市售四川腊肉中微生物群落结构及生物胺的相关性研究

刘雨萱,任冠洁,鲁家璇,陈玙玲,臧名洋,汤小玲,杨柳青,李建龙,刘书亮,何利,陈淑娟,李琴,杨勇*

(四川农业大学 食品学院,四川 雅安,625014)

摘 要 为探明市售四川腊肉中微生物群落结构、生物胺含量及其相关性,采用传统培养法测定可培养微生物,高效液相色谱法测定生物胺含量。结果表明四川腊肉中最主要的微生物是霉菌、酵母及乳酸菌,川南地区腊肉中微生物数量最多,川东地区最低,与腊肉中总生物胺含量趋势一致。色胺和尸胺是四川腊肉中含量最多的生物胺,都主要存在于瘦肉中(P<0.05);组胺在肥、瘦肉中均有检出(P>0.05),其中川北地区腊肉肥肉中组胺含量高于瘦肉;酪胺主要存在于瘦肉中(P<0.05);腐胺在肥、瘦肉中含量较为接近(P>0.05)。在56个四川腊肉样品中,瘦肉部分组胺含量平均达到86.39 mg/kg,有27个样品瘦肉中组胺含量超过100 mg/kg;肥肉中组胺含量平均达到49.26 mg/kg,有13个样品肥肉中组胺含量超过100 mg/kg。通过Spearman分析得到,菌落总数与瘦肉总生物胺呈显著正相关(P<0.05),相关系数为0.28;霉菌和酵母数与瘦肉总胺呈极显著正相关(P<0.01),相关系数为0.36。

关键词 四川腊肉;微生物结构;生物胺;高效液相色谱;相关性

腌腊肉制品是指以鲜(冻)畜、禽肉或可食副产品为原料,添加或不添加辅料,经腌制、烘干(或晒干,风干)等工艺加工而成的非即食肉制品,包括腊肉、火腿、咸肉、香(腊)肠等,市场消费量大,特别是在川渝地区[1]。据不完全统计腌腊肉制品消费量约占四川肉制品消费总量的60%左右,四川腊肉是其中很重要的一个产品。传统四川腊肉属自然发酵肉制品,通常是以猪肉为原料,经过预处理、码味、腌制、烟熏、成熟等步骤制成,因其颜色鲜明、香味浓郁、腊味浓而无烟味等特点,深受消费者喜爱,驰名中外[2]。传统四川腊肉的发酵过程主要依赖原料肉及环境中的微生物作用,将原料肉中的蛋白质、脂质等氧化、分解,生成具有特殊风味的小分子化合物。但是,在这个过程中某些微生物会利用原辅料产生对人体健康有害的成分,如生物胺。

生物胺是一种小分子有机碱性物质,由醛、酮通过转氨基作用生成脂肪族的生物胺或是由氨基酸在微生物产生的氨基酸脱羧酶的作用下生成相应的生物胺。少量的生物胺是人体必需物质,它能参与脑活动、胃酸分泌、免疫反应等[3],但高浓度的生物胺则会引起恶心、头痛、血压变化等不良反应,严重中毒还会对心脏和中枢神经系统造成不可逆的损害[4]。部分生物胺还会与内源性、外源性的亚硝酸盐反应,生成强致癌物N-亚硝胺,故而发酵食品中的生物胺水平已被用作衡量食品安全的指标之一。LI等[5]、王新惠等[6]混合取样测定了市售中国传统香肠样品、腊肠等,发现部分样品中生物胺含量超过了美国食品药品监督管理局(Food and Drug Administration,FDA)规定标准。但是未见文献报道与香肠类似的市售四川腊肉中生物胺含量,且目前检测生物胺均为混合取样,对肥、瘦肉中生物胺含量分布并不清楚。

目前,有学者对四川腊肉中微生物多样性进行了研究。文开勇等[7]利用高通量测序技术发现四川腊肉中细菌多样性指数高于真菌,优势属为葡萄球菌属。赵睿等[8]通过比较得到川渝地区烟熏腊肉优势菌门为厚壁菌门、放线菌门、变形菌门等。全拓等[9]通过平板计数法得出四川腊肉货架期内优势菌群为葡萄球菌和微球菌,其次是乳酸菌。DABADÉ等[10]调查了比利时市售食品中生物胺与微生物之间的相关性发现:尸胺浓度与乳酸菌、腐胺浓度与总需氧菌计数、β-苯乙胺浓度与肠球菌呈显著正相关。但是关于微生物群落结构及四川腊肉中生物胺含量的相关性未见文献报道。

故而本研究将通过测定市售四川腊肉中微生物群落结构及肥、瘦肉的生物胺含量,分析四川腊肉中微生物与生物胺的相关性,为四川腊肉的质量及安全性提供理论参考。

1 材料与方法

1.1 材料与仪器

56种四川腊肉均购于各区域的农贸市场或超市,按照地理位置分别是川北(广元、绵阳、阿坝),川西(雅安、成都、甘孜、眉山),川南(宜宾、自贡、乐山),川东(南充、巴中、遂宁)。样品采样后立即置于无菌取样袋中封存,低温运回实验室,立即取样用于微生物分析。其余样品保存在-80 ℃,用于生物胺检测及备用。

组胺、酪胺、尸胺、腐胺、色胺、苯乙胺、亚精胺、丹磺酰氯等标准品,美国Sigma公司;乙腈、丙酮、甲醇均为色谱级,成都浩搏优科技有限公司;PCA培养基、MRS琼脂、MSA培养基、VRBA培养基,杭州微生物试剂公司;PDA培养基,北京奥博星生物技术有限责任公司;超纯水等为实验室自制。

ST16R高速冷冻离心机,美国Thermo Fisher Scientific公司;YQ-DSX-280B高压蒸汽灭菌锅,上海申安医疗器械厂;SW-CJ-1F超净工作台,苏州净化设备有限公司;BMS602均质机,德国BRT;DHP-9272B型电热恒温培养箱,上海一恒科学仪器有限公司;JA1203型电子天平,上海越平科学仪器有限公司;LC-2010CHT高效液相色谱仪,美国Thermo公司。

1.2 实验方法

1.2.1 微生物检测方法

取25 g样品,加入225 mL无菌生理盐水后,高速均质3 min,吸取1 mL上清液进行梯度稀释。参照GB 4789.2—2016《食品微生物学检验 菌落总数测定》的方法对样品中菌落总数进行测定。参照GB 4789.35—2016《食品微生物学检验 乳酸菌检验》方法对样品中乳杆菌进行测定。参照GB 4789.41—2016《食品微生物学检验 肠杆菌科检验》的方法对样品中肠杆菌科进行测定。参照GB 4789.15—2016《食品微生物学检验 霉菌和酵母计数》的方法对样品中霉菌和酵母进行测定。参照刘洋[11]的方法对样品中葡萄球菌和微球菌进行测定。

1.2.2 生物胺的检测

1.2.2.1 生物胺标准溶液的配制

参照LU等[12]的方法,准确称取10 mg组胺、酪胺、尸胺、腐胺、色胺、亚精胺、苯乙胺,用0.4 mol/L高氯酸定容至10 mL,为各单标标准储备液,贮存于4 ℃冰箱备用。分别吸取10、20、25、50、100、250、500、1 000 μL的各单标标准储备液定容至10 mL,为混合标准溶液,取1 mL混合标准溶液进行柱前衍生,其余于4 ℃冰箱备用。

1.2.2.2 样品处理

参照SUN等[13]的方法,略作修改。分别取5 g 瘦肉、5 g肥肉加入20 mL 0.4 mol/L高氯酸,高速匀浆3 min,过滤上清液,沉淀部分如上述步骤再提取1次。合并2次上清液定容至50 mL,取1 mL进行柱前衍生。

1.2.2.3 柱前衍生

参照LU等[12]的方法,依次加入200 μL 2 mol/L NaOH、300 μL饱和NaHCO3、2 mol/L丹磺酰氯丙酮溶液,最后用乙腈定容至5 mL,过0.22 μm滤膜,上机检测。

1.2.2.4 柱前衍生

参照孙霞[14]的方法,色谱柱为C18(4.6 mm×250 mm,5 μm),进样量为10 μL,柱温为30 ℃,流动相A为超纯水,流动相B为色谱级乙腈,采用梯度洗脱程序进行分离,如表1所示。

表1 梯度洗脱程序
Table 1 The gradient elution program

时间/min流动相A/%流动相B/%0356553070200100253565303565

1.3 数据处理

本研究所有数据均为3次重复下的平均值,所有生物胺含量数据均通过水分含量换算成干基物质含量。数据采用SPSS 23.0软件进行统计分析,计算各指标的平均值和标准差;采用R语言Corrplot包进行Spearman相关性分析,P>0.05表示差异不显著,P<0.05表示差异显著,P<0.01表示差异极显著;绘图使用R语言、Origin 2020、Microsoft office Excel 2007 软件。

2 结果与分析

2.1 四川腊肉中微生物群落结构

四川腊肉中群落结构如图1所示,可以看出川南地区腊肉中微生物数量最多,其次是川西地区,川北和川东地区差距不大,川东地区最低。张佳敏等[15]检测了四川传统腊肠中微生物含量,川南地区腊肠中微生物含量最高,川北地区、川西地区和川东地区呈现不显著差异,与本实验结果一致。可能是因为川南地区湿度较高、风速较低,川南地区腊肉中水分散失较慢,有利于微生物生长;而川东地区气候比较干燥,相对湿度较低,水分散失较快,限制了微生物的生长[16]

从图1可以看出,川北地区霉菌和酵母是腊肉货架期中主要的优势菌群,其次是乳杆菌及葡萄球菌和微球菌,川西地区优势菌群是霉菌和酵母以及乳杆菌,川南地区优势菌群为霉菌和酵母菌,乳杆菌、葡萄球菌和微球菌次之,川东地区优势菌群为乳杆菌,葡萄球菌和微球菌次之。总的来说,四地区含量最高的为霉菌、酵母菌或乳酸菌,葡萄球菌和微球菌次之,最低的是大肠杆菌。这与文开勇等[7]的研究不一致,文开勇等通过高通量测序技术获得四川腊肉中优势细菌门为厚壁菌门,优势细菌属为为葡萄菌属,赵睿等[8]利用高通量测序分析市售工业腊肉细菌多样性时也发现川渝地区厚壁菌门是绝对优势菌门,这可能一方面是因为文开勇等仅测了四川达州地区6份腊肉样品,赵睿等检测的是市售工业腊肉,不包括农家自制腊肉,与本实验所选样本不同;另一方面可能是因为本实验所采用的方法仅能检测可培养微生物,部分不可培养微生物无法检测。陈美春等[17]研究表明四川腊肉中优势菌为乳酸菌和葡萄球菌,贮藏后期霉菌大量增长,甚至超过乳酸菌,与本研究结果一致。

图1 四川各地区腊肉中群落结构
Fig.1 The structure of microbial community in Sichuan bacon from various regions

2.2 四川腊肉中生物胺含量

2.2.1 生物胺标品色谱图及标准曲线

生物胺混合标准品色谱图如图2所示,杂质峰及溶剂峰在6 min前全部洗脱,标准品峰能够较好分离。标准品标准曲线如表2所示,7种生物胺标准品线性关系良好,相关系数较高,说明该方法能较为准确的测出生物胺含量。

1-色胺;2-苯乙胺;3-腐胺;4-尸胺;5-组胺;6-酪胺;7-亚精胺
图2 生物胺标品色谱图
Fig.2 Chromatograms of biogenic amine standards

表2 生物胺回归方程及相关系数
Table 2 Biogenic amine regression equation and correlation coefficient

序号测试组分出峰时间/min回归方程相关系数(R2)1色胺 11.263y=0.2467x-0.14330.9972苯乙胺13.087y=0.2622x-0.30990.99323腐胺 13.673y=0.1136x+0.09740.99394尸胺 14.573y=0.1899x+0.21380.99035组胺 15.533y=0.5317x-2.7840.99256酪胺 18.990y=0.4629x-1.94990.99447亚精胺19.653y=0.5832x-1.85740.993

2.2.2 市售四川腊肉中生物胺含量

市售四川腊肉中生物胺含量相应结果见附表1(https://kns.cnki.net/kcms/detail/11.1802.ts.20220124.2034.010.html)。

组胺是毒性最强的生物胺,欧盟规定食品中组胺含量不得超过100 mg/kg。由图3可知组胺主要集中在瘦肉中,瘦肉中组胺含量超过100 mg/kg的样品有27个,肥肉中13个,说明四川腊肉中组胺含量偏高,需要进行控制。而川北地区肥肉中平均含量超过瘦肉,这可能是因为川北地区腊肉的脂质氧化产物更能促进组氨酸化学脱羧形成组胺[18]。从地区来看,川南地区腊肉中组胺含量最高,瘦肉中组胺平均值为144.59 mg/kg,肥肉中组胺平均值为65.17 mg/kg;川东地区腊肉组胺含量最低,瘦肉中组胺平均值为78.49 mg/kg,肥肉中组胺平均值为21.66 mg/kg,整体趋势与微生物结构类似。

酪胺的毒性仅次于组胺,但也有研究证明在作用于人肠上皮细胞的体外模型上时,酪胺比组胺的毒性更大[19]。LATORRE-MORATALLA等[20]报道酪胺是西班牙市售发酵干香肠中最常见、含量最丰富的生物胺。在四川腊肉中,酪胺并非含量最多的生物胺,在瘦肉中平均值为67.92 mg/kg,肥肉中平均值为0.66 mg/kg,这可能是因为酪氨酸主要集中在瘦肉中,并且脂质氧化产物等无法促进酪胺形成。从地区来看,川南地区腊肉中酪胺含量最高,川北地区、川西地区腊肉次之,川东地区腊肉中酪胺含量最低。

尸胺和腐胺本身毒性较小,但他们能够抑制单胺氧化酶和其他代谢组胺的酶,从而增强组胺毒性,同时在加热过程中,腐胺和酪胺还会与亚硝酸盐形成N-亚硝胺等致癌物,故而有必要对四川腊肉中尸胺和腐胺含量进行检测[21]。尸胺在肥、瘦肉中均有检出,瘦肉中平均值为128.23 mg/kg,肥肉中平均值为91.43 mg/kg,是四川腊肉中含量第二高的生物胺。WANG等[22]研究表明尸胺是干腌培根中主要的生物胺,这与本实验结果不一致,这可能是因为所检测样品种类及地区不一致。腐胺肥瘦肉中均有,且腐胺在肥肉中含量较高,这可能是因为腐胺的原料之一——谷氨酰胺可以存在于脂肪中[23]。从地区来看,尸胺在川南地区腊肉中含量最高,川东地区腊肉中含量最低;腐胺在四地区腊肉中含量都较高,川西地区腊肉中最高,川南地区最低。

摄入过量的苯乙胺、色胺会引发高血压、呕吐、出汗、头疼等反应,甚至还会引起肠细胞的坏死和凋亡[24]。欧洲食品安全局(European Food Safety Authority,EFSA)报道发酵肉制品中苯乙胺高达182 mg/kg,色胺达194 mg/kg[25]。四川腊肉瘦肉中苯乙胺平均值达68.95 mg/kg,色胺平均值达171.49 mg/kg;肥肉中苯乙胺含量达33.55 mg/kg,色胺为15.62 mg/kg,与EFSA报道结果接近。从地区来看,苯乙胺含量在四地区腊肉中相差不大;色胺在川南地区腊肉瘦肉中检出最高。

亚精胺会引起肠细胞坏死,但是通常情况下食品中亚精胺浓度不具有细胞毒性。四川腊肉中亚精胺主要来源于原料肉,其会根据原料肉来源及部位不同而有所区别,含量差异较大[24]。川西地区腊肉中亚精胺最高,瘦肉达161.61 mg/kg,肥肉达133.50 mg/kg;川东腊肉中亚精胺含量最低,瘦肉为62.35 mg/kg,肥肉为37.60 mg/kg。

从总生物胺含量来看,市售四川腊肉瘦肉中含量高于肥肉中,瘦肉中总生物胺含量在162.8~2 161.58 mg/kg,平均值为574.15 mg/kg;肥肉中总生物胺含量在NA(未检出)~1 158.52 mg/kg,平均值为338.44 mg/kg,与孙霞[14]检测结果接近。如图3所示,市售四川腊肉中,川南地区腊肉中生物胺总量最高,其次是川西地区和川北地区,川东地区腊肉最低,与微生物结果一致,这可能也与该地区温度、湿度等环境因素有关。与孙霞[14]结果不一致,这可能是样品种类不同所导致。

图3 市售四川腊肉肥肉及瘦肉中总生物胺的含量
Fig.3 The content of total biogenic amines in commercial Sichuan bacon

2.3 市售四川腊肉中微生物群落结构与生物胺的相关性分析

通过Spearman进行相关性分析,评估市售四川腊肉中群落结构与肥肉、瘦肉中生物胺含量之间的相关性,结果如图4所示。

SH-瘦肉组胺;SL-瘦肉酪胺;SS-瘦肉尸胺;SF-瘦肉腐胺;SSE-瘦肉色胺;SY-瘦肉亚精胺;SB-瘦肉苯乙胺;SZ-瘦肉总生物胺;FH-肥肉组胺;FL-肥肉酪胺;FS-肥肉尸胺;FF-肥肉腐胺;FSE-肥肉色胺;FY-肥肉亚精胺;FB-肥肉苯乙胺;FZ-肥肉总生物胺;VRBA-大肠杆菌;PCA-菌落总数;MSA-葡萄球菌和微球菌;MRS-乳杆菌数;PDA-霉菌和酵母;ZM-总微生物数
图4 四川腊肉微生物群落结构与肥肉、瘦肉中生物胺的相关性
Fig.4 Correlation between the microbial community structure and the biogenic amines in fatty and lean meat of Sichuan bacon
注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01),***表示极显著相关(P<0.001)

大肠杆菌与肥肉、瘦肉中各种生物胺均没有显著相关性。菌落总数与瘦肉中总生物胺含量呈显著正相关,相关系数为0.28,与肥肉中组胺、腐胺含量呈极显著负相关,相关系数-0.36、-0.52。葡萄球菌、微球菌数与肥肉中组胺、腐胺含量呈极显著负相关,相关系数为-0.35、-0.52。乳酸杆菌与肥肉中腐胺含量呈极显著负相关,相关系数为-0.38。霉菌、酵母与瘦肉中总生物胺含量呈极显著正相关,相关系数为0.36,与肥肉中组胺含量呈显著负相关,与肥肉中腐胺含量呈极显著负相关。GARDINI等[26]报道总生物胺与菌落总数呈显著正相关,肠杆菌与发酵香肠中生物胺呈正相关,乳酸菌与组胺、酪胺、尸胺、腐胺形成都有关。这可能一方面是因为样品的原料、加工方式、生产环境等不同,而这些因素都对生物胺的形成有影响;另一方面是因为本实验只检测了可培养微生物,而不可培养微生物可能很大程度影响了一些生物胺的形成,这需要进一步研究。

3 结论

本文通过传统培养法测定可培养微生物,高效液相色谱法测定生物胺含量,探明了四川区腊肉中微生物群落结构、生物胺含量及其相关性。结果表明,市售四川腊肉中最主要的微生物是霉菌、酵母及乳酸菌,川南地区腊肉中微生物数量最多,川东地区最低。四川腊肉中总生物胺含量与微生物趋势一致。色胺和尸胺是四川腊肉中含量最多的生物胺,都主要存在于瘦肉中(P<0.05);组胺在肥、瘦肉中均含有(P>0.05),川北地区腊肉肥肉中组胺含量高于瘦肉;酪胺主要存在于瘦肉中(P<0.05);腐胺在肥、瘦肉中分布较为均匀(P>0.05)。56种四川腊肉样品中有27个样品瘦肉中组胺含量超过100 mg/kg,肥肉中有14个样品,存在一定的安全隐患。通过Spearman分析得到,菌落总数与瘦肉总生物胺呈显著正相关(P<0.05),相关系数为0.28;霉菌和酵母数与瘦肉总胺呈极显著正相关(P<0.01),相关系数为0.36。综上,市售四川腊肉中微生物群落结构与生物胺含量存在一定的相关性,且市售四川腊肉中生物胺含量普遍较高,需要对其进行控制。

参考文献

[1] 郭柯宇,王松,唐林,等.腌腊肉制品中真菌毒素污染现状及防控研究进展[J].食品科学,2021,42(21):315-321.

GUO K Y,WANG S,TANG L,et al.Mycotoxin contamination and prevention measures in dry-cured meat products:A review[J].Food Science,2021,42(21):315-321.

[2] 陈美春.四川腊肉加工贮藏中理化、微生物特性及产香葡萄球菌筛选的研究[D].雅安:四川农业大学,2008.

CHEN M C.Physical,chemical and microbial property of Sichuan bacon during processing and selection of Staphylococcus[D].Ya′an:Sichuan Agricultural University,2008.

[3] LIN H Y,KUO H W,SONG Y L,et al.Cloning and characterization of DOPA decarboxylase in Litopenaeus vannamei and its roles in catecholamine biosynthesis,immunocompetence,and antibacterial defense by dsRNA-mediated gene silencing [J].Developmental &Comparative Immunology,2020,108:103668.

[4] SANG X,MA X X,HAO H S,et al.Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste[J].LWT,2020,134:109979.

[5] LI L,ZOU D,RUAN L Y,et al.Evaluation of the biogenic amines and microbial contribution in traditional Chinese sausages [J].Frontiers in Microbiology,2019,10:872.

[6] 王新惠,张崟,王卫,等.四川腌腊肉制品食用安全性分析[J].食品工业科技,2014,35(24):49-52;56.

WANG X H,ZHANG Y,WANG W,et al.Survey and analysis of food safety in Sichuan cured meat[J].Science and Technology of Food Industry,2014,35(24):49-52;56.

[7] 文开勇,汪月,文鹏程,等.四川传统腊肉中微生物群落结构研究[J].食品与发酵工业,2020,46(3):36-42.

WEN K Y,WANG Y,WEN P C,et al.Study on microbial community structure in Sichuan traditional bacon[J].Food and Fermentation Industries,2020,46(3):36-42.

[8] 赵睿,邵长春,高世功,等.高通量测序分析不同腌腊肉制品细菌多样性[J].食品科学,2020,41(20):90-96.

ZHAO R,SHAO C C,GAO S G,et al.High-throughput sequencing analysis of bacterial diversity of different types of traditional Chinese bacon[J].Food Science,2020,41(20):90-96.

[9] 全拓,邓大川,李洪军,等.川味腊肉货架期间主要微生物的研究[J].西南大学学报(自然科学版),2017,39(2):14-21.

QUAN T,DENG D C,LI H J,et al.Study on the main microorganisms of traditional Sichuan bacon during its shelf life[J].Journal of Southwest University (Natural Science Edition),2017,39(2):14-21.

[10] DABADÉ D S,JACXSENS L,MICLOTTE L,et al.Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods[J].Food Control,2021,120:107497.

[11] 刘洋.微生物发酵剂对四川腊肉特性影响研究[D].成都:西华大学,2014.

LIU Y.Study on the effect of microbial fermentation agents on the characteristics of Sichuan bacon[D].Chengdu:Xihua University,2014.

[12] LU S L,JI H,WANG Q L,et al.The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages [J].Food Control,2015,50:869-875.

[13] SUN X,ZHOU K,GONG Y,et al.Determination of biogenic amines in Sichuan-style spontaneously fermented sausages[J].Food Analytical Methods,2016,9(8):2 299-2 307.

[14] 孙霞.四川香肠中生物胺降解菌的筛选鉴定及其初步应用[D].雅安:四川农业大学,2016.

SUN X.Screening,identification and preliminary application of biogenic amines degrading bacterium in Sichuan-style sausage[D].Ya′an:Sichuan Agricultural University,2016.

[15] 张佳敏,王卫,白婷,等.四川传统腊肠区域特性比较及其“浅发酵”特征分析[J].食品工业科技,2021,42(3):43-47;52.

ZHANG J M,WANG W,BAI T,et al.Comparison of regional characteristics of Sichuan traditional sausage and the analysis of "Shallow Fermentation" conditions [J].Science and Technology of Food Industry,2021,42(3):43-47;52.

[16] 吉莉莉,王卫,陈林,等.成都地区传统酱风肉加工及其产品特性和浅发酵特征研究[J].食品科技,2020,45(5):106-112.

JI L L,WANG W,CHEN L,et al.Processing and product characteristics and shallow fermentation characteristics of sauce flavor preserved meat in Chengdu[J].Food Science and Technology,2020,45(5):106-112.

[17] 陈美春,杨勇,石磊.四川腊肉生产过程中理化及微生物特性的研究[J].食品科学,2008,29(5):149-152.

CHEN M C,YANG Y,SHI L.Physico-chemical and microbial property of Sichuan bacon during processing[J].Food Science,2008,29(5):149-152.

[18] HIDALGO F J,NAVARRO J L,DELGADO R M,et al.Histamine formation by lipid oxidation products[J].Food Research International,2013,52(1):206-213.

[19] LINARES D M,DEL RIO B,REDRUELLO B,et al.Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine [J].Food Chemistry,2016,197:658-663.

[20] LATORRE-MORATALLA M L,COMAS-BASTÉ O,BOVER-CID S,et al.Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the Spanish population [J].Food &Chemical Toxicology,2017,99:78-85.

[21] NAVARRO J,SANZ-VICENTE I,LOZANO R,et al.Analytical possibilities of Putrescine and Cadaverine enzymatic colorimetric determination in tuna based on diamine oxidase:A critical study of the use of ABTS[J].Talanta,2020,208:120392.

[22] WANG Y L,LI F,ZHUANG H,et al.Effects of plant polyphenols and α-tocopherol on lipid oxidation,microbiological characteristics,and biogenic amines formation in dry-cured bacons[J].Journal of Food Science,2015,80(3):C547-C555.

[23] YOO H,ANTONIEWICZ M R,STEPHANOPOULOS G,et al.Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line [J].The Journal of Biological Chemistry,2008,283(30):20 621-20 627.

[24] P.Health effects and occurrence of dietary polyamines:A review for the period 2005-mid 2013[J].Food Chemistry,2014,161:27-39.

[25] EFSA PANEL ON BIOLOGICAL HAZARDS (BIOHAZ).Scientific opinion on risk based control of biogenic amine formation in fermented foods[J].EFSA Journal,2011,9(10):2393.

[26] GARDINI F,ÖZOGUL Y,SUZZI G,et al.Technological factors affecting biogenic amine content in foods:A review [J].Frontiers in Microbiology,2016,7:1218.

附件:

附表1 川腊肉中生物胺含量 单位:mg/kg
Enclose Table 1 The content of biogenic amines in Sichuan bacon

编号瘦肉肥肉地区组胺酪胺尸胺腐胺色胺亚精胺苯乙胺总胺组胺酪胺尸胺腐胺色胺亚精胺苯乙胺总胺1114.37±7.74NA77.13±0.8054.41±1.87219.75±16.8086.96±0.1195.92±20.72648.54±14.44NANANA174.2±22.34NANANA174.2±22.34川北2NANANA159.8±1.23176.06±12.6960.64±1.88342.43±11.03738.93±26.83NANANA127.46±0.4181.25±0.0348.63±0.15NA257.34±0.59351.7±8.7482.36±13.7265.34±46.2560.77±4.28NA64.02±9.74NA524.19±82.71NANA171.85±1.3166.47±1.08NA41.98±10.32NA141.26±2.6647.25±0.57NA34.03±13.6323.7±10.24NA37.97±0.1259.85±1.53162.8±26.09NANANA25.32±2.98NA39.64±0.05NA64.96±3.03527.58±1.6139.56±0.3143.48±3.360.16±31.3962.85±0.3640.46±0.72NA374.09±37.68NANANA62.35±29.6NA47.46±13.37NA109.81±42.97685.45±1.27104.68±0.8058.93±1.3146.43±9.27231.28±8.9886.93±2.7447.03±24.41660.75±46.23122.99±7.91NANA185.08±79.16NA117.46±25.9NA425.53±112.97759.14±7.2581.47±19.07530.03±45.69104.94±43.08NA63.99±22.256.07±0.11895.64±137.4NANA232.27±17.330.28±2.09NA37.88±0.07NA300.43±19.46892.01±0.5873.44±1.0358.62±0.1285.61±0.16367.55±0.41102.76±1.9174.67±3.90854.66±1.99230.64±2.98NA476.76±0.62166.62±12.06NA100.6±0.75NA974.62±16.419108.45±3.4583.35±0.2174.75±0.5674.79±3.58521.64±116.95106.61±1.04116.12±4.261085.70±122.02228.03±5.9NANA124.53±057.17±0NANA409.73±5.91069.10±4.5558.17±3.2545.97±1.1339.68±3.72231.05±18.6168.10±4.6360.67±11.66572.74±47.54NANANANANANA272.03±0272.03±01176.53±0.9361.12±0.0657.97±0.3648.14±2.01400.41±6.7571.14±2.1571.01±11.82786.31±22.22NANANA214.77±22.3NA39.01±25.3NA253.78±47.61290.17±0.01320.72±0.6792.41±0.37140.96±0.75259.63±3.0893.27±0.8982.39±1.301079.55±1.19260.46±4.33NANA228.17±0.41NA112.75±0.4NA601.38±5.14平均值63.93±3.6103.93±12.99144.77±18.0175.94±9.46268.99±31.8669.31±4.61104.45±14.88652.52±45.2270.18±2.49NA73.41±2.27117.1±20.3211.54±048.78±8.9922.67±0332.09±32.8913NA81.31±31.6135.99±16.375.96±0.22NA149.48±21.63NA372.74±69.82NANANANANA106.66±42.21NA106.66±42.21川西14100.86±13.18236.58±0.01233.99±1.24343.18±8.23233.85±1.86115.61±0.01170.85±5.351434.92±29.88NANANANANA401.55±93.09NA401.55±93.0915115.23±0.15120.44±0.30107.76±0.5364.83±12.6537.97±0.4271.31±0.5860.16±6.00577.69±20.32138.74±24.62NA127.09±46.68233.43±1.53NA156.24±15.68NA755.5±88.5116NA75.30±1.5759.31±4.5435.68±0.19129.77±95.8960.06±0.1052.08±1.38455.66±161.80NANANA167.47±3.6584.07±0.04120.89±0.15173.73±0.21546.16±4.0517102.31±1.35176.79±14.2763.97±0.71100.78±21.7444.11±7.4295.43±11.2162.04±42.71645.43±98.0081.15±2.46NANANANANA237.61±0.41318.76±2.871870.72±1.0255.95±1.4547.47±3.5239.88±12.11313.86±41.6352.32±0.1482.72±28.27662.91±86.09126.87±4.82NANA239.97±8.19NA49.98±0210.07±4.58626.89±17.5919278.22±0.95112.81±2.46303.59±4.48138.21±2.2113.76±2.31689.69±156.89NA1636.28±169.29193.85±1NA204.03±14.8899.54±2.16NA454.58±315.31NA952±333.352089.29±84.2194.57±57.47201.99±205.47213.71±97.7889.92±24.64128.46±56.99117.7±17.37935.64±543.93NANANA94.51±100.09NA177.76±20.9889.71±55.37361.98±176.4421NA44.52±0.5527.76±32.55111.3±4.51NA70.7±0.5374.12±2.02328.4±40.1635.43±36.69NA135.94±15.0579.61±57.19NA103.04±26.971.84±25.97425.86±301.822118.86±108.14NA153.8±123.68100.34±92.57114±3.78248.15±74.2394.22±31.09829.37±433.49NANANA244.6±147.6NA554.6±87.81145.7±2.38944.9±237.792380.66±0.3193.05±0.0155.96±0.1259.04±1.17306.96±2.0474.34±0.0876.41±3.56746.42±7.29NANANA44.7±0.45NANANA44.7±0.4524140.26±19.04112.19±35.87206.90±2.4267.22±4.8445.53±9.6395.18±29.6772.50±7.39739.76±89.62NANANA56.04±0.07NA39.79±0.02NA95.83±0.092592.36±4.2967.90±0.9668.89±0.0862.71±7.96273.85±73.6058.25±1.5649.67±5.02673.63±72.50NANANA140.94±1.86NANANA140.94±1.8626134.84±0.72110.47±0.1480.03±0.8250.46±6.80325.55±24.00107.22±0.4563.42±7.35871.98±36.92NANANA256.83±7.0772.4±146±1.15219.72±32.23219.72±32.2327108.8±4.0169.47±25.98181.89±34.98193.26±55.3267.59±26.43142.5±44.5218.95±36.651182.46±227.85NANANANANANANANA28181.54±1.4NA332.74±1.99100.67±0.37NA306.58±1.24104.59±0.291026.12±5.2959.26±33.19NA75.48±0.75NANA58.39±30.78NA193.13±64.7229101.07±0.14NA76.27±0.2587.71±3.2841.87±6.35118.33±0.1832.01±4.67457.27±8.32NANANANANANANANA平均值125.16±24.1397.01±17.44151.29±44.7109.71±28.32175.19±26.41161.62±41.1397.83±17.72828.71±180.3837.37±8.45NA31.91±6.4497.51±26.989.2±0.09133.5±52.7567.55±10.08360.86±116.223090.80±0.60143.27±0.10134.83±0.4760.70±1.24149.04±5.0786.92±0.2485.03±3.58750.89±1.15200.35±13.7NANA110.72±5.7391.35±7.75113.07±31.3491.58±7.88607.07±66.4川南31124.86±3.42143.12±0.70108.97±0.7978.06±3.47353.70±47.63102.05±1.19113.31±21.061024.06±76.85NANANANA67.12±1.1854.04±0.060121.16±1.183276.19±0.0290.29±0.08107.63±1.7264.20±0.24325.71±3.5965.17±0.2045.89±0.18775.08±2.54NANANA46.24±0.85NA026.08±3.07454.54±21.7833139.90±0.26138.18±0.10134.38±0.0862.20±1.10743.59±6.27127.68±0.18105.25±1.891451.19±3.33NANANA53.83±23.83NA53.78±1.09NA507.61±24.9234312.72±7.34278.47±39.17877.98±185.18158.37±24.95322.12±42.01211.92±6.06NA2161.58±304.71274.85±21.84NA542.41±37.28223.82±91.9NA117.44±0.17NA1158.52±151.1935144.69±15.65120.81±6.95146.04±54.53NA190.64±55.26319.42±48.35102.56±0.151045.78±41.99158.38±0.77NA692.9±27.7101.57±12.03NA92.93±1.49NA924.16±180.8936148.29±13.7NA611.79±2.74108.85±2.98NANANA868.93±19.4217.22±0.49NANANA87.12±0.98173.69±0.4796.2±1.51374.23±3.4537119.38±4.45108.41±0.4090.82±3.7153.47±1.31463.13±7.9190.91±0.0799.02±4.311025.13±13.79186.88±2.87NANANANA73.73±39.54NA260.61±42.4138148.67±0.12188.29±0.31306.03±0.27152.76±0.25458.83±4.08111.98±0.5389.71±3.431456.28±0.84NANANANANANANANA3977.89±0.74NA49.60±0.2738.29±2.00399.63±9.6860.92±0.3636.64±17.91662.97±10.88NANANA322.33±33.51NA46.77±0.24NA369.1±33.754017.63±1.81NA15.85±5.5176.47±21.3529.75±14.5210.63±3.3152.62±16.561610.44±235.64NANANA45.99±0NA10.7±6.4628.68±14.04578.18±290.9341134.03±0.61168.91±85.24117.14±0.6293.82±0.94562.27±87.89135.44±0.81144.16±13.571355.77±10.78NANA135.05±7.34105.8±2.0590.16±2.17147.35±29NA478.36±40.5642157.41±7.31120.88±0.1376.06±1.0064.93±0.33455.52±56.8795.29±0.1883.05±2.281053.14±68.10NANANA90.38±3.05NA82.4±4.32NA172.78±7.374387.29±0.1974.53±0.0764.83±0.2933.97±0.13284.51±8.5871.26±0.1261.65±1.95678.04±6.07NANANANANA184.8±4.8NA184.8±4.844171.86±0.64112.38±2.5882.19±0.00122.61±0.51647.28±12.00117.95±0.4765.85±1.591320.13±12.63205.03±82.72NANA120.89±24.24NA71.47±27.07111.42±33.73508.81±167.7645169.21±0.83115.56±3.2499.21±1.2386.41±0.56643.98±41.74172.69±5.45119.91±16.451406.96±65.40NANANANA71.29±0.11NANA71.29±0.11平均值144.59±5.1139.18±15.13199.41±22.8481.84±5.79338.2±38116.09±6.3779.08±10.61251.23±77.2665.17±10.82NA85.65±21.1176.35±2425.44±1.4776.39±11.1922.12±1.48423.2±120.3446162.87±9.34129.78±0.61107.72±1.0275.64±2.24314.21±281.99118.34±0.2975.09±7.13983.64±261.95NANANA335.5±0.1577.56±7.7191.75±0.04NA504.81±7.9川东47125±12.0150.84±3.59239.79±2.55307.16±6.22112.14±10.9564.85±0.24314.92±37.291214.7±72.85NANANANA95.41±3.19NANA95.41±3.1948115.66±51.0267.56±6.4162.1±26.9593.58±29.45NA56.17±1.72NA495.07±115.54NANANANANA35.37±0.05NA35.37±0.054910.1±0.23NA28.34±3.822.51±1.38NA42.06±0.0264.95±2.43167.96±7.86NANANA48.81±34.37NA33.36±0.22NA82.17±34.595014.59±5.76NA73.01±13.7612.36±0.2222.19±0.6918.25±0.0428±0.24168.4±20.7135.32±39.47NA86.24±8.78NANA36.34±2.28NA157.9±140.535183.36±5.3063.58±0.7658.75±1.7133.93±1.90347.66±41.0858.65±0.2544.18±0.87690.11±48.12NANANANANA54.06±0.12NA54.06±0.1252174.99±83.784.82±0.24136.58±15.5689.34±1.38186.37±1.29135.35±1.27126.76±14.31934.21±117.75NA36.56±0.07NA13.24±1.79NA34.46±0.0257±0.78141.26±2.665375.03±1.0648.09±0.0165.51±4.4857.9±4.3277.5±0.3663.46±0.1387.62±3.53475.11±13.89NANANA30.26±0.74NA44.55±0.02NA74.81±0.765493.56±47.2661.02±1.18311.85±3.11139.76±57.1978.08±0.272.67±4.666.39±1.33823.33±114.8723.02±15.31NA71.45±21.2958.17±31.87NA37.64±0.147.67±0.06237.95±68.635514.09±0.03NA34.76±4.615.63±2.9890.26±0.1949.65±0.0871.39±2.18265.78±10.0770.94±36.46NANA53.71±20.85NA46.06±10.78NA170.71±68.095683.91±1.5864.01±0.0279.88±1.8565.39±1.42295.61±1.5865.53±0.2940.93±1.88695.25±8.60108.93±3.21NA102.72±34.23295.77±6.26NANANA507.42±43.7平均值78.49±27.9462.65±2.26123.41±10.2184.69±13.98130.6±53.1662.35±1.15100.53±10.07581.63±101.8521.66±11.613.32±0.0123.67±8.2775.95±12.3515.72±1.437.6±1.759.52±0.11187.44±47.6

Microbial community structure and biogenic amine content in commercial Sichuan bacon

LIU Yuxuan,REN Guanjie,LU Jiaxuan,CHEN Yuling,ZANG Mingyang,TANG Xiaoling,YANG Liuqing,LI Jianlong,LIU Shuliang,HE Li,CHEN Shujuan,LI Qin,YANG Yong*

(College of Food Science,Sichuan Agricultural University,Ya′an 625014,China)

ABSTRACT In order to explore the microbial community structure,biogenic amine content and their correlation in commercial Sichuan bacon,the culturable microorganisms were determined by traditional culture method,and the biogenic amine content was determined by HPLC.The results showed that the main microorganisms in Sichuan bacon were mold,yeast and lactic acid bacteria.The number of microorganisms in bacon from southern Sichuan was the largest,and that in eastern Sichuan was the lowest,which was consistent with the trend of total biogenic amine content in bacon.Tryptamine and cadaverine were the most abundant biogenic amines in Sichuan bacon,which mainly existed in lean meat (P<0.05).Histamine was detected in both fat and lean meat (P>0.05),among which the content of histamine in fat bacon in northern Sichuan was higher than that in lean meat.Tyramine mainly existed in lean meat (P>0.05) and the content of putrescine in fat and lean meat was similar (P>0.05).Among the 56 Sichuan bacon samples,the histamine content in lean meat of 27 samples exceeded 100 mg/kg with an average of 86.39 mg/kg.And that in fat meat of 13 samples exceeded 100 mg/kg with an average of 49.26 mg/kg.By Spearman analysis,there was a significantly positive correlation between the total viable counts and lean meat biogenic amines,where the correlation coefficient was 0.28;the number of molds and yeasts was extremely significantly positively correlated with total amines in lean meat (P<0.01),and the correlation coefficient was 0.36.

Key words Sichuan bacon;microbial community,biogenic amine;HPLC;correlation

DOI:10.13995/j.cnki.11-1802/ts.029856

引用格式:刘雨萱,任冠洁,鲁家璇,等.市售四川腊肉中微生物群落结构及生物胺的相关性研究[J].食品与发酵工业,2022,48(16):163-168.LIU Yuxuan,REN Guanjie,LU Jiaxuan,et al.Microbial community structure and biogenic amine content in commercial Sichuan bacon[J].Food and Fermentation Industries,2022,48(16):163-168.

第一作者:硕士研究生(杨勇教授为通信作者,E-mail:yangyong676@163.com)

基金项目:四川省科技厅项目(2020YJ0347);成都市重大科技应用示范(2019YF0900050SN)

收稿日期:2021-11-02,改回日期:2021-11-21