特征值和累积方差贡献率
Table 5 Eigenvalues and cumulative variance contribution rates of quality evaluation factors of bamboo shoots
主成分特征值方差贡献率/%积累方差贡献率/%15.15423.43023.43024.74721.57745.00633.80417.29062.29643.04013.81776.11252.37310.78786.89961.4256.47893.377
表6为方竹笋的22个指标主成分得分系数矩阵,该矩阵可反映不同指标对相应主成分的影响情况。由表6可看出对主成分1、2、3、4、5、6影响最大的载荷值为0.229、0.223、0.294、0.305、0.307、0.418,对应指标为水分、β-谷甾醇、GABA、黄酮、多糖、Ca。
根据因子载荷矩阵表6,分别建立6个主成分(F1、F2、F3、F4、F5、F6)得分模型:
表6 主成分在各品质指标上旋转后的因子载荷矩阵
Table 6 Factor loading matrix of principal component after rotation on each quality index
指标主成分123456水分0.2290.017-0.1170.0420.0120.082蛋白质-0.1210.0970.006-0.147-0.0340.015膳食纤维0.2170.045-0.008-0.0330.030-0.023总糖0.150-0.035-0.026-0.1140.2310.062粗脂肪0.0460.125-0.0120.2840.0560.021单宁-0.2220.0160.020-0.026-0.037-0.061黄酮-0.0240.0250.0520.305-0.004-0.084多酚-0.0250.0590.103-0.1240.1620.212GABA-0.0940.0370.2940.0510.045-0.197β-谷甾醇0.0390.2230.0430.092-0.092-0.208豆甾醇0.0670.1470.100-0.045-0.174-0.212多糖0.0240.009-0.0030.1130.3070.006K-0.029-0.0750.282-0.0670.0090.059P0.0280.0150.2610.097-0.005-0.095Ca0.0310.030-0.0980.0600.0130.418Mg0.0020.0390.088-0.0680.278-0.072Fe0.018-0.1140.076-0.032-0.0490.311Zn-0.022-0.2570.106-0.123-0.0760.036Se0.0690.0470.086-0.1910.015-0.205TFAA-0.002-0.1540.0000.037-0.004-0.188EAA0.066-0.1790.093-0.007-0.115-0.198EAA/TFAA0.110-0.0220.159-0.096-0.167-0.012
建立综合得分模型:
F1=x1×0.229-x2×0.121+x3×0.217+x4×0.150+x5×0.046-x6×0.222-x7×0.024-x8×0.025-x9×0.094+x10×0.039+x11×0.067+x12×0.024-x13×0.029+x14×0.028+x15×0.031+x16×0.002+x17×0.018-x18×0.022+x19×0.069-x20×0.002+x21×0.066+ x22×0.110
F2=x1×0.017+x2×0.097+x3×0.045-x4×0.035+x5×0.125+x6×0.016+x7×0.025+x8×0.059+x9×0.037+x10×0.223+x11×0.147+x12×0.009-x13×0.075+x14×0.015+x15×0.030+x16×0.039-x17×0.114-x18×0.257+x19×0.047-x20×0.154-x21×0.179-x22×0.022
F3=-x1×0.117+x2×0.006-x3×0.008+x7×0.052-x4×0.026-x5×0.012+x6×0.020+x8×0.103+x9×0.294+x10×0.043+x11×0.100-x12×0.003+x13×0.282+x14×0.261-x15×0.098+x16×0.088+x17×0.076+x18×0.106+x19×0.086+x20×0.000+x21×0.093+x22×0.159
F4=x1×0.042-x2×0.147-x3×0.033-x4×0.114+x5×0.284-x6×0.026+x7×0.305-x8×0.124+x9×0.051+x10×0.092-x11×0.045+x12×0.113-x13×0.067+x14×0.097+x15×0.060-x16×0.068-x17×0.032-x18×0.123-x19×0.191+x20×0.037-x21×0.007-x22×0.096
F5=x1×0.012-x2×0.034+x3×0.030+x4×0.231+x5×0.056-x6×0.037-x7×0.004+x8×0.162+x9×0.045-x10×0.092-x11×0.174+x12×0.307+x13×0.009-x14×0.005+x15×0.013+x16×0.278-x17×0.049-x18×0.076+x19×0.015-x20×0.004-x21×0.115-x22×0.167
F6=x1×0.082+x2×0.015-x3×0.023+x4×0.062+x5×0.021-x6×0.061-x7×0.084+x8×0.212-x9×0.197-x10×0.208-x11×0.212+x13×0.059-x14×0.095+x15×0.418-x16×0.072+x17×0.311+x18×0.036-x19×0.205-x20×0.188-x21×0.198+x12×0.006-x22×0.012
F综合=(F1×23.430+F2×21.577+F3×17.290+F4×13.817+F5×10.787+F6×6.478)/100
通过计算和综合得分如表7,综合得分越高说明该样综合品质越好,综合排名前3的为竹笋为Q-1、Q-6和Q-2,得分最低为Q-3。
表7 九个方竹笋品质预测评价结果
Table 7 Quality prediction evaluation results of 9 kinds of square bamboo shoots
样品F1F2F3F4F5F6F综合排名Q-10.580.071.731.120.28-0.770.581Q-2-1.240.691.11-0.18-0.081.830.143Q-3-1.61-0.82-0.58-0.86-0.79-0.73-0.919Q-4-0.600.58-0.581.52-0.73-1.06-0.057Q-50.88-2.260.170.10-0.360.57-0.248Q-61.120.75-1.530.42-0.511.070.232Q-7-0.46-0.25-0.790.252.430.040.006Q-80.840.720.21-1.740.36-0.950.134Q-90.490.520.27-0.63-0.580.000.125
通过比较9个竹笋试样的营养成分,其蛋白质含量高达32.225~42.301 g/100g DW,与其他竹笋相比较为丰富。Q-1、Q-9和Q-8的EAA/TFAA比值(37.20%、37.02%和36.69%)更接近FAO/WHO的模式标准(40%左右)。9个竹笋试样功能成分比较得出,Q-2多酚含量(854.07 mg/100g DW),显著高于其他样品(P<0.05),9种鲜笋中β-谷甾醇和豆甾醇含量总和高于毛竹[30]和印度12个竹笋中总甾醇含量[31]。9个方竹笋中Q-1的GABA含量(704.94 mg/100g DW) 显著高于其他鲜笋(P<0.05)。综上,竹笋中的功能成分有一定研究价值。通过主成分分析中提取出6个主成分,特征值大于1,累计贡献率达到93.377%,其中水分、β-谷甾醇、GABA、黄酮、多糖、Ca等因子为关键指标,综合排名前3的竹笋为Q-1、Q-6和Q-3。虽然9种试样都采样于贵州,但其种植海拔、温度和土壤不同,导致方竹笋之间存在品质差异。本研究可为贵州地区的金佛山方竹笋育种和栽培及后期研究提供理论基础。
[1] SARKAR D, CHANDRA A K, CHAKRABORTY A, et al.Effects of bamboo shoots (Bambusa balcooa) on thyroid hormone synthesizing regulatory elements at cellular and molecular levels in thyrocytes[J].Journal of Ethnopharmacology, 2020, 250:112 463.
[2] WANG Y, CHEN J, WANG D, et al.A systematic review on the composition, storage, processing of bamboo shoots:Focusing the nutritional and functional benefits[J].Journal of Functional Foods, 2020, 71:104 015.
[3] CHONGTHAM N, BISHT M S, HAORONGBAM S.Nutritional properties of bamboo shoots:Potential and prospects for utilization as a health food[J].Comprehensive Reviews in Food Science and Food Safety, 2011, 10(3):153-168.
[4] LI X, GUO J, JI K, et al.Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota[J].Scientific Reports, 2016, 6:32 953.
[5] NIRMALA C, BISHT M S, LAISHRAM M.Bioactive compounds in bamboo shoots:Health benefits and prospects for developing functional foods[J].International Journal of Food Science & Technology, 2014, 49(6):1 425-1 431.
[6] 张雨峰, 代丽, 谢寅峰, 等.不同海拔金佛山方竹出笋及幼竹生长特性[J].南京林业大学学报(自然科学版), 2019, 43(5):199-203.
ZHANG Y F, DAI L, XIE Y F, et al.Study on growth characteristics of young bamboo and shooting of Chimonobambusa utilis at different altitudes[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2019, 43(5):199-203.
[7] 陈光静.方竹笋的加工废笋渣中多糖的分离纯化和结构解析及其生物活性研究[D].重庆:西南大学, 2019.
CHEN G J.Isolation, purification, structural identification and bioactivity of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[D].Chongqing:Southwest University, 2019.
[8] CHEN G, BU F, CHEN X, et al.Ultrasonic extraction, structural characterization, physicochemical properties and antioxidant activities of polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products[J].International Journal of Biological Macromolecules, 2018, 112:656-666.
[9] 尹泽南, 董文渊, 郑静楠, 等.金佛山方竹无性系种群生长发育规律的研究[J].现代园艺, 2019(11):32-34.
YIN Z A, DONG W Y, ZHENG J N, et al.Study on the growth and development of the clonal population of Chimonobambusa utilis [J].Xiandai Horticulture, 2019(11):32-34.
[10] 李奎. 桐梓县金佛山方竹产业可持续经营对策[J].农业开发与装备, 2019(5):3-4.
LI K.Countermeasures for sustainable management of Chimonobambusa utilis industry in Tongzi County[J].Agricultural Development & Equipments, 2019(5):3-4.
[11] WEN A, XIE C, MAZHAR M, et al.Tetramethylpyrazine from adlay (Coix lacryma-jobi) biotransformation by Bacillus subtilis and its quality characteristics[J].Journal of Food Science and Technology, 2020,57(11):4 092-4 102.
[12] BAEK Y, KIM Y J, BAIK M, et al.Total phenolic contents and antioxidant activities of Korean domestic honey from different floral sources[J].Food Science and Biotechnology, 2015,24(4):1 453-1 457.
[13] 孙小青.雷竹笋主要有效成分分析及其活性研究[D].长沙:中南林业科技大学, 2014.
SUN X Q.The main active ingredient analysis and activity of Phyllostachys pracecox [D].Changsha:Central South University of Forestry and Technology, 2014.
[14] 吕国提.毛竹笋头中β-谷甾醇的提取分离研究[D].武汉:华中农业大学, 2013.
LYU G T.Study on extraction and separation of β-sitosterol from Phyllostachys pubescens bamboo shoot[D].Wuhan:Huazhong Agricultural University, 2013.
[15] XU L, CHEN L, ALI B, et al.Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.)[J].Food Chemistry, 2017, 229:312-318.
[16] 郑炯,吴金松,阚建全.超声辅助提取麻竹笋多糖[J].食品与发酵工业,2015,41(5):203-208.
ZHENG J, WU J S, KAN J Q.Optimization of ultrasound-assisted extraction of polysaccharides from Dendrocalamus latiflorus shoots [J].Food and Fermentation Industries, 2015,41(5):203-208.
[17] SNCHEZ-CHINO X, JIMÉNEZ-MARTNEZ C, DVILA-ORTIZ G, et al.Nutrient and nonnutrient components of legumes, and its chemopreventive activity:A review[J].Nutrition and Cancer, 2015, 67(3):401-410.
[18] SAYANIKA D W, LOUIS B, PRANAB R, et al.Insights on predominant edible bamboo shoot proteins[J].African Journal of Biotechnology, 2015,14(17):1 511-1 518.
[19] PARK E, JHON D.Effects of bamboo shoot consumption on lipid profiles and bowel function in healthy young women[J].Nutrition, 2009, 25(7-8):723-728.
[20] 赵景威, 王雨珺, 唐国建, 等.云龙箭竹和空心箭竹竹笋营养成分[J].西部林业科学, 2015, 44 (3):159-163.
ZHAO J W, WANG Y J, TANG G J, et al.Analysis on the nutrient component of 2 fargesia species bamboo shoot [J].Journal of West China Forestry Science, 2015, 44 (3):159-163.
[21] 詹卉,邓琳,何文志,等.不同种源龙竹竹笋营养价值分析[J].西南林业大学学报(自然科学),2017,37(3):204-209.
ZHANG H, DENG L, HE W Z, et al.Nutrient analysis of dendrocalamus giganteus shoots from different provenances [J].Journal of Southwest Forestry University(Natural Sciences), 2017, 37(3):204-209.
[22] TARDY A, POUTEAU E, MARQUEZ D, et al.Vitamins and minerals for energy, fatigue and cognition:A narrative review of the biochemical and clinical evidence[J].Nutrients, 2020, 12(1):228.
[23] WAIKHOM S D, LOUIS B, SHARMA C K, et al.Grappling the high altitude for safe edible bamboo shoots with rich nutritional attributes and escaping cyanogenic toxicity[J].BioMed Research International, 2013, 2013:1-11.
[24] CHONGTHAM N, BISHT M S, SANTOSH O, et al.Mineral elements in bamboo shoots and potential role in food fortification[J].Journal of Food Composition and Analysis, 2021, 95:103 662.
[25] BALDEON M E, MENNELLA J A, FLORES N, et al.Free amino acid content in breast milk of adolescent and adult mothers in Ecuador[J].Springerplus, 2014, 3:104.
[26] ZHOU M, HUA T, MA X, et al.Protein content and amino acids profile in 10 cultivars of ginkgo (Ginkgo biloba L.) nut from China[J].Royal Society Open Science, 2019,6:3.
[27] 秦颖超, 周加义, 朱敏, 等.谷氨酸吸收转运及对肠道发育影响的研究进展[J].动物营养学报, 2019,31(2):544-552.
[28] NIRMALA C, BISHT M S, BAJVA H K, et al.Bamboo:A rich source of natural antioxidants and its applications in the food and pharmaceutical industry[J].Trends in Food Science & Technology, 2018, 77:91-99.
[29] CORRA R C G, PERALTA R M, BRACHT A, et al.The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols[J].Trends in Food Science & Technology, 2017, 67:19-35.
[30] LU B, REN Y, ZHANG Y, et al.Effects of genetic variability, parts and seasons on the sterol content and composition in bamboo shoots[J].Food Chemistry, 2009,112(4):1 016-1 021.
[31] INGUDAM M, SARANGTHEM K.Phytosterols content in different bamboo species of manipur, India[J].International Journal of Current Microbiology and Applied Sciences, 2016, 5(8):943-948.
[32] 宁亚维, 马梦戈, 杨正, 等.γ-氨基丁酸的制备方法及其功能食品研究进展[J].食品与发酵工业, 2020, 46(23):242-251.
NING Y W, MA M G, YANG Z, et al.Research progress in the enrichment process and functional foods of γ-aminobutyric acid[J].Food and Fermentation Industries, 2020, 46(23):242-251.
[33] SONG J, LIU C, LI D, et al.Evaluation of sugar, free amino acid, and organic acid compositions of different varieties of vegetable soybean (Glycine max (L.) Merr)[J].Industrial Crops and Products, 2013, 50:743-749.
[34] 陈灿辉,江文韬,林彤,等.竹笋多糖的提取、结构鉴定与生理功效研究进展[J].江苏农业学报, 2019, 35(6):1 513-1 520.
CHEN C H, JIANG W T, LIN T, et al.Progress in extraction, structural characterization and biological activities of bamboo shoot polysaccharide [J].Jiangsu Journal of Agricultural Sciences, 2019, 35(6):1 513-1 520.
[35] 王何柱, 朱勇, 朱怡,等.基于主成分分析法的贵州芸豆品质评价[J].食品与机械, 2020, 36(3):48-53.
WANG H Z, ZHU Y, ZHU Y, et al.Quality evaluation of Guizhou kidney beans based on principal component analysis [J].Food & Machinery, 2020, 36(3):48-53.