模拟移动床色谱在多组分糖液分离中的研究应用进展

李云飞1,2,3,栾庆民1,2,刘峰1,孙桂莲1,2,张莉1,李珍珍1,李克文1,2*

1(保龄宝生物股份有限公司,山东 禹城,251200)2(山东省功能糖提取与应用技术重点实验室,山东 禹城,251200) 3(上海交通大学 农业与生物学院,上海,200240)

摘 要 近些年,关于模拟移动床(simulated moving bed, SMB)色谱在多组分糖液分离方面的应用有大量的相关报道,但是在系统配置与运行模式方面却鲜有归纳总结。该文基于国内外期刊论文和专利文献,分析了SMB色谱的结构变化特点和运行策略。与常规SMB色谱比较,近几年SMB色谱柱配置数量趋于少量化、各区数量多样化。进出口切换时间和顺序逐步细化,通过模拟预测各组分的前锋位移信息,实现多组分的精准分离。发挥批处理色谱和SMB色谱各自优势,两种色谱结合运行模式越来越多。

关键词 模拟移动床;色谱;多组分;结构;运行模式

模拟移动床(simulated moving bed, SMB)色谱是20世纪60年代在石油工业内首先开发出来的新型分离技术,具有处理量大、产品纯度高、洗脱剂耗量低等诸多优点。在随后数十年中,先后在制糖业、食品、制药和精细化学工业等领域得到推广应用[1-3]。常规SMB色谱由若干个色谱柱、泵和进出口阀门等管件构成4个区,分别是吸附剂再生区(Ⅰ)、提纯区(Ⅱ)、吸附区(Ⅲ)和洗脱剂(往往同溶剂)再生区(Ⅳ),其中提纯区(Ⅱ)和吸附区(Ⅲ)是主工作区,Ⅰ、Ⅳ再生区是保障吸附剂和洗脱剂可再循环利用区。4个进出口按一定时间间隔沿流动相流动方向同步移动,从而形成固定相逆向移动的虚拟效果(图1)[4-5]

实线-快组分B;虚线-慢组分A;D-溶剂或洗脱剂
图1 常规模拟移动床(SMB)色谱结构与浓度分布曲线[4-5]
Fig.1 Configuration and concentration profile of classic SMB

对于含A、B两组分的混合液,本文设A为强吸附,B为弱吸附,在周期稳态条件下,弱吸附B(或称为快组分)随流动相从提余口R流出;而强吸附A(慢组分)随固定相逆向移动,从提取口E流出。

对于3组分及以上混合液分离问题,利用常规SMB尚不能很好地解决,这是常规SMB的一个短板[6]。设A为强吸附(慢组分),B为中等吸附(中间组分),C为弱吸附(快组分),色谱柱内可能出现A-B混合、B-C混合,甚至A-B-C交叉混合现象,混合程度取决于3组分的吸附系数KAKBKC,以及SMB系统运行参数(如流动相流速,固定相流速或者进出口切换时间、色谱柱高度或者数量、固定相表面性质等)。当KAKB比较接近,并明显大于KC时,仅有快组分C从提余口流出,而其他两组分在提取口流出(图2-a);当KBKC比较接近,B、C两组分从提余口流出,而A组分从提取口流出(图2-b),当KAKC比较接近,B组分可能与A、C两组分均有重叠(图2-c)[7]

目前,分离3组分混合液有多种方案,可归纳为两大类:即连续式和半连续式[9]。连续式是指连续进料和连续出料模式,主要形式有:两组SMB串联,8柱或9柱一体化SMB,5柱3组分SMB(3 fraction, 3F-SMB),5柱改进型SMB(modified SMB)。半连续是指间歇进料或者间歇出料模式(例如,批处理色谱或柱色谱),主要包括:2柱SMB/批处理色谱组合,准SMB,间歇SMB(intermittent SMB, ISMB),顺序SMB(sequential SMB,SSMB),梯度洗脱SMB(multicolumn countercurrent gradient solvent purification, MCGSP)。

a-KAKB远大于KC;b-KBKC大小相近; c-KAKC大小相近(KAKBKC分别为三组分吸附系数) 粗虚线为快组分C,实线为中间组分B,细虚线为慢组分A
图2 三组分分离状态[8]
Fig.2 Concentration profiles of three fractions

1 连续式SMB色谱

1.1 串联SMB色谱

图3-a是两组SMB色谱最简捷的串联方案,前后两组由一个缓冲容器(T)连接,后一组承接前一组提取口(或者提余口)流出的混合液,实现3组分分离。缓冲容器(T)除了起连接作用外,还使两组SMB色谱可以相对独立运行。例如,从乳糖、果糖等多组分混合液中分离乳糖酸和山梨醇,两组SMB色谱分别填充K+和Ca2+交换树脂获得较好的分离效果[10]。图3-b是两组SMB色谱更紧密的一种串联方式,形成一个贯通的流动回路,使各区的流动速度、进出口切换时间等运行参数形成关联体。

串联SMB方案较完整地保留了SMB的技术优点,但是设备投资大(至少8个色谱柱),运行与维修成本高[11],实际应用较少[12]。LEE[13]借鉴多组分塔板精馏结构和原理,设计了一种平行双层区SMB结构。与SMB色谱串联系统比较,在中间组分与其他两组分无明显偏离条件下,平行双层SMB色谱在生产率和洗脱剂消耗量方面均优于串联SMB色谱。由于平行双层比串联SMB色谱多4个区,因此,系统复杂性和设备成本方面仍然是制约其应用的因素。

a-串联模式1;b-串联模式2
图3 串联SMB系统[7,14-15]
Fig.3 System of SMB in cascade[7,14-15]

1.2 五区SMB色谱

图4为五区分离系统,也称为分流SMB[16-17],与常规SMB比较增加了1个区。增加的区可配置在提纯区,或者配置在吸附区。如果快组分吸附系数远小于慢组分和中间组分,则增加的区配置在提纯区,快组分将从提余口R流出,而慢组分和中间组分将在提取口E1和E2流出。如果慢组分吸附系数远大于另外两组分,则增加的区配置在吸附区,慢组分将从提取口流出,快组分和中间组分将从2个提余口流出。五区系统比SMB色谱系统仅增加一个区,却完成了两组SMB色谱的分离任务,设备投资和运行维修费用低,洗脱剂和吸附剂再生功能也齐全(图4 Ⅰ区和Ⅴ区)。但是其不足之处在于,强吸附组分往往会污染中间组分,使A、B两组分纯度下降[11]。通过降低流动相速度,可以改善A、B分离困难问题,但是也降低了生产能力。采用交替开启和关闭产品出口的方法,使重叠区(A-B)进一步调整,A-B分离效果得到改善[18]。HUR等[19]认为只有中间组分分离系数与强吸附组分分离系数差别足够大时,才能获得高纯度的中间组分。HE等[6]和KIM等[20]均认为强吸附组分含量很少或者目标组分含量远大于强吸附组分时,五区系统有较好的分离性能。

图4 五区SMB系统[16-17]
Fig.4 System of SMB in five zone[16-17]

2 半连续式SMB色谱

2.1 准SMB色谱

图5是日本Organo公司的专利技术,是一种准SMB色谱系统,用于分离甜菜糖浆(蔗糖、葡萄糖、棉籽糖、甜菜碱等)中的棉籽糖[15]。该系统运行一个周期分为两步,第一步类似于四柱串联的批处理色谱,进料口和洗脱剂口开启,中间组分流出,是一个开环结构(图5-a)。第二步类似于SMB系统,但是进料口关闭,洗脱剂口、提取口、提余口开启并按流动相方向依次切换(图5-b,仅示意第二步第一次切换位置)。在一个周期过程中,每一进出口切换次数是不等的,进料口每切换一次,循环回路中的提取口、提余口和洗脱剂口切换4次。

a-运行周期一;b-运行周期二
图5 准SMB系统[15]
Fig.5 System of pseudo SMB[15]

2.2 间歇式SMB色谱

间歇式SMB色谱是日本Nippon Rensui Corporation公司的专利技术,该技术是将进出口切换时间t*分为两段t1t2(0<t1<tp, tp<t2<t*),形成间歇式进料和间歇式出料的运行模式,因此,有学者认为用ISMB表示可能更契合该技术实际情况[21]。图6-a所示为第一段t1(0<t1<tp),2个进口和2个出口均开启,其运行模式与常规SMB相似。与常规SMB不同的是,第一段仅有3个区,而从III区流出的液体全部流入提余口,不再循环,因此,第一段是一个开环结构。由于减少了一个区(IV),降低了系统运行压力,或者同样压力下增大了流量(处理量)。第二段t2(tp<t2<t*),4个区串联,分离出强吸附组分A。由于各区流速相等,系统运行相对简捷(图6-b)。上述ISMB系统,第一段分离出中间组分B和弱吸附组分C,第二段分离出强吸附组分A,其运行模式也称为3S-ISMB(3 strong ISMB);如果第一段分离出强吸附组分A和中间组分B,第二段分离出弱吸附组分C,其运行模式称为3W-ISMB(3 weakest ISMB)[9]。比较2种模式,3S-ISMB要求强吸附组分与中间组分选择系数差别应足够大,否则分离性能很差。而3W-ISMB模式对各组分选择系数差异无明显要求,但是其进出口切换和运行参数更复杂。

a-第一段t1(0<t1<tp);b-第二段t2(tp<t2<t*)
图6 间歇式SMB系统[9]
Fig.6 System of ISMB[9]

图7是在五区(图4)基础上改进的SMB色谱[16],系统有2个洗脱剂进口,3个分离物出口,而且洗脱剂没有再循环利用,这些与常规SMB色谱不同,而与批处理色谱相似,但是在固定相逆向模拟流动方面与SMB色谱是相似的。2个提取口E1、E2分别出强吸附组分A和中间组分B,但是2个提取口错时开启,E2(B)(0<t<tp)先开启, E1(A)(tp<t<t*)后开启,呈间歇式出料。tp是2个提取口的切换时间,其设定依据是A组分开始解吸脱落时刻。理论与实验研究表明,该系统配置相对简单,但是洗脱剂耗量大,适合于易分离的混合液[16]

图7 改进的五区SMB[16]
Fig.7 Modified SMB in five zone16]

间歇式ISMB运行模式趋向于更多分步,增加系统运行的自由度,使系统运行更趋优化。色谱柱配置数量由多柱(8柱及以上)趋向于少柱(如2柱),在满足产品纯度前提下,减少色谱柱数量,不但可以降低设备投资和运行成本,也相对提高了系统生产能力。间歇式ISMB分离过程兼具SMB分离特点和批处理色谱特点,在洗脱剂消耗量不是关键约束条件下,ISMB更趋向于批处理色谱过程,在一定程度上可避免循环回路中组分交叉污染问题。

江南大学(专利技术)设计6柱串联模式(开环结构),利用木糖、阿拉伯糖和半乳糖与钙离子树脂吸附力差异,分两步将木糖发酵液中的木糖、阿拉伯糖和半乳糖分离出来[22]。两步过程中系统均呈开环串联模式,类似于批处理色谱,但每一循环固定相逆向模拟移动与SMB色谱相同,因此具有批处理色谱和SMB色谱的特点。HUR等[19]用4个色谱柱(组成2个区)分离3组分,B、C组分分离过程同SMB,而A、B组分分离过程同批处理色谱。实验结果表明在产品纯度和得率方面系统性能较好,但是洗脱剂耗量较大(D/F较高)。PARK等[23]从红藻水解液(新琼脂二糖、四糖、六糖、八糖及其他杂质等)中分离新琼脂六糖和新琼脂八糖,采用Na+交换树脂、配置三区(5柱)串联开环结构。系统运行分两步进行,第一步色谱柱配置为2-2-1(D-F-R-E);第二步色谱柱配置为1-2-2(D-E-F-R)。JO等[24]利用三区(5柱)SMB系统分两步从脱脂微藻生物质水解液中分离核糖。第一步色谱柱配置数量为(1-2-2),第二步色谱柱配置数量为(2-2-1)。很明显增加提纯区和吸附区的色谱柱数量,是为了提高产品分离纯度,但是也有学者认为I区或者IV区利用率偏低,更趋向于三区3柱配置,与图6运行模式相比,差异仅仅是减少一个色谱柱[25-27]

2.3 顺序式SMB色谱

顺序式SMB色谱是FAST(Finnsugar Applexion Separation Technology) 公司分离甜菜糖浆的专利技术[28],发展至今已有多种相关专利和不同方案,改进内容主要在色谱柱(2-8柱)数量配置、循环顺序设定、循环顺序时间分配等方面。SSMB与常规SMB有很大的区别,它更近似于批处理色谱,尤其是常规SMB的2个特征(流动相与固定相逆向流动、提取物和提余物部分收集部分继续循环)SSMB都不具备。因此,有学者认为SSMB称为多柱再循环色谱(multi-column recycling chromatography, MCRC)可能更贴切[29]。SSMB包含进料、洗脱、循环3个顺序环节(图8),进料后每个色谱柱至少经过一次洗脱(单1柱,或2个、3个、4个串联柱),洗脱产品(R1、R2、R3、R4、R5、R6)全部收集或全部进入下一色谱柱循环。SSMB系统产品出口较多(如图8 R1~R6),一个周期内分步也较多(图8-a~图8-d),这取决于分离组分性质和分离要求,分离组分越多,产品出口也越多,但是其中部分出口可能是同一产品,例如,HEINONEN等[29]分离木质素浓酸水解液中的硫酸、单糖和乙酸,其中R1、R2、R4、R5均为硫酸,R3为单糖,R6为乙酸。LI等[30]利用4柱SSMB系统分离木糖和低聚糖混合液,仅有3个产品出口,分3步完成一个周期。SSMB产品从进料柱直接分离出来有利于降低洗脱剂用量,内循环使各组分充分调整,有利于降低洗脱剂用量,提高分离纯度。

a-顺序1;b-顺序2;c-顺序3;d-顺序4
图8 四柱顺序式SMB结构图(F为进料,R1、R2、 R3、R4、R5、R6为产品,D为洗脱剂)[30]
Fig.8 Configuration of sequential SMB with four columns[30]

3 梯度洗脱SMB(solvent gradient SMB,SGSMB)

SMB色谱与不同洗脱剂或者不同浓度的洗脱剂相结合,构成SGSMB,对分离纯化多组分生物发酵液有较好的效果。图9是5区8柱结构[31]。其中6柱用D洗脱剂,并构成两进两出三区SMB。0区和r区各一个色谱柱,0区用D0洗脱剂,r区用D洗脱剂,2个区流动相独立运行,类似于2个独立的批处理色谱。0区是将强吸附组分A用特异的洗脱剂D0洗脱下来。r区是将上一循环中用D0洗脱剂平衡的吸附剂再调整为D,其流出液为废液(W)。r区称为再平衡区,以备成为下一循环SMB三区之一柱。以4种脱氧核糖核苷酸混合液(dA、dG、dT、dC)为原料,体积分数为12%乙醇为D0洗脱剂,体积分数为1.5%乙醇为D洗脱剂,经过理论模拟与实验研究,系统显示具有较好的3组分分离性能[32]

图9 两种洗脱剂SMB[31]
Fig.9 SMB using two kind of desorbent[31]

图10设置3个区,每个区有数量不等的色谱柱(图10配置为1-1-6)。

a-进料;b-提纯;c-回收 长箭头为弱吸附组分C,短箭头为强吸附组分A, 居中箭头为中间组分B
图10 梯度洗脱SMB[33]
Fig.10 SMB in solvent gradient[33]

系统运行分3步:第一步为进料(F),第二步为提纯(A/C),第三步为回收(B)。2种洗脱剂(D1、D2),当D1浓度大于D2时,B组分在Ⅱ区的流动速度大于在Ⅲ区的速度,结合固定相逆流效应,包括Ⅲ区的B组分将被“捕获”回Ⅱ区。Ⅲ区配置色谱柱数量明显多于Ⅰ区和Ⅱ区,有利于“捕获”更多的B组分。提纯区的作用是进一步分离出系统内残存的A组分和C组分,进一步浓缩B组分[33]。STEINEBACH等[34]利用2柱MCSGP和线性梯度洗脱剂洗脱,分4步过程(2柱交替断开与连接,形成柱色谱和逆向流动色谱效果)将A-B混合液、B-C混合液分离,获得A、B、C各组分。DE LUCA等[35]用此系统从工业合成混合液中分离胰高血糖素和药剂肽等组分,与单一柱色谱比较,MCSGP在纯度和回收率方面得到改善,但是生产率略有下降[36]

4 讨论与结论

自从SMB色谱分离技术发明以来,人们通过模型计算和实验研究[37-38],在色谱柱配置和管路系统运行方面成果显著,如前面所述的串联SMB结构、准SMB、ISMB、SSMB、SGSMB等。在料液(包括进料液、提取液和提余液)控制方面也有较多研究成果[39],例如,BP-SMB(Bypass-SMB)模式[40],在提取液中掺入部分进料液以获得低纯度的产品(如高果葡玉米糖浆);BF-SMB(Backfill-SMB)[41]模式和FeedCol-SMB(Feed Column SMB)模式等[42],回流部分产品或者前置专用进料色谱柱以调整进料组分和浓度;还有将部分产品(岩藻糖、2,3-丁二醇)收集、部分放弃、部分再循环等综合模式[43]。不可否认,上述这些结构或运行模式存在着相互包容或者相似的现象,例如,LI等[30]认为顺序式SSMB包括ISMB,或者说,ISMB是省略了洗脱环节的SSMB。AGRAWAL等[15]和LEE等[44]认为准SMB是通用全循环(generalized full cycle, GFC)模式的一个特例。但是,上述模式为具体应用提供了基本框架。

色谱柱数量直接影响着设备投资和分离质量。在满足产品分离和纯度要求前提下,尽量减少色谱柱的数量或者在不同区配置不同数量的色谱柱(例如,少则0个,多则2个甚至8个)[45]。有研究认为,吸附剂再生区的利用率非常低,省略该区或者减少该区色谱柱数量也能达到分离要求。例如,配置3个色谱柱的方案可能只有I、II、III区或者II、III、IV区。也有研究认为,当洗脱剂消耗量并非关键性约束指标时,减少洗脱剂再生区也是可行的[46]。批处理色谱是另一种无需洗脱剂再生的模式,洗脱剂不再循环利用,减少了色谱柱数量,也避免了循环交叉污染[47]

细分进出口切换时间是SMB改进的最大亮点[25]。常规SMB进出口切换时间间隔为t*,在0<t<t*时间段内,系统具有5个独立变量(即进出口切换时间,4个区的流动相速度)。如果在0<t<t*范围内不断增加细分时段,从细分2步增加到4步甚至更多步,系统独立变量从5个增加至24个[15,39,48]。细分进出口切换时间,使系统运行更趋完善,达到精准预测和控制各组分的前锋位置,降低组分间交叉污染程度[32]

综上所述,SMB多组分糖液分离系统在分离纯度、洗脱剂消耗量、回收率、生产率及设备投资与运行成本等方面仍有较大的提升空间。通过理论优化和实验验证,色谱柱配置数量更趋于少量化和各区数量灵便化。进出口切换时间和顺序更加细化,结合各组分前锋位移信息,获得更多组分的精准分离。发挥批处理色谱和SMB色谱各自优势,在改进方案中2种结合运行模式越来越多。

参考文献

[1] 王尉,乐胜锋,赵利新,等.模拟移动床技术在糖类分离制备中的应用[J].食品研究与开发,2017, 38(4):216-219.

WANG W, LE S F, ZHAO L X, et al.Application of simulate moving bed chromatography in separation and preparation of saccharides[J].Food Research and Development, 2017,38(4):216-219.

[2] KRUSCHITZ A, NIDETZKY B.Downstream processing technologies in the biocatalytic production of oligosaccharides[J].Biotechnology Advances, 2020, 43:107568.

[3] JANAKIEVSKI F, GLAGOVSKAIA O, DE SILVA K.Simulated Moving Bed Chromatography in Food Processing//Innovative Food Processing Technologies[M].Amsterdam:Elsevier, 2016:133-149.

[4] ABEL S, BBLER M U, ARPAGAUS C, et al.Two-fraction and three-fraction continuous simulated moving bed separation of nucleosides[J].Journal of Chromatography.A, 2004, 1 043(2):201-210.

[5] LEE J W, SEIDEL-MORGENSTERN A.Model predictive control of simulated moving bed chromatography for binary and pseudo-binary separations:Simulation study[J].IFAC-PapersOnLine, 2018, 51(18):530-535.

[6] HE Q L, VON LIERES E, SUN Z X, et al.Model-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography[J].Computers & Chemical Engineering, 2020, 138:106851.

[7] KIWALA D, MENDRELLA J, ANTOS D, et al.Center-cut separation of intermediately adsorbing target component by 8-zone simulated moving bed chromatography with internal recycle[J].Journal of Chromatography A, 2016, 1 453:19-33.

[8] HARVEY D, WEEDEN G, WANG N H L.Speedy standing wave design and simulated moving bed splitting strategies for the separation of ternary mixtures with linear isotherms[J].Journal of Chromatography A, 2017, 1 530:152-170.

[9] JERMANN S, KATSUO S, MAZZOTTI M.Intermittent simulated moving bed processes for chromatographic three-fraction separation[J].Organic Process Research & Development, 2012, 16(2):311-322.

[10] BORGES DA SILVA E A, PEDRUZZI I, RODRIGUES A E.Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol[J].Adsorption, 2011, 17(1):145-158.

[11] MUN S.Enhanced separation performance of a five-zone simulated moving bed process by using partial collection strategy based on alternate opening and closing of a product port[J].Industrial & Engineering Chemistry Research, 2010, 49(19):9 258-9 270.

[12] LEE J W, KIENLE A, SEIDEL-MORGENSTERN A.On-line optimization of four-zone simulated moving bed chromatography using an equilibrium-dispersion model:I.Simulation study[J].Chemical Engineering Science, 2020, 225:115810.

[13] LEE J W.Expanding simulated moving bed chromatography into ternary separations in analogy to dividing wall column distillation[J].Industrial & Engineering Chemistry Research, 2020, 59(20):9 619-9 628.

[14] SANTOS DA SILVA F V, SEIDEL-MORGENSTERN A.Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones[J].Journal of Chromatography A, 2016, 1 456:123-136.

[15] AGRAWAL G, KAWAJIRI Y.Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization[J].Journal of Chromatography A, 2012, 1 238:105-113.

[16] KURUP A S, HIDAJAT K, RAY A K.Comparative study of modified simulated moving bed systems at optimal conditions for the separation of ternary mixtures of xylene isomers[J].Industrial & Engineering Chemistry Research, 2006, 45(11):6 251-6 265.

[17] BESTE Y A, ARLT W.Side-stream simulated moving-bed chromatography for multicomponent separation[J].Chemical Engineering & Technology, 2002, 25(10):956-962.

[18] MUN S.Improving performance of a five-zone simulated moving bed chromatography for ternary separation by simultaneous use of partial-feeding and partial-closing of the product port in charge of collecting the intermediate-affinity solute molecules[J].Journal of Chromatography A, 2011, 1 218(44):8 060-8 074.

[19] HUR J S, WANKAT P C.Two-zone SMB/chromatography for center-cut separation from ternary mixtures: linear isotherm systems[J].Industrial & Engineering Chemistry Research, 2006, 45(4):1 426-1 433.

[20] KIM J K, ZANG Y F, WANKAT P C.Single-cascade simulated moving bed systems for the separation of ternary mixtures[J].Industrial & Engineering Chemistry Research, 2003, 42(20):4 849-4 860.

[21] KATSUO S, MAZZOTTI M.Intermittent simulated moving bed chromatography:1.Design criteria and cyclic steady-state[J].Journal of Chromatography A, 2010, 1 217(8):1 354-1 361.

[22] 张军伟, 贾彩敬, 袁苗新.一种利用间歇模拟移动床色谱同时制取木糖、阿拉伯糖和半乳糖的方法:CN111747997B[P].2022-02-01.

ZHANG J W, JIA C J,YUAN M X.A method of separating xylose, arabinose and galactose by using intermittent simulated moving bed chromatography:China, CN111747997 B[P].2020-10-09.

[23] PARK H, KIM J W, CHANG Y K, et al.The first attempt at simulated-moving-bed separation of medically utilizable ingredients from neoagarooligosaccharides generated through the β-agarase hydrolysis of agarose in red algae[J].Separation and Purification Technology, 2021, 269:118604.

[24] JO C Y, CHOI J H, KIM J W, et al.Development of a simulated moving bed process for ultra-high-purity separation of ribose from a low-selectivity sugar mixture in microalgal hydrolyzate[J].Separation and Purification Technology, 2021, 262:118298.

[25] JERMANN S, MEIJSSEN M, MAZZOTTI M.Three column intermittent simulated moving bed chromatography:3.Cascade operation for center-cut separations[J].Journal of Chromatography A, 2015, 1 378:37-49.

[26] JERMANN S, MAZZOTTI M.Three column intermittent simulated moving bed chromatography:1.Process description and comparative assessment[J].Journal of Chromatography A, 2014, 1 361:125-138.

[27] JERMANN S, ALBERTI A, MAZZOTTI M.Three-column intermittent simulated moving bed chromatography:2.Experimental implementation for the separation of Tröger’s Base[J].Journal of Chromatography A, 2014, 1 364:107-116.

[28] HEINONEN J, KUKKONEN S, SAINIO T.Evolutionary multi-objective optimization based comparison of multi-column chromatographic separation processes for a ternary separation[J].Journal of Chromatography A, 2014, 1 358:181-191.

[29] HEINONEN J, SAINIO T.Electrolyte exclusion chromatography using a multi-column recycling process:Fractionation of concentrated acid lignocellulosic hydrolysate[J].Separation and Purification Technology, 2014, 129:137-149.

[30] LI Y, XU J, YU W F, et al.Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J].Chemical Engineering Science, 2020, 211:115279.

[31] ABEL S, ERDEM G, MAZZOTTI M, et al.Optimizing control of simulated moving beds:Linear isotherm[J].Journal of Chromatography.A, 2004, 1 033(2):229-239.

[32] PAREDES G, ABEL S, MAZZOTTI M, et al.Analysis of a simulated moving bed operation for three-fraction separations (3F-SMB)[J].Industrial & Engineering Chemistry Research, 2004, 43(19):6 157-6 167.

[33] WEI F, SHEN B, CHEN M J, et al.Study on a pseudo-simulated moving bed with solvent gradient for ternary separations[J].Journal of Chromatography A, 2012, 1 225:99-106.

[34] STEINEBACH F, ULMER N, DECKER L, et al.Experimental design of a twin-column countercurrent gradient purification process[J].Journal of Chromatography A, 2017, 1 492:19-26.

[35] DE LUCA C, FELLETTI S, LIEVORE G, et al.From batch to continuous chromatographic purification of a therapeutic peptide through multicolumn countercurrent solvent gradient purification[J].Journal of Chromatography A, 2020, 1 625:461304.

[36] QAMAR S, REHMAN N, CARTA G, et al.Analysis of gradient elution chromatography using the transport model[J].Chemical Engineering Science, 2020, 225:115809.

[37] HE Q L, ZHAO L M.Bayesian inference based process design and uncertainty analysis of simulated moving bed chromatographic systems[J].Separation and Purification Technology, 2020, 246:116856.

[38] FECHTNER M, KIENLE A.Rational Design of Ion Exchange Simulated Moving Bed Processes//Computer Aided Chemical Engineering[M].Amsterdam:Elsevier, 2020:733-738.

[39] ZHANG Z Y, MAZZOTTI M, MORBIDELLI M.PowerFeed operation of simulated moving bed units:Changing flow-rates during the switching interval[J].Journal of Chromatography A, 2003, 1 006(1-2):87-99.

[40] MARUYAMA R T, KARNAL P, SAINIO T, et al.Design of bypass-simulated moving bed chromatography for reduced purity requirements[J].Chemical Engineering Science, 2019, 205:401-413.

[41] KIM K M, LEE C H.Backfill-simulated moving bed operation for improving the separation performance of simulated moving bed chromatography[J].Journal of Chromatography A, 2013, 1 311:79-89.

[42] SONG J Y, OH D, LEE C H.Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance[J].Journal of Chromatography A, 2015, 1 403:104-117.

[43] AGRAWAL G, SREEDHAR B, KAWAJIRI Y.Systematic optimization and experimental validation of ternary simulated moving bed chromatography systems[J].Journal of Chromatography A, 2014, 1 356:82-95.

[44] LEE C G, JO C Y, SONG Y J, et al.Continuous-mode separation of fucose and 2,3-butanediol using a three-zone simulated moving bed process and its performance improvement by using partial extract-collection, partial extract-recycle, and partial desorbent-port closing[J].Journal of Chromatography A, 2018, 1 579:49-59.

[45] KIM K M, LEE J W, KIM S, et al.Advanced operating strategies to extend the applications of simulated moving bed chromatography[J].Chemical Engineering & Technology, 2017, 40(12):2 163-2 178.

[46] GUEORGUIEVA L, PALANI S, RINAS U, et al.Recombinant protein purification using gradient assisted simulated moving bed hydrophobic interaction chromatography.Part II:Process design and experimental validation[J].Journal of Chromatography A, 2011, 1 218(37):6 402-6 411.

[47] SONG J Y, KIM K M, LEE C H.High-performance strategy of a simulated moving bed chromatography by simultaneous control of product and feed streams under maximum allowable pressure drop[J].Journal of Chromatography A, 2016, 1 471:102-117.

[48] MUTIKA S, BHARTIYA S.An optimal three fractions yielding simulated moving bed chromatographic separation:Triple switch SMBC[J].IFAC-PapersOnLine, 2020, 53(2):11 698-11 703.

Development and research of simulated moving bed chromatography in separation of multi-fraction saccharides

LI Yunfei1,2,3, LUAN Qingmin1,2, LIU Feng1, SUN Guilian1,2, ZHANG Li1, LI Zhenzhen1, LI Kewen1,2*

1(Baolingbao Biotechnology Co.Ltd., Yucheng 251200, China) 2(Shandong Provincial Key Laboratory of Extraction and Application Technology for Functional Glycomics, Yucheng 251200, China) 3(School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China)

ABSTRACT A large number of papers and patents on simulated moving bed (SMB) chromatography used in the separation of multi-fraction saccharides have been published recently. However, the comprehensive review on the column configuration and operation strategies of SMB was limited. Compared with classic SMB, the following characteristics and operating strategies were summarized: the number of columns tends to be fewer and variable; switch time of ports is divided more substeps; the profile front of concentration is predicted and separated more accurately; the combination of batchwise chromatography and SMB has been employed widely to make full use of each advantage.

Key words simulated moving bed; chromatography; multi-fraction; configuration; operating strategy

DOI:10.13995/j.cnki.11-1802/ts.028731

引用格式:李云飞,栾庆民,刘峰,等.模拟移动床色谱在多组分糖液分离中的研究应用进展[J].食品与发酵工业,2022,48(11):338-344.LI Yunfei, LUAN Qingmin, LIU Feng, et al.Development and research of simulated moving bed chromatography in separation of multi-fraction saccharides[J].Food and Fermentation Industries,2022,48(11):338-344.

第一作者:博士,教授(李克文教授级高级工程师为通信作者,E-mail:likwen@126.com)

基金项目:2019年泰山产业领军人才项目(传统产业创新类);2020年度山东省重点研发计划(2020CXGC010601)

收稿日期:2021-07-21,改回日期:2021-09-06