餐厨垃圾主要指日常生活中产生的厨房垃圾和餐桌残余垃圾[1]。数据表明,中国城市餐厨垃圾的年产生量约为1.1亿t[2],其中北京、上海等人口集中城市的餐厨垃圾日产生量均已超过9 000 t[3-4]。餐厨垃圾具有高水分、高油脂、高盐分、易酸败降解、产生难闻的气味和致病菌的特点[5-6]。如果不及时处理,腐烂速度非常快,产生的难闻气味和有毒有害物质不仅会造成环境污染,而且还会威胁人类健康[7-8]。因此,科学有效地处理餐厨垃圾迫在眉睫。
传统的餐厨垃圾处理方法包括干化焚烧、卫生填埋、生物饲料[9-11]、好氧堆肥[12-13]、厌氧发酵。由于餐厨垃圾的水分含量高,导致焚烧成本相对偏高,在燃烧过程中也会产生二噁英等污染物[14]。餐厨垃圾填埋不仅占用了大量填埋场的库容,而且容易破坏填埋场的环境;而好氧堆肥过程中会产生恶臭以及温室气体[15]。据联合国粮农组织估计,全球每年约33亿t的二氧化碳当量温室气体是由食物垃圾降解产生的[16]。厌氧发酵技术是近几年有机固体废弃物资源化的主流技术。发酵制氢过程具有微生物比产氢速率高、可利用的有机物范围广和工艺简单等优点,发展潜力较大,是理想的制氢方法。与干化焚化、垃圾填埋和好氧堆肥相比,厌氧发酵不仅具有较低的二次污染风险,而且产生的氢气是一种可再生且环境友好的生物燃料[17]。
氢气是厌氧发酵过程中的一种产物,其燃烧的热值能够达到142.35 kJ/g[18],在化石、化工和生物燃料中最高,且氢气燃烧后的产物是水,不会对环境产生污染,因此,利用餐厨垃圾厌氧发酵制取氢气不仅能实现废弃物处理,同时还可实现氢能源的回收[19]。然而,厌氧发酵仍面临有机物转化率和氢气产率低的问题。主要原因是餐厨垃圾中的营养成分不均衡,餐厨垃圾和其他物料协同发酵有可能提高氢气产率。严零陵等[20]在37 ℃条件下,研究餐厨垃圾和剩余污泥不同质量混合比对厌氧发酵产氢的影响。结果表明,餐厨垃圾和剩余污泥质量比为4∶1时,单位产氢量最大,为53.3 mL/g VS,总固体(total solid,TS)和挥发性固体(volatile solid,VS)的去除率分别为20.9%和13.8%。
厌氧发酵产氢效率低的另一个原因是由底物的TS含量和发酵温度决定的。厌氧发酵可分为湿式厌氧发酵(TS<15%)和干式厌氧发酵(TS>15%)[21]。目前湿式厌氧发酵工艺比较成熟而且应用广泛,但发酵产生的沼液容易产生二次污染[22]。与湿式厌氧发酵相比,干式厌氧发酵具有能耗低、沼液产生量少、沼渣含水率低和运行成本小等优势[23-24]。此外,温度也是厌氧发酵产氢的重要影响因素[25],温度会影响酶的活性,从而影响有机物的水解速度。李迎新等[26]研究不同温度和物料配比对餐厨垃圾与果蔬垃圾协同厌氧产氢潜力的影响。结果表明,高温55 ℃且物料配比为1∶4时累积产气量和氢气体积分数最大,分别为510 mL和52.57%。
果蔬垃圾是指菜市场残余物和果皮等,其主要特征是水分含量高、盐、油和蛋白质含量较低[27]、富含纤维素、半纤维素,其启动时间长,两者协同厌氧发酵可改善发酵底物的营养不均衡问题[26,28]。另外,餐厨垃圾与果蔬垃圾混合厌氧发酵可削减氨氮对微生物的抑制作用[29],提高氢气产量和有机质转化率。
为了提高厌氧发酵的有机物转化率和产气效率,本研究利用餐厨垃圾与果蔬垃圾混配以平衡底物营养,同时采用高温干式厌氧发酵来评估发酵性能并获得最佳混合比例。
餐厨垃圾来自中国科学院上海高等研究院食堂;果蔬垃圾来自上海农产品批发市场。收集到的各物料混合均匀后进行粉碎。为了增加共发酵底物的TS含量,将磨碎的果蔬垃圾过滤去除滤液。接种物取自上海黎明资源再利用有限公司的高温干式厌氧发酵罐,工作温度为55 ℃。实验开始前,将接种物置于55 ℃条件下,使接种物中的有机物完全消耗直到不产气为止。表1列出了每种实验材料和接种物的理化特性。
表1 餐厨垃圾、果蔬垃圾及接种物的理化性质
Table 1 Characteristics of food waste,fruit and vegetable waste and inoculum
理化性质餐厨垃圾果蔬垃圾接种物总固体(TS)/%28.8315.493.45挥发性固体(VS)/%24.3312.772.15总有机碳/(%TS)39.6730.6329.29总氮/(%TS)2.031.534.36碳/氮(C/N)19.5420.026.72pH5.515.288.47可溶性盐/(%TS)7.682.831.18纤维素/(%TS)7.5210.30-半纤维素/(%TS)4.526.31-木质素/(%TS)3.343.67-粗脂肪/(%TS)30.663.77-粗蛋白/(%TS)12.699.56-
实验室批式试验是在全自动甲烷潜力仪AMPTS Ⅱ(Bioprocess,瑞典)中进行。该装置主要由4部分组成:发酵单元;CO2吸收单元;气体体积测量单元;数字化在线监测单元。
1.3.1 实验方法
发酵瓶的有效反应体积为400 mL,物料质量比例以VS作为基准分别为100∶0、80∶20、60∶40、50∶50、40∶60、20∶80和 0∶100,使每个发酵瓶的有机负荷为161.80 g VS/L,用去离子水补充反应体积至 400 mL,具体质量比及特性见表2。试验开始前,向发酵瓶内冲入氮气5 min,以达到发酵瓶内的厌氧环境,反应温度55 ℃,搅拌转速60 r/min,发酵时间30 d。本研究中氢气的产生量基于标准温度和压力(273 K,1 atm),每个发酵组做3个平行(在2套设备中完成)。
表2 高温干式厌氧发酵中餐厨垃圾和果蔬垃圾的不同质量比
Table 2 Mixing ratios of food waste and fruit and vegetable waste for thermophilic dry anaerobic fermentation
混配比餐厨垃圾+果蔬垃圾接种物/gC/N100∶0100%餐厨垃圾+0%果蔬垃圾8026.2680∶2080%餐厨垃圾+20%果蔬垃圾8022.5260∶4060%餐厨垃圾+40%果蔬垃圾8024.9750∶5050%餐厨垃圾+50%果蔬垃圾8024.5440∶6040%餐厨垃圾+60%果蔬垃圾8023.8720∶8020%餐厨垃圾+80%果蔬垃圾8024.800∶1000%餐厨垃圾+100%果蔬垃圾8026.16
1.3.2 分析方法
样品的TS和VS通过APHA方法测定[30]。通过比较在105 ℃下干燥前后样品质量的变化来测量TS,通过比较在550 ℃干燥前后样品质量的变化来计算VS,按公式(1)计算有机物去除率。
有机物去除率
(1)
式中:VS前,发酵底物的初始VS含量;VS后,发酵底物的最终VS含量。
总有机碳用TOC分析仪(Analytik jena,德国)测定。总氮通过凯氏定氮法测定。碳/氮(C/N)比通过总有机碳/总氮来计算。使用pH计(PB-10,Sartorius)测定pH值。可溶性盐根据NY/T 1121.1—1121.21中的方法[31]测定。纤维素、半纤维素和木质素根据NREL方法进行测定[32]。粗脂肪根据THIEX等[33]的方法测定。粗蛋白用凯氏定氮法测定[34]。
2.1.1 累积产氢量
基于果蔬垃圾和餐厨垃圾的特点,两者混合厌氧发酵可以减弱盐和油对微生物生长的抑制作用。餐厨垃圾和果蔬垃圾协同干式厌氧发酵过程中的累积产氢量如图1所示。
图1 餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵的累积产氢量
Fig.1 Cumulative hydrogen production of the thermophilic dry anaerobic co-fermentation of food waste and fruit and vegetable waste
当餐厨垃圾作为单一底物进行干式厌氧发酵时,氢气的产生仅发生在4 d,此后几乎没有再产生气体。在干式厌氧发酵的30 d中,餐厨垃圾的累积产氢量仅达到23.82 NmL/g VS。当果蔬垃圾用作单一底物进行干式厌氧发酵时,氢气的产生仅发生在8 d,此后几乎没有气体产生,这是由于果蔬垃圾中的简单碳水化合物(例如果糖和蔗糖)使得发酵系统快速酸化,从而导致发酵失败。在干式厌氧发酵的30 d中,果蔬垃圾的累积产氢量仅达到32.51 NmL/g VS。从图1可以看出,当餐厨垃圾和果蔬垃圾使用不同混配比进行干式厌氧发酵时,氢气的累积产量显著增加。在30 d的干式厌氧发酵过程中,当餐厨垃圾和果蔬垃圾的混配比为80∶20时,累积产氢量最高,为64.10 NmL/g VS。与餐厨垃圾和果蔬垃圾单独发酵相比,分别增长了169.10%和97.17%。
在厌氧发酵体系中,碳源和氮源是微生物生长代谢的必要元素。微生物种群的生长需要合适的C/N,过高或者过低都会影响其生长代谢,导致厌氧发酵效率的降低。厌氧发酵的最适C/N约为22。单一餐厨垃圾和果蔬垃圾的C/N较高,分别为26.26和26.16,远高于最适C/N,故产气效率最低。结果表明,餐厨垃圾和果蔬垃圾协同干式厌氧发酵可以提高氢气的发酵效率。
2.1.2 日产氢量
餐厨垃圾与果蔬垃圾协同干式厌氧发酵过程中的日产氢量如图2所示。接种厌氧消化液后,各发酵组均在第1天达到了最大的日产氢量。当餐厨垃圾和果蔬垃圾的混配比例为60∶40时,日产氢量最高,达到了31.04 NmL/g VS。与餐厨垃圾和果蔬垃圾单独发酵相比,分别增加了53.06%和116.76%。其次,80∶20组在第1天的最大日产氢量为27.95 NmL/g VS,接着在第8天达到第2个产气高峰4.60 NmL/g VS,在第11天达到第3个产气高峰12.45 NmL/g VS,第17天达到第4个产气高峰3.73 NmL/g VS。但是,在单一底物发酵的整个过程中,只有1个产气高峰出现。
图2 餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵的日产氢量
Fig.2 Daily hydrogen production of the thermophilic dry anaerobic co-fermentation of food waste and fruit and vegetable waste
2.2.1 VS及有机物去除率的变化情况
VS和TS的去除率可以反映底物水解的效率和挥发性脂肪酸(volatile fatty acid,VFA)的利用情况。餐厨垃圾和果蔬垃圾干式厌氧发酵过程中VS含量的变化如图3所示。80∶20组的VS含量下降幅度最大。发酵30 d后,VS从161.80降至76.00 g/L,VS含量的降低与单个餐厨垃圾或果蔬垃圾厌氧发酵相比,分别增加了103.56%和54.62%。其次是60∶40组,VS含量从161.80降至83.13 g/L,VS含量降低与单个餐厨垃圾或果蔬垃圾发酵相比,分别增加了86.57%和41.72%。与单个餐厨垃圾或果蔬垃圾发酵相比,协同发酵后的VS含量显著降低。
图3 餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵中VS含量及有机物去除率
Fig.3 VS content and organic matter removal rate during thermophilic dry anaerobic co-fermentation of food waste and fruit and vegetable waste
在餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵过程中,有机物去除率通过VS的减少量来计算。协同干式厌氧发酵比单一餐厨垃圾或果蔬垃圾发酵具有更高的有机物去除率。与其他各组相比,发酵30 d后,当餐厨垃圾和果蔬垃圾的比例为80∶20时,有机物去除率最高,达到53.03%,是单一餐厨垃圾厌氧发酵有机物去除率(26.05%)的2.04倍;是单一果蔬垃圾厌氧发酵有机物去除率(34.30%)的1.55倍。
2.2.2 TS的变化情况
TS含量与VS含量的变化趋势相似,餐厨垃圾和果蔬垃圾干式厌氧发酵过程中TS含量的变化如图4所示。80∶20组的TS含量下降幅度最大。发酵30 d后,TS从194.30降至86.53 g/L,即原物料被降解了55.47%;其次是50∶50组,TS从190.60降至90.24 g/L,即原物料被降解了52.65%。
图4 餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵的TS变化情况
Fig.4 TS content during thermophilic dry anaerobic co-fermentation of food waste and fruit and vegetable waste
在餐厨垃圾和果蔬垃圾协同高温干式厌氧发酵过程中,当餐厨垃圾和果蔬垃圾的比例为80∶20时,累积产氢量最高,达到64.10 NmL/g VS。与单一餐厨垃圾和果蔬垃圾发酵相比,分别增长了169.10%和97.17%。有机物去除率可达到53.03%,是单一餐厨垃圾有机物去除率(26.05%)的2.04倍,是单一果蔬垃圾有机物去除率(34.30%)的1.55倍。这表明,利用果蔬垃圾作为餐厨垃圾高温干式厌氧发酵的辅助基质是一种很有前途的氢气生产技术,与单一底物发酵相比,协同发酵在提高氢气产量和有机物去除率方面具有更大的潜力。
[1] 郝春霞, 陈灏,赵玉柱.餐厨垃圾厌氧发酵处理工艺及关键设备[J].环境工程,2016,34(S1):691-695.
HAO C X,CHEN H,ZHAO Y Z.Anaerobic fermentation techniques and key equipments for treatment of kitchen waste[J].Environmental Engineering,2016,34(S1):691-695.
[2] YIN C H,DONG X,LV L,et al.Economic production of probiotics from kitchen waste[J].Food Science and Biotechnology,2013,22(S1):59-63.
[3] 李志强, 曹秀芹,张达飞,等.餐厨垃圾干式厌氧消化的试验研究[J].科学技术与工程,2018,18(8):343-348.
LI Z Q,CAO X Q,ZHANG D F,et al.Experimental study on dry anaerobic digestion by food waste[J].Science Technology and Engineering,2018,18(8):343-348.
[4] 黄林丽, 谢斌,陈立,等.公共餐厨垃圾饲料化利用的混合菌发酵工艺[J].食品与发酵工业,2019,45(24):148-152.
HUANG L L,XIE B,CHEN L,et al.Mixed fermentation of public kitchen waste to animal feed[J].Food and Fermentation industries,2019,45(24):148-152.
[5] 赵明星, 黄月,缪恒锋,等.餐厨垃圾与剩余污泥协同厌氧连续处置研究[J].食品与发酵工业,2020,46(19):92-98.
ZHAO M X,HUANG Y,MIAO H F,et al.Continuous anaerobic co-digestion of food waste and excess sludge[J].Food and Fermentation Industries,2020,46(19):92-98.
[6] 邬苏焕, 宋兴福,刘够生,等.双菌固态发酵处理餐厨垃圾[J].食品与发酵工业,2004,30(5):63-68.
WU S H,SONG X F,LIU G S,et al.Solid-state fermentation of waste food to produce feeding-protein by mixed fungal strains[J].Food and Fermentation Industries,2004,30(5):63-68.
[7] ZHAI N N,ZHANG T,YIN D X,et al.Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure[J].Waste Management,2015,38:126-131.
[8] IZUMI K,OKISHIO Y K,NAGAO N,et al.Effects of particle size on anaerobic digestion of food waste[J].International Biodeterioration & Biodegradation,2010,64(7):601-608.
[9] 郭晓慧.餐厨垃圾厌氧消化产甲烷工艺特性及其微生物学机理研究[D].杭州:浙江大学,2014.
GUO X H.Food waste anaerobic digestion process performancee and the microbial mechanisms[D].Hangzhou:Zhejiang University,2014.
[10] 潘冬梅, 杨丹丹,刘圣鹏,等.餐厨垃圾发酵生产的生物饲料对猪生长性能及粪便中微生物的影响[J].中国农学通报,2017,33(14):117-120.
PAN D M,YANG D D,LIU S P,et al.Bioactive-feed fermented by food waste affecting growth performance and fecal microorganism of pigs[J].Chinese Agricultural Science Bulletin,2017,33(14):117-120.
[11] 周俊,王梦瑶,王改红,等.餐厨垃圾资源化利用技术研究现状及展望[J].生物资源,2020,42(1):87-96.
ZHOU J,WANG M Y,WANG G H,et al.Research status and prospect of food waste utilization technology[J].Biotic Resources,2020,42(1):87-96.
[12] HORNSBY C,RIPA M,VASSILLO C,et al.A roadmap towards integrated assessment and participatory strategies in support of decision-making processes.The case of urban waste management[J].Journal of Cleaner Production,2017,142:157-172.
[13] SRIVASTAVA R K,SHETTI N P,REDDY K R,et al.Sustainable energy from waste organic matters via efficient microbial processes[J].Science of the Total Environment,2020,722:137 927.
[14] 胡新军, 张敏,余俊锋,等.中国餐厨垃圾处理的现状、问题和对策[J].生态学报,2012,32(14):4 575-4 584.
HU X J,ZHANG M,YU J F,et al.Food waste management in China:status problems and solutions[J].Acta Ecologica Sinica,2012,32(14):4 575-4 584.
[15] YADAV A,GARG V K.Vermicomposting-An effective tool for the management of invasive weed Parthenium hysterophorus[J].Bioresource Technology,2011.102(10):5 891-5 895.
[16] ERIKSSON M,OSOWSKI C P,MALEFORS C,et al.Quantification of food waste in public catering services-A case study from a Swedish municipality[J].Waste Management,2017,61:415-422.
[17] ANJUM M,Al-MAKISHAH N H,BARAKAT M A.Wastewater sludge stabilization using pre-treatment methods[J].Process Safety and Environmental Protection,2016.102:615-632.
[18] 林艺芸.预处理污泥与餐厨垃圾联合产氢试验研究[D].福州:福建师范大学,2008.
LIN Y Y.Research on anaerobic fermentative hydrogen production from combination substrates of pretreated sewage sludge and food waste[D].Fuzhou:Fujian Normol University,2008.
[19] 李燕红, 林钰,杏艳,等.农作物秸秆废弃物厌氧发酵生物制氢的研究[J].环境科学与技术,2006,11:8-9;117;115.
LI Y H,LIN Y,XING Y,et al.Biohydrogen production from wheat straw waste by dark fermentation[J].Environmental Science and Technology,2006,11:8-9;17;115.
[20] 严零陵,肖利平,袁雨珍.质量混合比对餐厨垃圾厌氧发酵产氢的影响[J].广州化学,2019,44(2):68-71;76.
YAN L L,XIAO L P,YUAN Y Z.Effect of mass mixing ratio on hydrogen production during anaerobic fermentation of kitchen waste[J].Guangzhou Chemistry,2019,44(2):68-71;76.
[21] GAO S M,HUANG Y,YANG L L,et al.Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering[J].Energy Conversion and Management,2015.93:166-174.
[22] 王权, 宫常修,蒋建国,等.NaCl对餐厨垃圾厌氧发酵产VFA浓度及组分的影响[J].中国环境科学,2014,34(12):3 127-3 132.
WANG Q,GONG C X,JIANG J G,et al.Effect of NaCl content on VFA concentration and composition during anaerobic fermentation of kitchen waste[J].China Environmental Science,2014,34(12):3 127-3 132.
[23] ABUBACKAR H N,KESKIN T,ARSLAN K,et al.Effects of size and autoclavation of fruit and vegetable wastes on biohydrogen production by dark dry anaerobic fermentation under mesophilic condition[J].International Journal of Hydrogen Energy,2019,44(33):17 767-17 780.
[24] ZHAO G,MA F,WEI L,et al.Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process[J].Bioresource Technology,2012,113:83-88.
[25] XU F Q,LI Y Y,GE X M,et al.Anaerobic digestion of food waste-Challenges and opportunities[J].Bioresource Technology,2018,247:1 047-1 058.
[26] 李迎新, 王勇,李彤,等.温度和物料配比对餐厨垃圾与果蔬垃圾协同厌氧产氢的影响研究[J].环境污染与防治,2018,40(3):259-264.
LI Y X,WANG Y,LI T,et al.Effects of temperature and raw material ratio on combined anaerobic hydrogen production potential of kitchen waste and fruit vegetable waste[J].Environmental Pollution & Control,2018,40(3):259-264.
[27] 江志坚.果蔬与餐厨垃圾混合两相厌氧消化性能的试验研究[D].北京:北京化工大学,2013.
JIANG Z J.Performance of two-phase anaerobic co-digestion of fruit and vegetable waste and kitchen waste[D].Beijing:Beijing University of Chemical Technology,2013.
[28] 杜薇.果蔬和餐厨垃圾混合干式厌氧消化性能及污泥流变行为研究[D].重庆:重庆大学,2018.
DU W.Dry anaerobic digestion performance and sludge rheological behavior of mixed FVW and FW[D].Chongqing:Chongqing University,2018.
[29] 占美丽, 董蕾,孙英杰,等.青岛市餐厨垃圾与菜市场垃圾混合高温厌氧消化研究[J].环境工程学报,2013,7(5):1 945-1 950.
ZHAN M L,DONG L,SUN Y J,et al.Study on thermophilic anaerobic digestion of mixture of kitchen wastes and vegetable market wastes in Qingdao[J].Chinese Journal of Environmental Engineering,2013,7(5):1 945-1 950.
[30] APHA.Standard methods for the examination of water and wastewater[S].Washington:American Public Health Association,1995.
[31] 中华人民共和国农业部.NY/T 1121.1—1121.21 土壤检测 土壤水溶性盐总量的测定[S].北京:中国农业出版社,2006.
Ministry of Agriculture of the People’s Republic of China.NY/T 1121.1—1121.21 Soil testing determination of total water-soluble salt in soil[S].Beijing:China Agricultural Press,2006.
[32] 张红漫, 郑荣平,陈敬文,等.NREL法测定木质纤维素原料组分的含量[J].分析试验室,2010,29(11):15-18.
ZHANG H M,ZHENG R P,CHEN J W,et al.Investigation on the determination of lignocellulosics components by NREL method[J].Chinese Journal of Analysis Laboratory,2010,29(11):15-18.
[33] THIEX N J,ANDERSON S,GILDEMEISTER B.Crude fat,diethyl ether extraction,in feed,cereal grain,and forage(Randall/Soxtec/submersion method):Collaborative study[J].Journal AOAC International,2003,86(5):888-898.
[34] HALL N G,SCHONFELDT H C,Total nitrogen vs.amino-acid profile as indicator of protein content of beef[J].Food Chemistry,2013,140(3):608-612.