薏苡仁来源于禾本科植物薏苡(Coix lacryma-jobi L.var.ma-yuen(Roman.)Stapf)的干燥成熟种仁,属于我国常见的传统食品,也是卫计委公布的101种药食同源类中药材之一,具有利水渗湿、健脾止泻、除痹、排脓、解毒散结的功效[1],在治疗水肿、扁平疣及肝癌等疾病中均具有较好疗效[2-6],具有非常高的食用及药用价值,是各种药品、食品、保健品开发的热点对象之一。现代研究表明,薏苡仁除了含有脂肪酸、多糖、黄酮、三萜、生物碱等成分外[7],还含有多类氨基酸成分[8-9]。
氨基酸作为构成生命物质基础蛋白质的基本物质和人体中不可缺少的营养成分,可用其作为衡量薏苡仁品质的指标性成分。目前,越来越多的学者采用柱前衍生化HPLC[10-19]、液相色谱-质谱联用仪(liquid chromatograph mass spectrometer,LC-MS)[20-24]、高效液相色谱-荧光检测法(liquid chromatograph fluorescent detection,LC-FLD)[25]等方法分析鹿茸片、玉米等多种物质中的氨基酸成分,检测方法更加简便、准确和高效。本研究采用异硫氰酸苯酯(phenyl isothiocyanate,PITC)对薏苡仁氨基酸进行柱前衍生化,即在碱性条件下,氨基酸成分与PITC相结合生成具有紫外吸收的化合物,利用HPLC对其进行氨基酸组成分析和含量测定,以期为薏苡仁在食品、药品及保健品方面的开发利用提供参考。
天冬氨酸(Asp,批号CHB170224)、L-谷氨酸(Glu,批号CHB180617)、L-天冬酰胺(Asn,批号CHB190213)、L-丝氨酸(Ser,批号CHB170221)、L-组氨酸(His,批号CHB181129)、L-精氨酸(Arg,批号CHB190120)、L-苏氨酸(Thr,批号CHB190215)、L-α-丙氨酸(Ala,批号CHB180307)、L-脯氨酸(Pro,批号CHB180904)、L-酪氨酸(Tyr,批号CHB190110)、L-缬氨酸(Val,批号CHB180313)、L-甲硫氨酸(Met,批号CHB180227)、L-胱氨酸(Cys,批号CHB180410)、L-异亮氨酸(Ile,批号CHB170921)、L-亮氨酸(Leu,批号CHB170712)、L-苯丙氨酸(Phe,批号CHB170414)、L-赖氨酸(Lys,批号CHB180111),对照品纯度均大于98%,成都克洛玛生物科技有限公司;三乙胺溶液、PITC试剂、正己烷溶液皆为实验用分析纯,乙腈为色谱纯。16批薏苡仁样品经成都中医药大学药学院严铸云教授鉴定均为禾本科植物薏苡Coix lacryma-jobi L.var.ma-yuen(Roman.)Stapf的干燥成熟种仁,见表1。
表1 薏苡仁样品信息
Table 1 Information of Coix Lacryma-Jobi Seed
编号采集地点采集时间S1贵州省兴仁县2019年11月S2贵州省青山镇2019年12月S3福建省龙岩市2019年12月S4云南省勐腊县2020年1月S5云南省盐津县2020年1月S6广东省东莞市2020年1月S7广东省蒲城县2020年1月S8黑龙江省绥化市2019年12月S9江西省樟树市2020年1月S10河北省沧州市2019年12月S11湖北省黄冈市2019年12月S12吉林省吉林市2019年11月S13湖北省湘潭市2019年11月S14海南省海口市2019年12月S15内蒙古省通辽市2019年12月S16缅甸2019年11月
Agilent 1260型高效液相色谱仪,安捷伦科技(中国)有限公司;SQP万分之一天平,赛多利斯仪器(北京)有限公司;B25-12D超声波清洗仪,宁波新艺超声设备有限公司;DHS16-A多功能红外水份仪,上海精密科学仪器有限公司;TGL-16台式高速冷冻离心机、TDZ5-WS多管架自动平衡离心机,湖南湘仪实验室仪器开发有限公司;DHG—9245电热鼓风干燥箱,上海一恒科学仪器有限公司;HH-1恒温水浴锅,国华电器有限公司;DY-3型电动熔封机,长沙市岳麓区中南制药机械厂。
1.3.1 对照品溶液的制备
分别称取适量氨基酸对照品,加入10 mL容量瓶内,精密称定,加入0.1 mol/L HCl溶液,溶解定容,制备成各氨基酸浓度范围为58.0~399 μg/mL的混合氨基酸对照品储备液。
1.3.2 供试品溶液的制备
精密称定薏苡仁样品粉末0.2 g,置于可熔封安瓿瓶中,精密加入6 mol/L HCl溶液5 mL,然后熔封,150 ℃烘箱中加热反应1 h,取出置冷却,转移至5 mL EP管,以转速10 000 r/min离心10 min,取1 mL上清液至安瓿瓶,水浴蒸干,待冷却至常温,加入0.1 mol/L HCl溶液,使其充分溶解后,将溶液转移至5 mL容量瓶中定容,即得薏苡仁供试品溶液。
1.3.3 衍生化
精密移取混合氨基酸对照品稀释溶液、薏苡仁供试品溶液和400 μL 0.1 mol/L HCl溶液至EP管,依次加入200 μL新鲜配制的1 mol/L三乙胺-乙腈溶液和200 μL新鲜配制的0.1 mol/L PITC-乙腈溶液,振荡混匀,避光1 h,再加入600 μL正己烷溶液,振荡混匀,静置10 min,取200 μL下层清液,加入800 μL超纯水进行稀释,涡旋混匀,用0.22 μm 微孔滤膜过滤,置于进样瓶中,得到空白、对照品、薏苡仁供试品溶液。
1.3.4 色谱条件
色谱柱采用SVEA C18柱(250 mm×4.6 mm,5 μm),流动相A:体积分数80%乙腈水溶液,流动相B:0.1 mol/L醋酸钠-乙腈(6∶94体积比),梯度洗脱:0~4 min,0%A;4~6 min,0%~6%A;6~16 min,7%A;16~20 min,7%~12%A;20~40 min,12%~25%A;40~49 min,25%~35%A;49~55 min,35%~100%A;55~60 min,100%A;60~65 min,100%~0%A。流速0.8 mL/min,进样量5 μL,柱温38 ℃,检测波长254 nm。按上述条件操作,对照品及供试品中17种氨基酸的色谱峰分离效果良好,见图1。
1-Asp;2-Glu;3-Asn;4-Ser;5-His;6-Arg;7-Thr;8-Ala;9-Pro;10-Tyr;11-Val;12-Met;13-Cys;14-Ile;15-Leu;16-Phe;17-Lys
图1 空白(a)、氨基酸混合对照品(b)及薏苡仁样品(c)的HPLC色谱图
Fig.1 HPLC chromatogram of blank(a),amino acid mixed reference(b)and Coix lacnyma-jobi seed sample
根据表5的回归方程可计算得到薏苡仁样品17种氨基酸含量,见表2。可得各产地薏苡仁总氨基酸含量为122.6~274.0 μg/g,共检测到17种氨基酸,含7种人体必需氨基酸,以异亮氨酸、酪氨酸含量较高,以贵州省兴仁县产的薏苡仁总氨基酸含量最高。
表2 不同产地薏苡仁氨基酸含量 单位:μg/g
Table 2 Content of amino acids in Coix lacryma-jobi seed from different areas
编号AspGluAsnSerHisArgThrAlaProTyrValMetCysIleLeuPheLys总氨基酸PCA综合得分排序S13.22819.164.7119.4764.9973.4321.3376.7619.78937.8810.255.4359.789108.123.856.5009.292274.01S24.50413.991.7716.5364.0051.4791.1747.3179.23828.146.8622.4629.23853.2818.434.65910.26183.36S31.7015.2271.9225.3894.2740.9201.1779.12512.0426.488.2942.81912.0464.2124.915.8359.613196.04S42.4616.5892.0678.1544.6231.6801.3529.20011.84330.958.8473.09511.8466.2423.606.08211.40210.02S51.8254.8971.6076.6330.0330.8421.0606.9318.57425.296.6542.4198.57452.8418.084.3979.64160.313S61.6914.9321.7047.2540.0330.6611.0847.0968.94220.756.4202.0378.94250.0117.604.17410.20153.512S71.8386.0412.0178.8410.0331.7971.1217.96310.3224.526.4361.88410.3249.8319.684.96610.26167.95S81.8304.9351.6707.3880.0341.7591.0396.6498.28423.886.2892.3738.28449.7316.744.28110.11155.314S91.8185.5652.0465.9414.3961.0071.2569.73212.8926.678.7052.72112.8966.9326.286.11810.11205.13S101.5785.0571.6716.0773.8441.0831.0827.1379.18520.996.5882.1669.18552.7718.574.56410.35161.910S112.1265.0141.6466.7340.0341.9311.0407.2018.82927.976.9772.4408.82955.3818.924.4879.951169.59S121.8064.7911.6737.5460.0351.8281.0516.7299.05423.5286.4092.3829.05451.1917.004.42910.45159.011S131.8835.3721.7407.9740.0341.8201.1877.2109.32624.286.9852.4399.32655.1818.684.64210.45168.58S141.7014.1071.3035.2042.5630.9050.8395.3616.51518.164.4891.1936.51537.8012.943.2529.711122.615S151.8035.2731.7777.0093.8031.1541.0937.7399.93323.926.9672.3139.93355.0019.454.84710.55172.67S160.6642.0000.7430.7872.4581.3460.7053.5796.05122.985.5230.8466.05163.1912.532.9937.834140.316
为了进一步分析不同产地薏苡仁中的17种氨基酸成分差异,评价其质量,采用软件SPSS 26.0对薏苡仁氨基酸含量进行了主成分分析和系统聚类分析。由相关矩阵特征值的计算结果可知,前3个主成分(天冬氨酸、甲硫氨酸、苯丙氨酸)累计方差贡献率高达85.06%(表3),鉴于此结果选取了前3个主成分对薏苡仁品质进行评价,见表4。
表3 特征值及累计方差贡献率
Table 3 Eigenvalue and cumulative variance contribution rate
编号特征值方差贡献率/%累计方差贡献率/%110.1159.4859.4823.28019.2878.7731.76010.3589.12
表4 因子载荷矩阵
Table 4 Factor load matrix
氨基酸主成分123Asp0.9710.175-0.131Glu0.954-0.051-0.231Asn0.9430.2310.170Ser0.912-0.3150.063His0.9000.327-0.248Arg0.852-0.401-0.070Thr0.837-0.4390.078Ala0.7880.574-0.175Pro0.7880.574-0.175Tyr0.743-0.527-0.352Val0.719-0.5590.178Met0.7110.6910.002Cys0.585-0.2520.387Ile0.543-0.6620.258Leu0.3880.6270.576Phe0.6560.0880.701Lys0.516-0.065-0.572
用特征值和各因子载荷矩阵对各氨基酸得分系数进行计算,可以进一步得到PC1、PC2、PC3和综合得分Y方程式如下:
PC1=0.058X1+0.071X2+0.083X3+0.065X4+0.051X5+0.054X6+0.093X7+0.07X8+0.078X9+0.084X10+0.094X11+0.09X12+0.078X13+0.073X14+0.089X15+0.096X16+0.038X17
PC2=-0.077X1-0.171X2-0.134X3+0.027X4-0.02X5-0.202X6+0.07X7+0.211X8+0.175X9-0.122X10-0.015X11-0.096X12+0.175X13-0.161X14+0.1X15+0.053X16+0.191X17
PC3=0.22X1+0.101X2+0.045X3+0.398X4-0.325X5+0.146X6+0.097X7+0.001X8-0.099X9-0.04X10-0.131X11+0.036X12-0.099X13-0.2X14-0.141X15-0.074X16+0.327X17
Y=0.594 8PC1+0.192 8PC2+0.060 1PC3
X1~X17分别为各氨基酸的标准化值。利用上述公式计算各产地薏苡仁氨基酸主成分综合得分,值越高,表明薏苡仁氨基酸质量越佳,按照结果进行排序,可得到贵州兴仁县产的薏苡仁氨基酸质量最佳,见表2,根据主成分得分绘制的三维图见图2。
图2 主成分得分三维图
Fig.2 Three dimensional graph of principal component score
由系统聚类结果得到16个产地薏苡仁样品被聚为5类,黑龙江绥化市、吉林省吉林市、广东省东莞市、广东省蒲城市、云南省盐津县、湖北省湘潭市、湖北省黄冈市、河北省沧州市、内蒙古通辽市、贵州省青山市产薏苡仁为第1类,缅甸产薏苡仁为第2类,福建省龙岩市、江西省樟树市、云南省勐腊县产薏苡仁为第3类,海南省海口市产薏苡仁和贵州省兴仁县产薏苡仁分别为第4类和第5类,见图3。
图3 系统聚类分析图
Fig.3 System cluster analysis chart
2.2.1 线性关系考察
精密量取氨基酸混合对照品溶液0、1.0、2.0、3.0、4.0、5.0、6.0、7.0 mL,分别置于10 mL容量瓶中,用0.1 mol/L HCl溶液稀释定容,即得不同梯度浓度的氨基酸混合对照品溶液,按1.3.3的方法进行衍生并测定,以浓度(x,mg/mL)为横坐标,峰面积(y,mAU)为纵坐标,进行线性回归,结果表明实验所用的17种氨基酸在限定浓度范围内均有良好线性关系,见表5。
表5 十七种氨基酸的回归方程及相关系数
Table 5 Linear regression equation and correlation coefficient of 17 amino acids
峰号氨基酸回归方程R2线性范围/(mg·mL-1)检测限/(mg·mL-1)定量限/(mg·mL-1)1L-天冬氨酸(Asp)y=11986x-7.98940.99900.0054~0.03800.00110.00352L-谷氨酸(Glu)y=13331x-3.28570.99950.0078~0.05430.00110.00343L-天冬酰胺(Asn)y=46120x-6.88130.99970.0027~0.01870.00020.00074L-丝氨酸(Ser)y=20679x-13.6840.99940.0219~0.15300.00290.00895L-组氨酸(His)y=6285.9x-1.36010.99910.0084~0.05860.00190.00586L-精氨酸(Arg)y=25411x-16.4650.99930.0081~0.05650.00120.00367L-苏氨酸(Thr)y=33265x-37.7750.99910.0112~0.07800.00170.00538L-α-丙氨酸(Ala)y=45712x-24.3510.99970.0072~0.05950.00080.00259L-脯氨酸(Pro)y=19162x-8.96020.99960.0099~0.06900.00110.003410L-酪氨酸(Tyr)y=1970x-69.0830.99930.0086~0.06030.00150.004611L-缬氨酸(Val)y=13232x-4.69550.99960.0083~0.05840.00090.002712L-甲硫氨酸(Met)y=19117x-17.8250.99910.0089~0.06230.00150.004613L-胱氨酸(Cys)y=28178x-3.66530.99920.0046~0.03210.00080.002414L-异亮氨酸(Ile)y=906.41x-53.1950.99910.0077~0.05430.00150.004415L-亮氨酸(Leu)y=11986x-7.98940.99900.0078~0.06960.00150.004616L-苯丙氨酸(Phe)y=13989x-1.54121.00000.01273~0.08900.00030.000917L-赖氨酸(Lys)y=18814x-523.360.99980.0098~0.06830.00080.0024
2.2.2 精密度试验
将混合对照品储备液按一定比例稀释,取稀释液适量,遵循1.3.2的方法制备供试品溶液,计算可得17种氨基酸峰面积的相对标准偏差(n=6)为0.26%~3.42%,本实验所用仪器精密度良好。
2.2.3 稳定性试验
取样品S1制备供试品溶液,分别于0、4、8、12、16、24 h进样检测,计算得到不同时间点17种氨基酸对应峰面积相对标准偏差(n=6)为0.72%~3.36%,样品稳定性良好。
2.2.4 重复性试验
精密称定6份质量相等的样品S1,制备供试品溶液,由计算结果可得各氨基酸含量相对标准偏差(n=6)为0.63%~3.81%,可知该方法重复性良好。
2.2.5 加样回收率试验
精密量取6份浓度确定的S1水解液样品各200 μL,分别加入稀释后的混合对照品溶液,并制备供试品溶液,得到氨基酸含量、计算回收率以及相对标准偏差,计算可得17种氨基酸的平均加样回收率为97%~101%,相对标准偏差为0.89%~4.86%。
本研究表明药食两用薏苡仁中含有丰富的氨基酸成分,共检测得到17种氨基酸,包括7种人体必需氨基酸,为赖氨酸、苯丙氨酸、甲硫氨酸、异亮氨酸、亮氨酸、缬氨酸以及苏氨酸,其中以异亮氨酸含量为最高。其余10种人体非必需氨基酸中,酪氨酸含量最高。李恃圻等[8]、乐巍等[9]采用氨基酸自动分析仪检测薏苡仁氨基酸得到的氨基酸种类与本研究结果大致相似,部分氨基酸含量略有差异,推测可能是薏苡仁的品种、采收期、贮藏条件等因素差异导致。
本研究建立了PITC柱前衍生化HPLC检测薏苡仁中氨基酸含量的方法,方法简单实用,能准确检测薏苡仁中17种氨基酸的含量,为薏苡仁中氨基酸含量测定及薏苡仁质量评价提供了新方法。同时,对贵州、云南和福建等16个产地的薏苡仁中氨基酸含量进行了主成分分析,得到不同产地薏苡仁氨基酸含量有一定差异,以贵州省兴仁县产薏苡仁中总氨基酸含量最高,表明薏苡仁质量与产地存在一定相关性。可针对产地对薏苡仁综合质量评价进行研究,为薏苡仁种植基地的选择和发展提供新的思路。
[1] 国家药典委员会.中华人民共和国药典[M].一部,北京:中国医药科技出版社,2015:393-394.
Chinese Pharmacopoeia Commission.Pharmacopoeia of the People’s Republic of China[M].Part one,Beijing:The Medicine Science and Technology Press of China,2015:393-394.
[2] QI F H,ZHAO L,ZHOU A Y,et al.The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer[J].Bioscience Trends,2015,9(1):16-34.
[3] FU F,WAN Y D,MULATI.Kanglaite injection combined with hepatic arterial intervention for unresectable hepatocellular carcinoma:A meta-analysis[J].Journal of Cancer Research & Therapeutics,2014,10(5):38.
[4] WANG J C,TIAN J H,GE L,et al.Which is the best Chinese herb injection based on the FOLFOX regimen for gastric cancer? A network meta-analysis of randomized controlled trials[J].Asian Pacific Journal of Cancer Prevention,2014,15(12):4 795-4 800.
[5] KOU X G,LIU X H,YANG Q H,et al.Kanglaite injection combined with chemotherapy versus chemotherapy alone in the treatment of advanced non-small cell lung carcinoma[J].Journal of Cancer Research and Therapeutics,2014,10(5):46.
[6] 许健,沈雯,孙金权,等.薏苡仁油对人原位胰腺癌BxPC-3细胞生长及VEGF和bFGF表达的影响[J].中草药,2012,43(4):724-728.
XU J,SHEN W,SUN J Q,et al.Effects of Coicis Semen oil on growth of human in situ pancreatic cancer cell line BxPC-3 and expression of VEGF and bFGF[J].Chinese Traditional and Herbal Drugs,2012,43(4):724-728.
[7] 李晓凯,顾坤,梁慕文,等.薏苡仁化学成分及药理作用研究进展[J].中草药,2020,51(21):5 645-5 657.
LI X K,GU K,LIANG M W,et al.Research progress on chemical constituents and pharmacological effects of Coicis Semen seed[J].Chinese Traditional and Herbal Drugs,2020,51(21):5 645-5 657.
[8] 李恃圻,撒楠,徐鑫,等.庄河产薏苡仁中氨基酸含量的测定[J].安徽农业科学,2011,39(30):18 766;18 934.
LI S Q,SA N,XU X,et al.Content determination of amino acid in Coix seed from Zhuanghe[J].Journal of Anhui Agricultural Sciences,2011,39(30):18766,18 934.
[9] 乐巍,吴德康.江苏引种栽培不同居群薏苡仁氨基酸分析[J].中药材,2010,33(2):189-191.
YUE W,WU D K.Amino acid analysis of Coix lacryma jobi seed in Jiangsu province[J].Journal of Chinese Medicinal Materials,2010,33(2):189-191.
[10] 郭晓晗,程显隆,柳温曦,等.柱前衍生化-HPLC法同时测定不同商品规格鹿茸片中15种氨基酸的含量[J].药物分析杂志,2020,40(10):1 780-1 789.
GUO X H,CHENG X L,LIU W X,et al.HPLC with pre-column derivatization for simultaneous determination of 15 amino acids in deer velvet slices of different specifications[J].Chinese Journal of Pharmaceutical Analysis,2020,40(10):1 780-1 789.
[11] 徐鑫,毛红艳,韩登旭,等.新疆不同玉米品种氨基酸营养价值评价[J].食品与发酵工业,2020,46(6):244-249.
XU X,MAO H Y,HAN D X,et al.Nutritional value evaluation of amino acids of different corn cultivars in Xinjiang[J].Food and Fermentation Industries,2020,46(6):244-249.
[12] 李倩倩,刘玥玥,李凡,等.六种市售禽蛋蛋清氨基酸主成分分析与综合评价[J].食品与发酵工业,2018,44(1):224-229.
LI QQ,LIU Y Y,LI F,et al.Principal component analysis and comprehensive evaluation of amino acids in egg white from six kinds of eggs[J].Food and Fermentation Industries,2018,44(1):224-229.
[13] 熊丙全,兰秀华,彭卫红,等.不同羊肚菌氨基酸比较分析及营养评价[J].食品与发酵工业,2020,46(2):114-119.
XIONG B Q,LAN X H,PENG W H,et al.Comparative analysis of amino acids and nutritional evaluation of different Morchella[J].Food and Fermentation Industries,2020,46(2):114-119.
[14] 牛丽影,刘春菊,李大婧,等.不同采收期鲜食玉米氨基酸变化分析[J].食品与发酵工业,2019,45(6):209-214.
NIUL Y,LIU C J,LI D J,et al.Analysis of amino acids in fresh-edible corns harvested at different time[J].Food and Fermentation Industries,2019,45(6):209-214.
[15] 张国华,吴光斌,陈昭华,等.异硫氰酸苯酯柱前衍生RP-HPLC法同时测定莲雾中15种游离氨基酸的含量[J].食品工业科技,2020,41(21):230-234.
ZHANG G H,WU G B,CHEN Z H,et al.Simultaneous determination of free amino acids in wax apple by reversed phase high performance liquid chromatography with phenyl isothiocyanate precolumn derivatization[J].Science and Technology of Food Industry,2020,41(21):230-234.
[16] 顾志荣,马转霞,马天翔,等.柱前衍生化RP-HPLC同时测定不同产区锁阳中17种游离氨基酸含量及其多元统计分析[J].中国实验方剂学杂志,2020(10):148-155.
GU Z R,MA Z X,MA T X,et al.Pre-column derivatization RP-HPLC for simultaneous determination of 17 amino acids in Cynomorii herba from different producing areas and its multivariate statistical analysis[J].Chinese Journal of Experimental Traditional Medical Formulae,2020,26(10):148-155.
[17] 黄元河,潘乔丹,黎惠琴,等.柱前衍生-高效液相色谱法测定野芭蕉不同部位的18种氨基酸含量[J].食品研究与开发,2020,41(9):158-162.
HUANG Y H,PAN Q D,LI H Q,et al.Determination of the amino acids in the flowers and stem of Musa balbisiana by precolumn derivatization-high performance liquid chromatography[J].Food Research and Development,2020,41(9):158-162.
[18] 尹宁宁,郭东晓.HPLC法同时测定复方阿胶补血颗粒中4种氨基酸[J].药学研究,2019,38(7):389-392.
YIN N N,GUO D X.Simultaneous determination of 4 amino acids in Fufang Ejiao Buxue Granules by HPLC[J].Journal of Pharmaceutical Research,2019,38(7):389-392.
[19] WU P,WU Y P,ZHANG J H,et al.Chromatographic resolution of α-amino acids by(R)-(3,3′-halogen substituted-1,1′-binaphthyl)-20-crown-6 stationary phase in HPLC[J].Chinese Journal of Chemistry,2017,35(7):1 037-1 042.
[20] 阳曦,刘玮.亲水作用色谱-串联质谱法同时测定涪城麦冬中的多种氨基酸[J].食品与发酵工业,2020,46(20):254-258.
YANG X,LIU W.Simultaneous determination of multiple amino acids in Ophiopogon japonicas by hydrophilic interaction chromatography tandem mass spectrometry[J].Food and Fermentation Industries,2020,46(20):254-258.
[21] 孙慧娟,王瑞,宋芊芊,等.基于超快速液相色谱-质谱联用技术检测药食两用薄荷中氨基酸和核苷类成分[J].食品与发酵工业,2020,46(8):261-266.
SUN H J,WANG R,SONG QQ,et al.The analysis of amino acid and nucleoside components in medicinal and edible Mentha haplocalyx based on UFLC-MS/MS technology[J].Food and Fermentation Industries,2020,46(8):261-266.
[22] 刘峻麟,俞年军,邢丽花,等.基于UHPLC-QTRAP-MS/MS的石斛中氨基酸和核苷类成分分析与评价[J].中国中药杂志,2020(16):3 890-3 899.
LIU J L,YU N J,XING L H,et al.Analysis and evaluation of amino acids and nucleosides in Dendrobium based on UHPLC-QTRAP-MS/MS[J].China Journal of Chinese Materia Medica,2020(16):3 890-3 899.
[23] 毛叶勤,姚鑫,陈琳.HILIC-HPLC-MS/MS测定酸枣仁内氨基酸类成分的含量[J].中国实验方剂学杂志,2016,22(21):67-72.
MAO Y Q,YAO X,CHEN L.Determination of underivatized amino acids from Ziziphi spinosae semen by HILIC-HPLC-MS/MS[J].Chinese Journal of Experimental Traditional Medical Formulae,2016,22(21):67-72.
[24] AHMAD H,KOBAYASHI M,MATSUBARA Y I.Changes in secondary metabolites and free amino acid content in tomato with Lamiaceae Herbs Companion Planting[J].American Journal of Plant Sciences,2020,11(12):1 878-1 889.
[25] CORLETO K A,SINGH J,JAYAPRAKASHA G K,et al.A sensitive HPLC-FLD method combined with multivariate analysis for the determination of amino acids in L-citrulline rich vegetables[J].Journal of Food and Drug Analysis,2019,27(3):717-728.