葡萄酒香气是评价葡萄酒品质的重要指标,会显著影响消费者的喜爱偏好[1]。香气化合物是葡萄酒具有香气特征的重要原因。香气化合物的检测阈值定义为其在食品或饮料中存在且能被检出的最低浓度。因此,检测阈值通常用作香气化合物效力的衡量标准。通过确定香气化合物的阈值和浓度,可以计算出化合物的气味活性值(odor activity value,OAV),以评估香气化合物对食品香气的特性贡献度[2]。香气感知可分为2种方式:前鼻感知和鼻后感知。前鼻感知发生在吸入过程中,鼻后感知则发生在口中进食期间[3]。无论是前鼻感知还是鼻后感知,香气化合物都需要首先从食物基质中释放出来,最后从鼻腔或口腔到达嗅觉受体[4]。因此,食物基质可能对前鼻感知或鼻后感知产生重大影响。
葡萄酒是一种包含多种不挥发和挥发性物质的复杂的酒精饮料,其非挥发性成分对香气释放的影响已被广泛研究[5-6]。作为葡萄酒中重要非挥发性基质物质的单宁,已被证明能够与香气化合物相互作用,显著改变香气化合物的挥发性,进而影响葡萄酒的香气感知[7-8]。如儿茶素和槲皮素可以极大地抑制溶液中的3-巯基己醇被感知,而没食子酸表现出相反的效果[9]。通过确定酯类化合物的阈值,在儿茶素存在下,丁酸乙酯和辛酸乙酯的阈值分别增加了1及3倍[10]。最近的一项研究发现,在体内条件下多酚能够减少口腔中大多数目标芳香化合物的释放,并降低某些香气属性的一些强度评分。值得注意的是,作者认为多酚与一些口腔参数(如唾液或口腔黏膜)之间的相互作用可能会影响香气的释放[11]。事实上,单宁可以与唾液蛋白相互作用,导致形成一些聚集体,而这些聚集体同样对香气化合物的释放具有显著影响[12]。此外,通常发生在葡萄酒饮用过程中的感知相互作用也不容忽视,如单宁诱导的涩味和苦味也可能影响鼻后感知[13]。考虑到所有这些前提因素,单宁对前鼻和鼻后感知的影响可能会有不同的表现。然而,单宁对葡萄酒香气前后鼻感知的影响规律及机制尚不明晰,是目前葡萄酒风味研究的一个热点。
因此,针对上述问题,本研究旨在从前鼻和鼻后阈值角度评估单宁对葡萄酒香气感知的影响。研究采用三点选配法(three-alternative forced-choice,3-AFC)结合最佳阈值估计法(best estimate threshold values,BETs),在有无添加单宁的模拟葡萄酒中,分别确定了葡萄酒中常见的6种具有不同香气的目标芳香化合物的前鼻检测阈值(orthonasal threshold,ODT)和鼻后检测阈值(retronasal threshold,RDT)。本研究不仅可以丰富我国葡萄酒风味化学研究的理论体系,同时也希望为基于不挥发基质单宁调控葡萄酒杯中以及饮用过程中香气感知提供数据支撑和理论依据。
去离子水、L-酒石酸(分析纯),国药集团化学试剂有限公司;乙醇(色谱级),安谱公司;商品单宁Tanin VR SUPRA,为缩合单宁,法国LAFFORT公司;香气化合物标准品(色谱纯,纯度均在97%以上,见表1),Sigma-Aldrich公司。
表1 用于测定的香气化合物
Table 1 Aroma compounds for test
测定化合物CAS化学结构式香气描述lgP相对分子质量沸点/℃1-辛烯-3-醇3391-86-4蘑菇2.7128.2184~85(0.133 kPa)β-大马酮23696-85-7蜂蜜3.43190.29275.6(101.325 kPa)乙酸异戊酯123-92-2香蕉1.60130.181421-辛烯-3-酮4312-99-6蘑菇2.32126.20174~182苯甲醛100-52-7杏仁1.50106.12179(100 kPa)香草醛121-33-5香荚兰豆1.21152.15170(2 kPa)
注:lgP为油水分配系数,是物质在正辛醇和水中的分配系数比值的对数值,其值越大代表物质越亲油,反之越亲水。本表数据来自盖德化工网https://china.guidechem.com/与https://webbook.nist.gov/chemistry/cas-ser/
1.2.1 品评员的筛选与培训
品评员的初步筛选与培训参考课题组前期建立的方法[14],采用自愿报名的方式进行品评员的招募,通过填写问卷的形式,对符合标准的60名20~22岁的江南大学学生进行了基本嗅觉及味觉等感官灵敏度测试,筛选出20人,进行为期1个月的基本感官培训,并最终筛选出15人作为品评员,其中男性6名,女性9名。
1.2.2 香气化合物嗅觉阈值测定
选择6种葡萄酒中常见且具有不同化学结构或不同香气属性的香气化合物进行阈值测定。阈值测定环境温度为25 ℃,实验方法采用国际标准3-AFC法[15]。参考相同类型的感官研究的方法,确定被测物质标准液在溶液体系中的浓度值为其2~100倍觉察阈值,并完成标准液的配置[16]。其中,参考本课题组先前研究[17],确定模拟酒溶液体系为:12%(体积分数)乙醇,0.125 g/L酒石酸及单宁混合溶液,pH调至3.5左右(对照组溶液不添加单宁,实验组单宁含量2 g/L),在此基础上添加香气化合物。对配制好的标准溶液依次稀释,每种香气化合物对应6种浓度,稀释梯度为3倍,其中,1-辛烯-3-醇的稀释质量浓度范围为21.14~46 240.00 μg/L,β-大马酮的稀释质量浓度范围为9.56~20 916.00 μg/L,乙酸异戊酯的稀释质量浓度范围为0.59~1 285.20 μg/L,1-辛烯-3-酮的稀释质量浓度范围为15.97~2 043.70 μg/L,苯甲醛的稀释质量浓度范围为258.50~33 088.00 μg/L,香草醛的稀释质量浓度范围为0.95~2 068.00 μg/L。参考PICKERING等[18]的实验方法,规定评估员的答复呈现在备好的纸质表格上,在品评结束后收集。在每一组中,品评员被要求按照所给的顺序闻到每个样品,圈出与其他2个样品不同的代码。对于前鼻阈值评估,每组样品之间有3 min的休息时间。鼻后阈值评估中,品评员需要戴上鼻夹,将样品放入口中10 s后再吐出进行评估,每组之间需要饮水清洁口腔,同前鼻评估相同休息3 min,以减少携带效应[19]。
数据处理参照美国材料与试验协会标准[20],采用BETs。组检测阈值为各个评估员个人检测阈值的几何平均值,每个评估员的个人检测阈值与组检测阈值按公式(1)(2)计算[21]:
(1)
(2)
式中:OTi,每个评估员的个人检测阈值;Cx,评估员在一系列评估中正确选择的最低浓度;Cx+1,评估员在一系列评估中错误选择的最高浓度;OTp,组检测阈值;n,评估者数量;个人检测阈值的积。
除此之外,倍数变化值(fold change,FC值)则用于表征加入单宁前后的阈值变化倍数。
将15名品评员的记录结果进行了相关计算处理,前鼻阈值结果见表2。6种重要香气化合物未经单宁处理的前鼻阈值与已有的相关研究结果基本一致。其中β-大马酮在12%乙醇-水体系中得到的前鼻阈值为7.2 μg/L,与之前报道相似[22]。LORRAIN等[10]测定的12%乙醇-水体系中乙酸异戊酯前鼻阈值为35和46 μg/L (重复组),本研究得到的阈值结果(39.6 μg/L)也与之基本一致。而加入单宁后,6种香气化合物的前鼻阈值均有不同程度的增大,其中β-大马酮(从7.2 μg/L增加到25.4 μg/L)和香草醛(从35.5 μg/L增加到296.9 μg/L)变化最明显。先前研究发现,多酚主要通过疏水驱动力机制作用于香气化合物分子,从而导致香气释放减少[23],而香草醛和β-大马酮都具有环状结构,但其中香草醛含有苯环结构,多酚没食子酰基环与芳香环之间的π-π堆积作用可能导致香气释放减少[7],因此香草醛的前鼻阈值在添加单宁后明显增大。另外,可以看出,同有芳香环结构的香草醛和苯甲醛阈值变化程度具有较大差异,推测单宁与香气化合物相互作用取决于化合物本身的性质,除疏水性外,化合物的其他物理化学性质也会影响,例如极性[24]。
表2 香气化合物的前鼻阈值
Table 2 The odor thresholds for aroma compounds
化合物对照组实验组组阈值/(μg·L-1)标准偏差的lg95%置信区间/(μg·L-1)组阈值/(μg·L-1)标准偏差的lg95%置信区间/(μg·L-1)1-辛烯-3-醇510.93.0257.4~1 411.4560.43.0322.3~1 516.91-辛烯-3-酮6.40.45.4~8.08.90.96.7~15.1β-大马酮7.21.34.4~27.725.42.220.3~189.2苯甲醛419.92.3356.2~582.1666.63.0495.3~1 625.0乙酸异戊酯39.61.534.6~68.445.92.040.6~150.4香草醛35.51.725.3~75.0296.92.6205.3~661.5
注:实验组添加单宁(2 g/L),对照组不添加单宁(下同)
不同食品体系下香气化合物的鼻后阈值存在较大差异(表3),同时目前对不同体系下香气化合物鼻后阈值的相关研究也较少,尤其是葡萄酒体系,因此未找到直接相关文献报道进行比较。从本研究结果来看,在加入单宁后,乙酸异戊酯的鼻后组阈值基本不变;1-辛烯-3-醇、香草醛的鼻后组阈值均增大;而1-辛烯-3-酮、β-大马酮、苯甲醛的鼻后组阈值均减小。VENUGOPAL等[25]的研究证实不同植物来源的单宁可改变葡萄酒的风味,从本研究中单宁对香气化合物鼻后阈值的影响来看,可以一定程度上佐证上述研究结果。而除了单宁本身的作用外,单宁与唾液蛋白会形成复合物,将香气分子保留在疏水腔中,进而改变香气释放[26],这可能是造成1-辛烯-3-醇、香草醛鼻后阈值增大的原因。另外,在葡萄酒饮用过程中存在大量的感知相互作用现象,因此不能忽略单宁带来的苦涩感对鼻后香气感知的影响。特别是已经有报道表明挥发性化合物同样会改变酚类物质的涩感强度[27]。因此,不同香气化合物对单宁苦涩感的改变可能会造成评价员对差异性样品的选择,导致鼻后检测阈值的变化。
表3 香气化合物的鼻后阈值
Table 3 The retronasal thresholds for aroma compounds
化合物对照组实验组组阈值/(μg·L-1)标准偏差的lg95%置信区间/(μg·L-1)组阈值/(μg·L-1)标准偏差的lg95%置信区间/(μg·L-1)1-辛烯-3-醇319.72.9261.7~1 102.4461.02.9414.8~1 187.41-辛烯-3-酮217.32.5215.1~555.7113.82.5111.0~443.0β-大马酮204.12.7185.4~733.5158.82.6152.1~632.7苯甲醛460.63.0334.0~1 445.1213.52.1174.8~312.2乙酸异戊酯1.40.01.0~2.11.50.01.1~2.3香草醛92.02.174.3~226.4319.52.7273.6~817.3
进一步比较了前后鼻阈值的差异,并利用箱线图将这种差异呈现出来,结果如图1所示。其中,差异程度用“*”表示,符号的数量越多,差异性越强。可以看出,在模拟酒溶液中,化合物鼻后阈值通常大于前鼻阈值。单宁会改变苯甲醛与香草醛前后鼻阈值间的差异,而1-辛烯-3-酮、β-大马酮、乙酸异戊酯这3种化合物在加单宁前后的前后鼻阈值上均体现出了很强的差异性,口腔生理参数对这3种化合物的香气释放或感知过程有着较大影响。
ODT-未加单宁前鼻阈值;RDT-未加单宁鼻后阈值;ODT-T-加单宁前鼻阈值;RDT-T-加单宁鼻后阈值;NS-不显著
图1 香气化合物阈值箱线图
Fig.1 Threshold boxplot of aroma compounds
最后,将每种香气化合物加入单宁前后的阈值进行了比较,并将比较情况表现在了变化差异的FC值柱状图中,为了直观表示,对变化倍数的数据做了log2(FC)处理。结果如图2所示。
ODT-前鼻阈值;RDT-鼻后阈值
图2 FC值柱状图
Fig.2 Bar chart of FC values
在单宁影响下,β-大马酮、香草醛的前鼻阈值与1-辛烯-3-酮、苯甲醛、香草醛的鼻后组阈值变化更为显著。总而言之,单宁可以改变香气化合物的前后鼻阈值。但值得注意的是,单宁对相同化合物前后鼻阈值的影响具有明显差异,这是由体内外环境的巨大差别导致的,尤其是在体内环境中所涉及的大量生理因素的影响,以及感知相互作用的影响。这其中所涉及的多种分子作用机制,仍需要进一步的探索。
本研究由15名经过筛选与训练的品评员,采用国际标准3-AFC法,分别在有无单宁的情况下,对葡萄酒中6种重要香气化合物进行前后鼻阈值测定。结果显示:在单宁影响下, 1-辛烯-3-酮、β-大马酮、苯甲醛、香草醛这4种香气化合物的前鼻阈值均增大;1-辛烯-3-醇、乙酸异戊酯的前鼻阈值基本不变;1-辛烯-3-醇、香草醛的鼻后阈值增大;1-辛烯-3-酮、β-大马酮、苯甲醛的鼻后阈值降低;乙酸异戊酯的鼻后阈值基本不变。
单宁对本研究中的6种香气化合物的前鼻和鼻后阈值影响各有差异,这与单宁和香气化合物的复杂作用机制有关。单宁与香气化合物可以通过疏水作用机制和π-π堆积作用机制,显著影响了香气的释放。同时也有研究表明,虽然单宁可以减少葡萄酒饮用过程中的大部分香气释放,但对有些香气释放的影响并不显著[28],并且,香气释放的变化也不一定会引起感官上的变化[17]。除此之外,单宁对相同化合物的前后鼻阈值影响有明显差异,单宁和口腔生理因素之间的相互作用对香气释放的影响可能是葡萄酒消费过程中变化差异的关键[1]。有研究推测,单宁与唾液蛋白形成的聚合体的空腔结构可能封存香气化合物,从而导致香气释放减少[26]。本研究初步探索了单宁对葡萄酒重要香气化合物前鼻和鼻后阈值的影响,也为深入解析单宁对葡萄酒香气前后鼻感知的影响规律及机制提供了一定的数据支撑和理论依据。
[1] LYU J H, CHEN S, NIE Y, et al.Aroma release during wine consumption:Factors and analytical approaches[J].Food Chemistry, 2021, 346:128957.
[2] HOFMANN T, KRAUTWURST D, SCHIEBERLE P.Current status and future perspectives in flavor research:Highlights of the 11th wartburg symposium on flavor chemistry & biology[J].Journal of Agricultural and Food Chemistry, 2018, 66(10):2 197-2 203.
[3] BUETTNER A, BEAUCHAMP J.Chemical input-Sensory output:Diverse modes of physiology-flavour interaction[J].Food Quality and Preference, 2010, 21(8):915-924.
[4] ESPINOSA DIAZ M.Comparison between orthonasal and retronasal flavour perception at different concentrations[J].Flavour and Fragrance Journal, 2004, 19(6):499-504.
[5] ROBINSON A L, ADAMS D O, BOSS P K, et al.The relationship between sensory attributes and wine composition for Australian Cabernet Sauvignon wines[J].Australian Journal of Grape and Wine Research, 2011, 17(3):327-340.
[6] SENZ-NAVAJAS M P, CAMPO E, CULLERÉ L, et al.Effects of the nonvolatile matrix on the aroma perception of wine[J].Journal of Agricultural and Food Chemistry, 2010, 58(9):5 574-5 585.
[7] JUNG D M, DE ROPP J S, EBELER S E.Study of interactions between food phenolics and aromatic flavors using one- and two-dimensional 1H NMR spectroscopy[J].Journal of Agricultural and Food Chemistry, 2000, 48(2):407-412.
[8] JUNG D M, EBELER S E.Headspace solid-phase microextraction method for the study of the volatility of selected flavor compounds[J].Journal of Agricultural and Food Chemistry, 2003, 51(1):200-205.
[9] LUND C M, NICOLAU L, GARDNER R C, et al.Effect of polyphenols on the perception of key aroma compounds from Sauvignon Blanc wine[J].Australian Journal of Grape and Wine Research, 2009, 15(1):18-26.
[10] LORRAIN B, TEMPERE S, ITURMENDI N, et al.Influence of phenolic compounds on the sensorial perception and volatility of red wine esters in model solution:An insight at the molecular level[J].Food Chemistry, 2013, 140(1-2):76-82.
[11] PEREZ-JIMÉNEZ M, CHAYA C, POZO-BAYN M .Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting[J].Food Chemistry, 2019.285:147-155.
[12] LYU J H, CHEN S, XU Y, et al.Influence of tannins, human saliva, and the interaction between them on volatility of aroma compounds in a model wine[J].Journal of Food Science, 2021, 86(10):4 466-4 478.
[13] SENZ-NAVAJAS M P, CAMPO E, VALENTIN D, et al. Sensory interactions in wine: Effect of nonvolatile molecules on wine aroma and volatiles on taste/astringency perception[J]. The Sense of Taste, 2012: 97-113.
[14] 李元一, 邢可馨, 张葆春, 等.基于全二维气相色谱-飞行时间质谱及感官分析的中法白兰地香气特征研究[J].食品与发酵工业, 2020, 46(14):198-203.
LI Y Y, XING K X, ZHANG B C, et al.Aroma characterization of Chinese and French brandy based on comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and sensory analysis[J].Food and Fermentation Industries, 2020, 46(14):198-203.
[15] ISO 13301:2002.Sensory analysis-Methodology-General guidance for measuring odour, flavour and taste detection thresholds by a three-alternative forced-choice (3-AFC) procedure[S].Geneva:ISO Committee,2002.
[16] 唐柯, 马玥, 徐岩, 等.冰葡萄酒重要风味化合物嗅觉阈值的研究[J].食品与发酵工业, 2016, 42(1):148-151.
TANG K, MA Y, XU Y, et al.Study on olfactory thresholds for several flavor components in ice wine[J].Food and Fermentation Industries, 2016, 42(1):148-151.
[17] LYU J H, FU J H, CHEN S, et al.Impact of tannins on intraoral aroma release and retronasal perception, including detection thresholds and temporal perception by taste, in model wines[J].Food Chemistry, 2022, 375:131890.
[18] PICKERING G J, KARTHIK A, INGLIS D, et al.Determination of ortho- and retronasal detection thresholds for 2-isopropyl-3-methoxypyrazine in wine[J].Journal of Food Science, 2007, 72(7):S468-S472.
[19] COLONNA A E, ADAMS D O, NOBLE A C.Comparison of procedures for reducing astringency carry-over effects in evaluation of red wines[J].Australian Journal of Grape and Wine Research, 2004, 10(1):26-31.
[20] ASTM.Standard Pratice for Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series Method of Limits[S].West Conshohocken: ASTM International,2011.
[21] CZERNY M, CHRISTLBAUER M, CHRISTLBAUER M, et al.Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions[J].European Food Research and Technology, 2008, 228(2):265-273.
[22] GUTH H.Quantitation and sensory studies of character impact odorants of different white wine varieties[J].Journal of Agricultural and Food Chemistry, 1997, 45(8):3 027-3 032.
[23] DUFOUR C, BAYONOVE C L.Interactions between wine polyphenols and aroma substances.An insight at the molecular level[J].Journal of Agricultural and Food Chemistry, 1999, 47(2):678-684.
[24] PEREZ-JIMÉNEZ M, ESTEBAN-FERNNDEZ A, MUOZ-GONZLEZ C, et al.Interactions among odorants, phenolic compounds, and oral components and their effects on wine aroma volatility[J].Molecules (Basel, Switzerland), 2020, 25(7):1701.
[25] VENUGOPAL K S, ANU-APPAIAH K A.Seed incorporation during vinification and its impact on chemical and organoleptic properties in Syzygium cumini wine[J].Food Chemistry, 2017, 237:693-700.
[26] MUOZ-GONZLEZ C, FERON G, GUICHARD E, et al.Understanding the role of saliva in aroma release from wine by using static and dynamic headspace conditions[J].Journal of Agricultural and Food Chemistry, 2014, 62(33):8 274-8 288.
[27] FERRER-GALLEGO R, HERNNDEZ-HIERRO J M, RIVAS-GONZALO J C, et al.Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds:Synergistic effect and modulation by aromas[J].Food Research International, 2014, 62:1 100-1 107.
[28] NIIMI J, LIU M Y, BASTIAN S E P.Flavour-tactile cross-modal sensory interactions:The case for astringency[J].Food Quality and Preference, 2017, 62:106-110.