当归茎叶精油对四种果蔬采后腐败真菌的抑制活性

乔彩红,李斌山,张忠*,毕阳*,李子和,朱亚同,武淑娟

(甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070)

摘 要 为实现当归废弃物的资源化利用,探讨当归茎叶精油的化学组分及抑真菌活性,采用二倍稀释法确定了当归茎叶精油对4种常见采后病原真菌[互隔交链孢(Alternaria alternata)、硫色镰刀菌(Fusarium sulphureum)、粉红单端孢(Trichothecium roseum)和扩展青霉(Penicillium expansum)]最低抑菌浓度(minimum inhibitory concentration,MIC)和最低杀菌浓度(minimum fungicidal concentration,MFC),并用滤纸片熏蒸法和雾化熏蒸法分别研究了当归茎叶精油对4种真菌菌丝生长的体外抑制作用和体内条件下对T.roseum的抑制效果。结果表明,当归茎叶精油的提取得率为0.057%。在当归茎叶精油中共鉴定出了51种化合物,2, 4, 5-三甲基苯甲醛(22.7%)含量最高,其次是α-蒎烯(11.1%)、十氢-3-甲基-7-亚甲基-1-(1-甲基乙基)(6.69%)、α-法呢烯(6.44%)、反式-蛇床内酯(5.84%)和β-蒎烯(5.16%)。当归茎叶精油对F.sulphureumA.alternataP.expansum的MIC均为2.34 μL/mL,MFC均为9.37 μL/mL,对T.roseum的MIC、MFC分别是1.17、9.37 μL/mL。当归茎叶精油熏蒸处理对4种菌的菌丝生长抑制率从高到低依次为T.roseumF.sulphureumA.alternataP.expansum。体内试验发现当归茎叶精油处理能有效抑制T.roseum在樱桃番茄上的扩展,第7天时60、90 μL/mL当归茎叶精油处理组的病斑直径分别比对照组降低了51%、69%。

关键词 当归茎叶;精油;化学成分;抑菌活性;樱桃番茄

当归(Angelica sinensis(Oliv.)Diels.)为伞形科(Umbelliferae)当归属(Angelica)植物,作为甘肃的道地大宗药材,在甘肃种植面积为12 000 hm2左右,约占全国总产量的85%以上[1]。作为名贵的药食同源材料,当归具有镇痛、抗氧化、抗炎、抗肿瘤和治疗妇女原发性痛经等作用,还可用于药膳配制[2],素有“十方九归”之称[3]。当归是多年生草本植物,株高0.4~1 m,根长仅有0.15~0.25 m[4]。茎叶占全株的大部,但由于不能入药,采收后通常被遗弃或焚烧。当归茎叶富含多种活性成分,其总黄酮的含量远高于当归根[5],可制成绿原酸、金丝桃苷含量较高的当归茎叶茶[6]。充分发掘利用当归茎叶的生物活性物质,实现变废为宝,对提高当归的资源化利用程度和当归产业的经济效益具有重要的意义。

植物病原真菌侵染造成的损失占我国果蔬总产量的20%~25%[7],腐烂后的果蔬易积累真菌毒素[8],严重危害人体健康并造成巨大的经济损失。目前,化学合成杀菌剂是控制果蔬采后病害的主要方法,但其过度使用可导致有害菌耐药菌株的出现、污染环境以及危害人类健康等多种后果[9]。具有较高抑菌活性的天然植物代谢产物有望成为化学杀菌剂的替代品[10]。精油是一类具有多种生物活性的植物次级代谢产物,广泛存在于植物的根、茎、叶、花和果实中[11]。丁香精油和姜黄精油等多种精油有良好的抑菌活性,具有潜在食品抑菌防腐的应用价值[12-13]

本试验以当归茎叶为原料,通过水蒸馏法提取精油并计算其提取率,采用GC-MS分析其主要化学成分,探究其对造成果蔬腐败的4种采后病原真菌的抑制活性,旨在为当归的资源化利用及新型抑菌剂的研究开发提供新的科学基础和理论依据。

1 材料与方法

1.1 材料与仪器

1.1.1 材料与菌株

当归茎叶于2020年10月份采自甘肃省渭源县会川镇,干燥粉碎后过筛保存。

4种采后病原真菌[互隔交链孢(Alternaria alternata)、扩展青霉(Penicillium expansum)、粉红单端孢(Trichothecium roseum)和硫色镰刀菌(Fusarium sulphureum)]均分离自发病果实,保存于甘肃农业大学采后生物学与技术实验室。供试樱桃番茄购自兰州市安宁区桃海市场,选取大小均匀、颜色均一、成熟度一致、无机械损伤、无病虫害侵染的果实进行体内抑菌试验。试验所用试剂均为国产分析纯。

1.1.2 仪器与设备

CN69M/FW80高效植物样品粉碎机,北京中西远大科技有限公司;7890 B气相色谱质谱联用仪,美国安捷伦科技有限公司;LDZX-30KBS立式压力蒸汽灭菌锅,上海申安医疗器械厂;DHP-9272B恒温培养箱,上海一恒科技有限公司;D小D加湿器,深圳市维特世嘉科技有限公司。

1.2 实验方法

1.2.1 当归茎叶精油的提取

采用水蒸馏法提取精油。干燥当归茎叶粉碎后过筛,采用Clevenger装置进行提取,蒸馏结束后收集上层油状液体,加少量无水硫酸钠静置片刻后,离心分离除去水分,收集精油后避光保存于4 ℃冰箱中。提取率计算如公式(1)所示:

提取率

(1)

1.2.2 当归茎叶精油成分的测定

用气相色谱质谱联用仪进行成分分析,质谱分析仪为Agilent 7890 B系列(Agilent Technologies, Palo Alto, USA),配备HP-5 MS非极性柱(内径30 m×0.25 mm;薄膜厚度0.25 μm)。氦气作为载气以1 mL/min的速度进入,进样口的温度保持在220 ℃,进样量为1 μL,分流比为250∶1。升温程序:初始温度50 ℃,持续1 min,以4 ℃/min的速度升温并使最终温度达到220 ℃,持续8 min。质谱条件:EI离子源温度230 ℃;电子能量70 eV,四极杆温度保持在150 ℃,扫描速度为0.5 m/s,扫描范围为35~550 m/z。在相同的条件下,用各化合物的保留时间和正构烷烃(C7~C40)的保留时间计算挥发油成分的保留指数(retention index,RI),采用NIST02.1标准质谱库进行检索和分析。

1.2.3 体外抑真菌试验

1.2.3.1 当归茎叶精油对采后病原真菌的最小抑菌浓度(minimum inhibitory concentration, MIC)和最低杀菌浓度(minimum fungicidal concentration, MFC)

参考YANG等[14]的方法并略作修改,按照二倍稀释法测定,在96孔板中的第1个孔中加入用二甲基亚砜(dimethyl sulfoxide, DMSO)溶解的精油和马铃薯葡萄糖肉汤(potato dextrose broth, PDB)液体培养基,使精油体积分数为150 μL/mL,然后不断稀释使第10个孔的精油体积分数为0.15 μL/mL,在每个孔中分别加入20 μL浓度为1×106 CFU/mL的菌悬液,置于26 ℃培养箱中培养,以48 h后无肉眼可见的微生物生长的浓度为其MIC值。将不长菌的孔中的液体吸取30 μL至马铃薯葡萄糖琼脂培养基(potato dextrose agar, PDA)中,26 ℃培养48 h后仍不长菌的浓度为MFC值。

1.2.3.2 当归茎叶精油处理对采后病原真菌菌丝生长的影响

采用滤纸片熏蒸法进行测定[15]。在培养基中央接种3 μL浓度为1×106 CFU/mL的菌悬液,将直径为6 mm的无菌圆形滤纸片贴在培养皿的盖子上,分别在滤纸片上滴加3、6、9 μL精油,使精油在培养皿中的体积分数分别为0.05、0.10、0.15 μL/mL,无菌水为对照。26 ℃倒置培养,3、5、7 d时分别测量菌落直径。第7天时的生长抑制率按公式(2)计算:

生长抑制率

(2)

式中:d对照,对照组直径,mm;d处理,处理组直径,mm。

1.2.3.3 当归茎叶精油处理对采后病原真菌生物量的影响

在凝固后的PDA上铺无菌玻璃纸,精油处理方法及接菌方法同上述熏蒸法,培养5 d后从玻璃纸上刮下菌丝称重。

1.2.4 体内抑真菌试验

参考WANG等[16]的方法并略作修改。挑选大小适中且无病害的樱桃番茄,清洗后用质量分数为0.2%的NaClO溶液浸泡2 min,无菌水冲洗干净后室温下晾干,在每个番茄的赤道部位用10 mL无菌注射器针头打2个孔,每个孔接种5 μL浓度为1×104 CFU/mL的T.roseum孢子悬浮液,室温放置2 h后置于底部带孔的塑料密封盒(38 cm×25 cm×14 cm)中,用无水乙醇将精油稀释使其浓度分别为0、60、90 μL/mL,然后用雾化器通过塑料盒底部的孔分别熏蒸30 min,结束后用胶带将孔密封,室温(26±2)℃,相对湿度85%下储存。接种后的第3天开始测定其病斑直径,连续测定5 d。3次重复,每次试验16个番茄。通过十字测量法测定其病斑直径,病斑直径超过3 mm时即为发病,发病率按公式(3)计算:

发病率

(3)

1.2.5 数据分析

每个试验均重复3次,试验结果表示为平均值±标准差。采用Origin 8.5绘图,采用SPSS 24进行数据处理。应用单因素方差分析(one-way ANOVA)和邓肯氏(Duncan’s)法进行差异分析。

2 结果与分析

2.1 精油提取得率

采用水蒸馏法提取精油,所得精油呈浅黄色,经干燥称重后计算得当归茎叶精油的提取率为0.057%。

2.2 精油的化学成分分析

采用GC-MS分析其化学成分,发现当归茎叶精油中相对含量>0.01%的组分有51种,占总成分的89.88%。相对含量最多的组分是2, 4, 5-三甲基苯甲醛,占比22.7%,其次是α-蒎烯(11.1%)、十氢-3-甲基-7-亚甲基-1-(1-甲基乙基)(6.69%)、α-法呢烯(6.44%)、反式-蛇床内酯(5.84%)和β-蒎烯(5.16%),还含有少量D-柠檬烯、桧烯、蛇麻烯、D-吉玛烯和反式-α-香柑油烯(表1)。当归茎叶精油中含氧单萜类化合物的含量最高,占比24.51%,然后是单萜烯类(20.08%)、倍半萜烯类(16.31%)和含氧倍半萜类(2.72%),占总成分的63.22%,而其他类占比26.66%,主要是醛类、酯类和醇类等组分。

表1 当归茎叶精油化学成分分析
Table 1 Chemical composition of A.sinensis leaf essential oil

序号成分英文名称RI值CAS号相对含量/%单萜烯类monoterpene hydrocarbon20.081桧烯sabinene968.5843387-41-51.05±0.422β-蒎烯β-pinene1 002.511127-91-35.16±0.113α-蒎烯α-pinene1 015.7027785-70-811.1±0.9 4D-柠檬烯D-limonene1 019.4745989-27-51.35±0.195莰烯camphene1 020.94279-92-50.5±0.056反式-β-罗勒烯trans-β-ocimene1 036.4383779-61-10.37±0.087顺式-β-罗勒烯β-cis-ocimene1 070.3653338-55-40.34±0.018γ-松油烯γ-terpinene1 087.32899-85-40.13±0.039异松油烯terpinolene1 121.255586-62-90.08±0.05含氧单萜类oxygenated monoterpenes24.51101, 3-二氢-2, 2, 6-三甲基苯甲醛1, 3-cyclohexadiene-1-carboxaldehyde, 2, 6, 6-tri-methyl1 104.292116-26-70.64±0.04111, 7, 7-三甲基双环[2.2.1]庚-5-烯-2-酮1, 7, 7-trimethylbicyclo[2.2.1] hept-5-en-2-one1 138.21922516-10-50.4±0.03121-辛烯-3-基乙酸酯1-octen-3-yl-acetate1 189.1092442-10-60.04±0.1113α-水芹烯-8-醇α-phellandrene-8-ol1 240.0001686-20-00.28±0.02144-萜烯醇terpinen-4-ol1 256.964562-74-30.19±0.0715松油醇terpineol1 290.89110482-56-10.17±0.12164, 7, 7-三甲基双环[4.1.0]庚-3-烯-2-酮4, 7, 7-trimethylbicyclo[4.1.0] hept-3-en-2-one1 324.81881800-50-20.09±0.09172, 4, 5-三甲基苯甲醛benzaldehyde, 2, 4, 5-trimethyl-1 409.6355779-72-622.7±1.26倍半萜烯类sesquiterpene hydrocarbons16.3118α-咕巴烯α-copaene1 657.2863856-25-50.26±0.0419β-波旁烯β-bourbonene1 674.0375208-59-30.58±0.1620α-咕巴烯β-copaene1 690.78718252-44-30.38±0.0521石竹烯caryophyllene1 707.53887-44-52.08±0.0222异大香叶烯isogermacrene D1 741.039317819-80-00.05±0.01523蛇麻烯humulene1 757.7896753-98-61.46±0.2924反式-β-金合欢烯(E)-β-famesene1 774.53918794-84-80.7±0.1125γ-衣兰油烯γ-muurolene1 808.04030021-74-00.07±0.5 26D-吉玛烯D-germacrene1 824.79123986-74-51.53±0.0827反式-α-香柑油烯trans-α-bergamotene1 841.54113474-59-42.73±0.0428α-法呢烯α-farnesene1 858.29113 474-59-46.44±0.65291-异丙基-4, 7-二甲基-1,2,3,5,6,8a-六氢萘hexahydronaphthalene1 875.04216729-01-40.03±0.03含氧倍半萜类oxygenated sesquiterpenes2.3230吉玛烯D-4-醇germacrene D-4-ol1 891.792198991-79-60.17±0.0731桃金娘烯当归酸醇myrtenyl angelate1 908.543138530-45-70.86±0.08

续表1

序号成分英文名称RI值CAS号相对含量/%32顺式-α-檀香醇cis,α- santalol1 925.29319903-72-10.28±0.02334-异丙基-1, 6二甲基-1, 2, 3, 4, 4a, 7, 8, 8a八氢-1-萘酚4-isopropyl-1,6-dimethyl-1, 2, 3, 4, 4a, 7, 8, 8a-octahydro-1-naphthalenol1 958.79419912-62-00.61±0.2434(1R, 7S, E)-7-异丙基-4,10-二亚甲基-5-烯醇(1R,7S, E)-7-isopropyl-4,10-dimethylenecyclodec-5-enol2 009.04581968-62-90.4±0.19其他others35β-异佛尔酮β-isophorone1 010.679471-01-20.21±0.1636十一烷undecane1 148.7341120-21-40.05±0.0237壬醛nonanal1 166.407124-19-60.04±0.0138异佛尔酮isophorone1 210.90178-59-10.04±0.02392, 4-三甲基苯甲醛2, 4-dimethyl-benzaldehyde1 299.88915764-16-63.69±0.27406, 8-壬二烯2-酮基,6-甲基-5-(1-)异丙基6, 8-nonadien-2-one, 6-methyl-5-(1-methylethyli-dene)-1 353.62960714-16-10.78±0.2241双环[3.1.1]正庚烷-3-醇, 6, 6-二甲基-2-亚甲基-(1R, 3S, 5R)-醋酸bicyclo[3.1.1]heptan-3-ol, 6, 6-dimethyl-2-meth-ylene-, acetate, (1R, 3S, 5R)-1 413.6021686-15-30.85±0.1042乙酸桃金娘烯酯myrtenyl acetate1 458.4451079-01-20.19±0.03433-甲基-2-丁烯酸, 2, 6-二甲基非1-烯-3-辛-5-基酯3-methyl-2-butenoic acid, 2,6-dimethylnon-1-en-3-yn-5-yl ester1 704.4540.74±0.0244六氢化-3-丁基苯酞hexahydro-3-butylphthalide1 742.4513553-34-20.69±0.12453-丁基-1(3H)-苯酞1(3H)-isobenzofuranone, 3-butyl-1 772.3476066-49-51.74±0.0746Z-丁烯基酞内酯Z-butylidenephthalide1 787.29472917-31-80.69±0.1647反式-蛇床内酯trans-sedanolide1 847.0854567-33-35.84±0.66481, 2-丙二醇, 1-苯基1, 2-propanediol, 1-phenyl-2 011.7911855-09-02.92±0.0849十氢-3-甲基-7-亚甲基-1-(1-甲基乙基)mintsulfide2 076.04772445-42-26.69±1.1750植醇phytol2 111.829150-86-70.57±0.0251二十七烷heptacosane2 742.240593-49-70.93±0.45合计89.88

2.3 对4种真菌的体外抑制活性

2.3.1 对4种真菌的MIC和MFC

通过二倍稀释法测定当归茎叶精油对4种常见采后病原真菌的MIC和MFC,发现其对T.roseum的MIC为1.17 μL/mL,对A.alternataF.sulphureumP.expansum的MIC值均为2.34 μL/mL,对上述4种菌的MFC均为9.37 μL/mL。说明当归茎叶精油对4种采后病原真菌均有较强的抑制活性。

2.3.2 菌丝生长抑制率

当培养至第7天时,对照组中的4种真菌生长状况良好,而当归茎叶精油处理后的真菌生长速度较缓慢且孢子形态出现了不同程度的变化(图1-a)。测定菌落直径并计算精油对4种真菌的抑制率(图1-b),当归茎叶精油的体积分数为0.15 μL/mL时,对T.roseum的抑制活性最强,抑制率为95.73%,对F.sulphureumA.alternataP.expansum的抑制率分别为90.82%、85.54%和64.74%,综上表明,当归茎叶精油对不同菌种的抑制活性不同,4种菌对精油的敏感性由强到弱可排序为T.roseum>F.sulphureum>A.alternata>P.expansum

a-4种菌菌丝形态;b-4种菌的生长抑制率
图1 当归茎叶精油熏蒸处理对4种真菌菌丝生长的抑制活性
Fig.1 Effect of the A.sinensis leaf essential oil treatment on mycelial morphology and inhibition ratio of the four fungi 大小写字母分别代表组间和组内差异显著性(P<0.05)(下同)

2.3.3 对菌体生物量的影响

当归茎叶精油处理可使供试真菌的生物量积累显著降低。对照组中菌体的生物量最高,随着精油浓度逐渐升高,4种真菌的生物量均显著降低(图2)。说明当归茎叶精油对4种真菌的生物量积累均有较大影响。

图2 当归茎叶精油对4种采后病原真菌的 生物量积累的影响
Fig.2 Effect of the A.sinensis leaf essential oil treatment to the biomass of the four fungi

2.4 对T.roseum的体内抑制活性

当归茎叶精油处理对T.roseum在番茄上的扩展(樱桃番茄红粉病)有明显的抑制效果,病斑直径被显著抑制,这和在培养皿中对T.roseum菌丝生长和生物量的抑制作用一致。60 μL/mL的当归茎叶精油处理已能达到较佳抑制效果,当体积分数升高至90 μL/mL时,T.roseum在小番茄上几乎不生长,说明该浓度完全抑制了T.roseum的生长(图3-a)。随着当归茎叶精油浓度的增加,接种T.roseum的樱桃番茄的病斑直径明显降低,第5天时,对照组病斑直径为13.5 mm,但60、90 μL/mL当归茎叶精油处理组果实的病斑直径分别为6.4、5.3 mm,比对照组分别降低了53%、61%。第7天时,60、90 μL/mL当归茎叶精油处理组的病斑直径分别比对照组降低了51%、69%(图3-b)。随着精油浓度的增加,接种T.roseum的樱桃番茄的发病率明显降低(图3-c),第3天时,对照组已有50%的果实发病,但当归茎叶精油处理组无发病的果实,第5天时,对照组果实已全部发病,但60、90 μL/mL当归茎叶精油处理组果实的发病率分别为17.78%、8.89%。当归茎叶精油处理的果实发病率也随着储存时间逐渐增加,但远低于对照组,说明精油处理可以有效抑制樱桃番茄上红粉病的发病率。

a-当归茎叶精油对樱桃番茄红粉病扩展的影响; b-樱桃番茄红粉病病斑直径;c-樱桃番茄红粉病发病率
图3 不同浓度当归茎叶精油熏蒸处理对樱桃 番茄红粉病防治效果
Fig.3 Effects of A.sinensis leaf essential oil with different concentrations on controlling pink-mold rot on cherry tomatoes

3 讨论

本实验以渭源当归的茎叶为原料提取的精油得率为0.057%,共鉴定出51种化合物,其中主要成分为2, 4, 5-三甲基苯甲醛、α-蒎烯、β-蒎烯和α-法呢烯。前期研究表明当归茎叶精油的主要成分为三甲基苯甲酸、咖啡酸和植物甾醇[17],和本文的结果差异较大,可能是精油成分受到植株的生长环境、施肥情况和精油提取方式的影响[18]

体外试验表明0.05 μL/mL的当归茎叶精油熏蒸就可抑制采后病原真菌的生长,体积分数升高至0.15 μL/mL时对T.roseumF.sulphureum的抑制率高达90%以上,说明当归茎叶精油对采后病原真菌具有很强的抑菌活性。精油的主要功能包括抵御食草动物和病原菌的侵害,吸引有助于花粉或种子传播的有益动物或微生物,并在植物识别中发挥信号作用[19];而植物的叶片和茎暴露在空气中,需要抵御更多的外部胁迫,这可能是当归茎叶精油具有较好的抑菌活性的原因。体内实验表明当归茎叶精油对樱桃番茄上T.roseum的生长具有显著的抑制作用,60 μL/mL当归茎叶精油熏蒸30 min就可显著抑制樱桃番茄红粉病发病率及病斑的扩大。但体外与体内抑制病原菌所需精油的浓度差异较大,可能是体内环境复杂,相对于PDA,果蔬体内的碳源、温度、湿度、pH等更适合病原菌的生长[20],这与JIAO等[21]用ε-PL处理草莓、葡萄、辣椒上的灰霉病所得的结果类似。因此,当归茎叶精油在樱桃番茄采后贮藏期间能有效减少病原真菌的侵染和病害的发生,可以作为开发天然防腐保鲜剂的材料,具有较好的开发潜力和应用前景。

本研究表明当归茎叶精油中含氧单萜类化合物(24.51%)和单萜烯类(20.08%)的比重较大。植物精油作为一种混合物,其抑菌活性是各个成分共同作用的结果[22]。精油的基本特性是疏水性,单萜烯类物质如α-蒎烯、β-蒎烯等可优先从水相中分离并渗透到真菌的细胞膜内,从而破坏细胞膜的磷脂层,引起细胞内离子的泄漏[23-24],导致细胞活力下降。而含氧单萜类化合物如2, 4, 5-三甲基苯甲醛、α-水芹烯-8-醇和4-萜烯醇等则通过阻止细胞分裂,影响微生物的生长周期发挥其抑菌作用[25]。含氧单萜类化合物中萜烯骨架的亲脂性和其官能团的亲水性的结合对其抑菌活性至关重要,其发挥抑菌活性的顺序为醛类>酮类>醇类>酯类>烯烃类物质[26]。孜然精油中的枯茗醛[27]、肉桂精油中的肉桂醛[28]均具有很好的抑菌活性,而当归茎叶精油中2, 4, 5-三甲基苯甲醛的占比较大,可能是当归茎叶精油中起抑菌作用的主要化合物,目前尚未见到其他精油中存在该化合物的报道,因此下一步可对该化合物的生物活性做进一步研究。

4 结论

本研究所提取的当归茎叶精油得率为0.057%,经GC-MS分析测定的主要成分为2, 4, 5-三甲基苯甲醛、α-蒎烯、十氢-3-甲基-7-亚甲基-1-(1-甲基乙基)、α-法呢烯、反式-蛇床内酯和β-蒎烯,占总成分的57.93%。该精油能显著抑制4种常见采后病原真菌,且抑制活性存在显著浓度依赖性。在体内条件下对樱桃番茄红粉病病斑的扩展也具有显著的抑制作用。以上结果对当归茎叶的资源化利用提供了理论依据,为开发天然绿色抑菌剂提供新材料。

参考文献

[1] 张瑛, 王亚丽, 潘新波.当归历史资源分布本草考证[J].中药材, 2016, 39(8):1 908-1 910.

ZHANG Y, WANG Y L, PAN X B.Textual research on the historical resource distribution of Angelica sinensis[J].Journal of Chinese Medicinal Materials, 2016, 39(8):1 908-1 910.

[2] 宋玉红, 陈艳娥, 杜晓红, 等.当归气味的形成与除味方法[J].中国果菜, 2020, 40(9):61-64.

SONG Y H, CHEN Y E, DU X H, et al.Formation of odors and deodorization methods of Chinese Angelica[J].China Fruit & Vegetable, 2020, 40(9):61-64.

[3] 龚成文, 谢志军, 米永伟, 等.当归栽培研究进展[J].中国中医药科技, 2018, 25(5):772-775.

GONG C W, XIE Z J, MI Y W, et al.Advances in cultivation of Angelica sinensis[J].Chinese Journal of Traditional Medical Science and Technology, 2018, 25(5):772-775.

[4] 赵锐明, 陈垣, 郭凤霞, 等.甘肃岷县野生当归资源分布特点及其与栽培当归生长特性的比较研究[J].草业学报, 2014, 23(2):29-37.

ZHAO R M, CHEN Y, GUO F X, et al.Comparative study on distributed feature of wild Angelica sinensis resources and the difference in growth characteristics with its cultivars native to Min County of Gansu[J].Acta Prataculturae Sinica, 2014, 23(2):29-37.

[5] 罗旭东, 李成义, 李俊岳, 等.当归叶总黄酮提取工艺优化[J].辽宁中医杂志, 2018, 45(7):1 456-1 459.

LUO X D, LI C Y, LI J Y, et al.Optimization of reflux extraction of total flavonoids from leaves of Angelica sinensis(oliv.) Diels[J].Liaoning Journal of Traditional Chinese Medicine, 2018, 45(7):1 456-1 459.

[6] 罗旭东. 当归地上部分鉴定学研究及当归叶茶的研制[D].兰州:甘肃中医药大学, 2018.

LUO X D.Study on identification of the aerial parts of Angelica sinensis and preparation of Angelica leaf tea[D].Lanzhou:Gansu University of Chinese Medicine, 2018.

[7] ALI M, HAROON U, KHIZAR M, et al.Facile single step preparations of Phyto-nanoparticles of iron in Calotropis procera leaf extract to evaluate their antifungal potential against Alternaria alternata[J].Current Plant Biology, 2020, 23:100157.

[8] FARZANEH M, KIANI H, SHARIFI R, et al.Chemical composition and antifungal effects of three species of Satureja (S.hortensis, S.spicigera, and S.khuzistanica) essential oils on the main pathogens of strawberry fruit[J].Postharvest Biology and Technology, 2015, 109:145-151.

[9] WEI Y Z, WEI Y Y, XU F, et al.The combined effects of tea tree oil and hot air treatment on the quality and sensory characteristics and decay of strawberry[J].Postharvest Biology and Technology, 2018, 136:139-144.

[10] ZHU C Y, LEI M Y, ANDARGIE M, et al.Antifungal activity and mechanism of action of tannic acid against Penicillium digitatum[J].Physiological and Molecular Plant Pathology, 2019, 107:46-50.

[11] MAFFEI M E.Sites of synthesis, biochemistry and functional role of plant volatiles[J].South African Journal of Botany, 2010, 76(4):612-631.

[12] 王丹, 张静, 贾晓曼, 等.丁香精油对甜樱桃采后优势致腐真菌的控制及其抑菌机理[J].核农学报, 2020, 34(6):1 221-1 229.

WANG D, ZHANG J, JIA X M, et al.Antifungal activity and possible mechanism of clove essential oil on dominant pathogens of postharvest sweet cherries[J].Journal of Nuclear Agricultural Sciences, 2020, 34(6):1 221-1 229.

[13] JENA S, RAY A, SAHOO A, et al.Deeper insight into the volatile profile of essential oil of two Curcuma species and their antioxidant and antimicrobial activities[J].Industrial Crops and Products, 2020, 155:112830.

[14] YANG X P, JIANG X D.Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer[J].Biotechnology Letters, 2015, 37(7):1 463-1 472.

[15] VELZQUEZ-NUEZ M J, AVILA-SOSA R, PALOU E, et al.Antifungal activity of orange (Citrus sinensis var.Valencia) peel essential oil applied by direct addition or vapor contact[J].Food Control, 2013, 31(1):1-4.

[16] WANG Y, LIU X Y, CHEN T, et al.Antifungal effects of hinokitiol on development of Botrytis cinerea in vitro and in vivo[J].Postharvest Biology and Technology, 2020, 159:111038.

[17] 周桂生, 杨念云, 唐于平, 等.当归地上部分的化学成分及其生物活性研究[J].中国天然药物, 2012, 10(4):295-298.

ZHOU G S, YANG N Y, TANG Y P, et al.Chemical constituents from the aerial parts of Angelica sinensis and their bioactivities[J].Chinese Journal of Natural Medicines, 2012, 10(4):295-298.

[18] GHAVAM M, MANCONI M, MANCA M L, et al.Extraction of essential oil from Dracocephalum kotschyi Boiss.(Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties[J].Journal of Ethnopharmacology, 2021, 267:113513.

[19] MITHÖFER A, BOLAND W.Plant defense against herbivores:Chemical aspects[J].Annual Review of Plant Biology, 2012, 63:431-450.

[20] JI D C, CHEN T, MA D Y, et al.Inhibitory effects of methyl thujate on mycelial growth of Botrytis cinerea and possible mechanisms[J].Postharvest Biology and Technology, 2018, 142:46-54.

[21] JIAO W X, LIU X, CHEN Q M, et al.Epsilon-poly-L-lysine (ε-PL) exhibits antifungal activity in vivo and in vitro against Botrytis cinerea and mechanism involved[J].Postharvest Biology and Technology, 2020, 168(19):111270.

[22] WANG B, LIU F, LI Q, et al.Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane[J].Pesticide Biochemistry and Physiology, 2019, 159:59-67.

[23] DA ROCHA NETO A C, NAVARRO B B, CANTON L, et al.Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action[J].LWT, 2019, 105:385-392.

[24] TAO N G, OUYANG Q L, JIA L.Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism[J].Food Control, 2014, 41:116-121.

[25] TYAGI A K, MALIK A.Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms[J].Food Control, 2011, 22(11):1 707-1 714.

[26] KACEM N, ROUMY V, DUHAL N, et al.Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities[J].Industrial Crops and Products, 2016, 90:87-93.

[27] XU D, WEI M Q, PENG S R, et al.Cuminaldehyde in cumin essential oils prevents the growth and aflatoxin B1 biosynthesis of Aspergillus flavus in peanuts[J].Food Control, 2021, 125(6):107985.

[28] YANG R P, MIAO J Y, SHEN Y T, et al.Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of Citrus fruit[J].LWT, 2021, 141:110924.

Antifungal activities of essential oil from Angelica sinensis leaf against postharvest pathogenic fungi of fruit and vegetables

QIAO Caihong, LI Binshan, ZHANG Zhong*, BI Yang*, LI Zihe, ZHU Yatong, WU Shujuan

(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070,China)

ABSTRACT Angelica sinensis (Oliv.) Diels is authentic medicinal material of Gansu province. To provide theoretical basis for a comprehensive resource utilization of A. sinensis wastes, the extraction ratio, main chemical component and antifungal activity of the A. sinensis leaf essential oil were studied. Double broth dilution was used to determine the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of the essential oil against four postharvest pathogens (Penicillium expansum, Alternaria alternata, Fusarium sulphureum and Trichothecium roseum). Fumigation method was used to determine antifungal activity against the four fungi in vitro and against T. roseum on cherry tomatoes, in vivo. The results showed that the yield of A. sinensis leaf essential oil was 0.057%. Totally 51 components were identified in the essential oil, among them 2, 4, 5-trimethylbenzaldehyde (22.7%) and α-pinene (11.1%) were the most abundant compounds. The MIC and MFC of the essential oil on F. sulphureum, A. alternata and P. expansum was 2.34 μL/mL and 9.37 μL/mL, respectively. The MIC and MFC of T. roseum were 1.17 and 9.37 μL/mL, respectively. The inhibition order of the essential oil on the mycelial growth of the four fungi was T. roseum, F. sulphureum, A. alternata and P. expansum from the highest to the lowest. The essential oil could inhibit the expansion of the pink-mold rot on cherry tomatoes effectively. On the 7th day, the diameter of disease lesions of the 60 and 90 μL/mL groups decreased by 51% and 69% compared with that of control group, respectively.

Key words Angelica sinensis leaf; essential oil; chemical profile; antifungal activity; cherry tomatoes

DOI:10.13995/j.cnki.11-1802/ts.029680

引用格式:乔彩红,李斌山,张忠,等.当归茎叶精油对四种果蔬采后腐败真菌的抑制活性[J].食品与发酵工业,2022,48(11):206-212.QIAO Caihong, LI Binshan, ZHANG Zhong, et al.Antifungal activities of essential oil from Angelica sinensis leaf against postharvest pathogenic fungi of fruit and vegetables[J].Food and Fermentation Industries,2022,48(11):206-212.

第一作者:硕士研究生(张忠教授和毕阳教授为共同通信作者,E-mail:foodgau@126.com;beyang62@163.com)

基金项目:甘肃省自然科学基金项目(21JR7RA807)

收稿日期:2021-10-12,改回日期:2021-11-01