昆虫是地球上种类十分丰富的一类生物,在中国乃至全世界有着悠久的食用昆虫的历史[1]。但是受制于习俗文化和安全性等因素,昆虫作为食品原料的进程发展较为缓慢。随着全球人口增长,食品行业在通过各种途径寻找动物蛋白的替代形式。昆虫是营养丰富,美味且可行的动物替代食物选择。由于当前人们对文化多样性的高度重视趋势以及全球对解决当代农业系统环境影响的迫切需要的认识,其潜力正在增长。2021年欧盟委员会发布法规(EU)2021/8820号条例,批准干黄粉虫幼虫作为新资源食品投放市场,这是欧盟首个批准的昆虫类食物新资源食品[2]。黄粉虫营养丰富,饲养成本低,蛋白质含量在49%~55%,氨基酸种类与比例与WHO推荐的标准接近,并且不饱和脂肪酸含量较高,富含壳聚糖,是一种极具发展潜力的昆虫资源[3-4]。相比于其他常见食用昆虫(如蟋蟀)的营养成分,黄粉虫不仅含有高蛋白,也含有较高含量的脂肪(~30%),能够提供人体所需的必需脂肪酸。并且不同虫态阶段其蛋白质和脂肪含量有所差异,可根据深加工需求选择不同虫态的黄粉虫。黄粉虫的饲养难度低,繁殖快,养殖成本低,国内进行黄粉虫大规模现代化养殖的企业也逐渐兴起。相比于国外对于昆虫食品的研究开发,受制于法规我国对于昆虫食品的开发还相对滞后。但是随着动物蛋白替代品的兴起,黄粉虫作为一种高蛋白的替代选择必定会在食品行业获得更多的关注。本文将综合阐述黄粉虫的加工方式及其对营养价值的影响,总结黄粉虫在烘焙制品、模拟肉制品的应用场景,以及黄粉虫油脂和蛋白的相关应用和研究。最后从安全性、消费者接受度方面分析黄粉虫在食品领域应用的挑战。
黄粉虫加工过程中经过除杂后通过冷冻、热烫等方式将其处死,通常需进一步烘干后进行保存(图1)。黄粉虫体营养价值较高,如果不进行烘干处理容易导致微生物生长。烘干的方法有热风烘干、冷冻干燥、微波干燥和真空干燥[5-6]。研究表明烘干的方式对黄粉虫的颜色和营养价值会产生影响。SELALEDI等[7]将黄粉虫于-20 ℃处死后热烫,然后进行日晒干燥、热风烘干和冷冻干燥。热风烘干和冷冻干燥的黄粉虫蛋白含量接近,但高于日晒干燥。然而日晒干燥的黄粉虫氨基酸含量更高。烘干后的黄粉虫粉富含蛋白质(>40%)和脂肪(>20%),能够作为良好的油脂提取原料和蛋白质供体。表1为近年研究中黄粉虫粉主成分测定结果。黄粉虫除了能够提供较高的蛋白质补充外,还能够提供较为丰富的必需氨基酸。表2为近年黄粉虫粉中氨基酸的测定结果。黄粉虫全粉经过脱脂后得到黄粉虫油和脱脂的蛋白粉,黄粉虫油必需脂肪酸含量较高,其脂肪酸含量最丰富的是油酸、亚油酸和棕榈酸(表3),脱脂后的蛋白粉经过进一步提纯得到纯度较高的黄粉虫蛋白,进一步水解研究其功能特性[16]或者用于设计功能性载运体系[17]。黄粉虫粉中碳水化合物含量较低(~10%),其中只有一部分是可溶性碳水化合物。SON等[4]测得的黄粉虫干总碳水化合物为11.45%,可溶性碳水化合物仅3.22%,不可溶性碳水化合物中富含壳聚糖及其衍生物(4.84%)。
图1 黄粉虫粉加工示意图
Fig.1 Schematic illustration of mealworm processing
表1 近年研究中黄粉虫粉宏量营养素测定结果
Table 1 The proximate composition of the mealworm powder in recent literatures
注:-表示文献中未测定该指标(下同)
指标参考文献[8][9][10][11][7][3][12]水分/%1.726.12-6.393.370.87-蛋白质/%51.1151.7148.8249.8950.9656.3052.33脂肪/%32.8927.6930.6929.6427.2627.2729.42碳水化合物/%10.08-16.248.546.27.1011.22灰分/%3.483.654.253.654.153.434.30
表2 近年研究中黄粉虫粉氨基酸含量 单位:g/100g黄粉虫粉
Table 2 The amino acids of the mealworm powder in recent literatures
注:*原文数值为g/100g蛋白,本文根据原文数据进行了换算
氨基酸参考文献[7][13]*[9][14]His1.601.6 1.233.87Lys4.402.7 2.213.42Met+Cys0.760.3 3.201.04Phe3.462.0 1.433.25 (Phe+Tyr)Thr 2.772.5 3.812.94Ile 2.512.3 1.732.47Leu 3.843.9 2.994.14Val3.653.3 0.432.99Ala4.234.2 3.091.33Asp+Asn5.724.4 3.124.66Arg3.173.0 2.228.00Glu+Gln8.566.8 4.227.85Gly2.912.8 1.281.56Pro5.202.7 3.500.26Ser2.802.5 1.792.20Tyr4.333.8 2.58-
表3 近年研究中黄粉虫脂肪酸含量百分比 单位:%
Table 3 The fatty acids composition of mealworm oil in recent literatures
脂肪酸参考文献[7][11][15][13][9]C12∶00.140.340.740.30.34C13∶00.010.07-0.1-C14∶02.212.894.944.03.10C14∶1-----C15∶00.130.290.58-0.17C16∶017.624.9319.5415.821.55C16∶11.232.314.731.81.68C16∶2--0.83--C17∶00.160.320.640.10.17C17∶1-0.220.59--C18∶02.944.868.412.33.72C18∶136.144.9530.3744.536.79C18∶237.2118.1925.0719.529.65C18∶31.541.132.800.41.85C20∶00.060.090.330.1-C20∶1--0.440.10.10C20∶20.02-0.10.09
黄粉虫粉作为一种高蛋白的食品原料被应用于新型烘焙食品的开发,例如饼干、薯片、面包、小蛋糕[12,18-19]。黄粉虫的加入可以提升烘焙制品的蛋白质含量,膳食纤维含量以及必需氨基酸和必需脂肪酸的含量。低浓度的黄粉虫粉添加对于面粉的加工性能和烘焙制品的感官和质构性质影响不大。SRIPRABLOM等[8]将黄粉虫粉(0,10%,20%,30%面粉替代量)用于饼干制作(图2-A),研究发现随着黄粉虫粉替代量的增加,面团的硬度和黏着性降低,感官评分也有所降低,替代量超过20%后感官评分显著降低不可接受。SEVERINI等[14]将黄粉虫粉添加到面团中进行3D打印(图2-B),黄粉虫粉添加量为20 g/100g时面团的柔软度增加,使得打印模型的直径、高度和重量有所增加。RONCOLINI等[11]将黄粉虫粉(0,5%,10%替代量)用于制作普通面包和酸面团面包(图2-C),发现黄粉虫粉对于面团的发酵比没有影响,5%黄粉虫替代的面包的比容显著增加,面包硬度显著下降,而10%替代的面包与空白没有显著差异。KOWALSKI等[11]发现10%和20%黄粉虫粉替代后面包的比容显著增加,分别为3.21 mL/g和3.17 mL/g,而30%黄粉虫替代的面包与空白没有显著差异。GONZLEZ等[10]对比了添加4种不同种类昆虫粉(5%替代量)对面包品质的影响,发现5%黄粉虫替代的面包比容为3.07 mL/g,显著低于对照组(3.54 mL/g),二者面包的硬度没有显著差异。KHUENPET等[20]也发现类似的比容降低趋势,5%黄粉虫替代的面包比容为3.38 mL/g,显著低于空白的4.13 mL/g。并且黄粉虫替代浓度增加到15%后,面包的比容降低至2.03 mL/g,添加黄粉虫的面包的硬度显著增加。不同的研究者报道的趋势有较大差异甚至相反,可能是由于制作面包的配方和方法不同。例如KOWALSKI等[11]的结果与其他人的相差较大,可能是由于制作过程中的加水量是根据混合粉粉质仪测定的吸水量进行调整的,而RONCOLINI等[9]制作的面包经过黄粉虫替代后的加水量是保持一致的。图2-D为ÇABUK[21]将黄粉虫粉添加到小蛋糕前(左)后(右)的照片,添加黄粉虫粉后小蛋糕的烘焙产率增加,比容有所降低。
A-添加不同含量黄粉虫粉的面团和饼干照片;B-添加不同含量黄粉虫粉的3D打印零食;C-添加不同含量黄粉虫粉的普通面包和酸面团面包;D-添加不同含量黄粉虫粉的小蛋糕
图2 添加黄粉虫粉的烘焙制品
Fig.2 The bakery products supplemented with bakery products
低浓度的黄粉虫粉或者脱脂黄粉虫蛋白粉添加到烘焙制品中能够有效提升其营养品质,同时对其感官评分和产品的质构影响不大,但是高浓度的添加会导致产品颜色加深以及黄粉虫的风味会使消费者产生较差的印象。同时较高的浓度添加时,黄粉虫对面团中的面筋网络起到了稀释作用,会影响面筋网络的强度从而影响烘焙制品的比容、质构等。
相比于动物蛋白,生产昆虫蛋白所产生的环境负担、饲料成本和温室气体生成更少,因此开发昆虫蛋白作为未来的肉品替代是应对未来人口增长和环境恶化的解决方案之一。将黄粉虫粉、脱脂黄粉虫粉或者黄粉虫蛋白用于替代肉制品中的部分动物肉能够避免消费者对于昆虫形态厌恶引起的消费决策[22-23]。ORKUSZ[24]综述对比了多种肉制品和昆虫的营养价值发现,昆虫和肉制品在蛋白含量、必需氨基酸含量和必需脂肪酸含量上相当,都能够提供人体所需营养,除此之外昆虫还能够提供维生素C和膳食纤维。CHO等[25]将黄粉虫粉添加到植物蛋白模拟肉制品中,其基础配料含有65%脱脂大豆粉、25%大豆分离蛋白和10%玉米淀粉,黄粉虫以相比于基础配料的15%和30%添加,经过双螺杆挤出后得到模拟肉。黄粉虫粉增加了蛋白溶解度和消化率以及抗氧化活性,但是降低了模拟肉的质构特性,这可能是由于黄粉虫粉削弱了大豆蛋白网络内的分子相互作用,这与黄粉虫粉添加到面筋网络中的作用相似。ZHANG等[26]研究了用冻干黄粉虫粉(freeze drying yellow mealworm larvae flour, FD-YMLF)和微波干燥黄粉虫粉(microwave drying yellow mealworm larvae flour, MD-YMLF)不同比例替代法兰克福香肠中瘦肉后肉品品质的差异(图3)。研究发现,随着冻干黄粉虫粉比例的提高,香肠的烹饪损失增加,而微波干燥黄粉虫粉替代后的香肠烹饪损失低于空白组,并且同等替代浓度下添加微波干燥黄粉虫的香肠质构特性和感官特性优于冻干黄粉虫替代,说明微波干燥的黄粉虫粉更适合作为肉品替代原料。相比于冻干的黄粉虫原料,烘干和微波干燥的黄粉虫原料具有更好的香气,这可能是由于干燥过程中由于温度升高发生了美拉德反应所导致[27]。
图3 冻干黄粉虫粉和微波干燥黄粉虫粉不同比例替代瘦肉后的香肠截面
Fig.3 The cross-section of the frankfurters supplemented with various content of freeze-drying mealworm powder and microwave-drying mealworm powder
黄粉虫作为一种油脂含量丰富的昆虫,其不仅可以提供丰富的蛋白质还能够用于提取黄粉虫油,通常采用有机溶剂浸提法。其油脂的脂肪酸组成如表3所示,含有较高含量的不饱和脂肪酸,其中以油酸和亚油酸最为丰富[15]。SON等[13]测得的黄粉虫油中的维生素E含量为14.43 mg/100g油,高于大部分动物来源油脂,略低于植物油脂维生素E含量。JEON等[28]研究了200 ℃煎炸5~15 min对黄粉虫油的影响,发现煎炸会加深油脂的颜色和增加油酸和δ-生育酚的含量,并且煎炸后的黄粉虫油表现出更好的油脂氧化稳定性,这可能是由于煎炸的过程中产生的美拉德反应产物具有一定抗氧化性。TZOMPA-SOSA等[29]采用黄粉虫油替代植物油用于炸薯片并研究消费者的喜爱程度,发现黄粉虫油50%替代后炸的薯片最受消费者青睐,说明黄粉虫油可作为食品行业的煎炸用油。
脱脂黄粉虫粉经过进一步提纯得到纯度较高的黄粉虫蛋白,已有研究对黄粉虫蛋白的溶解度、乳化性、起泡性及其水解产物的功能特性进行了测定。YOON等[30]用风味酶、碱性蛋白酶或者二者混合水解制备了黄粉虫蛋白等昆虫蛋白的水解物,发现几种酶解方式水解后溶解度显著提高,而起泡性降低。风味酶处理对黄粉虫蛋白的乳化活性和稳定性均有显著提升。碱性蛋白酶水解后使得血管紧张素转化酶受到显著抑制,用酶混合物处理后显示出对α-葡萄糖苷酶活性的有效抑制。YU等[16]对比了黄粉虫分离蛋白(mealworm protein isolate, MPI)和大豆分离蛋白(soy protein isolate, SPI)水解(碱性蛋白酶,pH 8.0,60 ℃,3 h)前后的功能特性。黄粉虫分离蛋白具有更高的乳化活性、乳化稳定性,但是其在pH 3~9溶液中的溶解度低于大豆分离蛋白。碱性蛋白酶水解提升了黄粉虫分离蛋白的溶解性,并且其溶解度高于大豆分离蛋白水解产物。MPI的起泡性和起泡稳定性低于SPI,水解增加了MPI的起泡特性。15%的MPI在pH 5、pH 7、pH 9条件下可形成凝胶,而水解MPI不可形成凝胶。MPI具有更高的总酚含量以及更优的DPPH自由基清除能力。黄粉虫分离蛋白的功能特性与现有商用的植物蛋白具有可比性,具有应用到食品体系的前景。已有研究利用黄粉虫蛋白制备乳液[31]以及如姜黄素等的生物活性物质载运体系设计[17]。GROSSMANN等[32]将黄粉虫蛋白水解后与木糖在98 ℃下美拉德反应30 min,美拉德反应后增强了其苦味和鲜味强度,说明黄粉虫蛋白水解产物可作为新型风味物质开发的原料。
虽然黄粉虫粉已经是欧盟认证通过的新型食品原料,但是在应用到食品中的时候其安全性还需要注意[33]。随着添加了黄粉虫粉的食品上市,黄粉虫粉引起的过敏现象也受到了关注[34]。在本课题组的实验过程中发现一例学生食用了添加黄粉虫粉的饼干后引起了皮肤过敏现象。可食用昆虫的过敏原通常由普遍存在的蛋白质组成,在加工过程中可以通过适当的热处理和酶水解来降低其致敏性,对其过敏原的鉴定还需要未来进行深入研究。针对昆虫食品的过敏性的研究有待完善以及相关食品的标签也应当进行显著的标注和提醒,一些具有过敏史的消费者应该尤其注意。除了可能的致敏性外,黄粉虫养殖和加工过程中微生物污染的控制对于食品安全也尤为重要。黄粉虫加工过程中其携带的微生物种类的数量会发生动态变化,干燥和贮藏的条件会影响微生物的活性[6]。BELLEGGIA等[35]将李斯特菌接种于黄粉虫上研究不同加工方式对黄粉虫上李斯特菌数量的影响,发现煮沸、烘箱烘干和油炸均能够有效杀菌,但是冷冻干燥的方式杀菌效果不明显。等[36]研究了不同贮藏条件下黄粉虫粉的菌落总数、耐高温好氧微生物、大肠杆菌、肠球菌属、酵母和霉菌的变化,发现微生物增长最多的是纸袋包装贮藏于4 ℃环境5个月。黄粉虫粉贮藏的8个月内微生物变化较小,说明将黄粉虫粉原料的微生物数量控制在合理范围内后期贮藏稳定性较好。KOOH等[37]基于风险的方法为食品黄粉虫粉末制定危害分析关键控制计划 ,以降低消费者健康的风险和支持其在工业中的实施。
昆虫食品开发和推广的另一挑战是消费者的接受度,由于文化背景、成长环境和心理因素的差异,消费者对于昆虫食品的普遍接受还需要一个漫长的过程[38]。在针对烘焙脆片的制备和消费者评价中,环保和感官品质是影响消费者购买昆虫食品的主要原因[39]。个人的食品喜好是从小开始建立,因此昆虫食品的普及在保证安全合规的前提下可以从儿童零食等方向出发,提高消费者的接受度和喜爱度。
已有大量研究证实黄粉虫添加能够增加各类食品的蛋白质、必需氨基酸和必需脂肪酸含量。但是提升营养的同时黄粉虫原料对食品的加工性能可能会产生不良影响,例如破坏面筋和模拟肉的网络结构。黄粉虫应用到未来食品的开发需要关注以下几方面:(1)安全性的评估;(2)致敏机理的研究及降低致敏性;(3)降低微生物污染;(4)探究黄粉虫原料和食品其他组分之间的相互作用,从而为昆虫食品的开发提供理论基础。
[1] CHEN X M, CHEN H, ZHAO M, et al.Insect industrialization and prospect in commerce:A case of China [J].Entomological Research, 2022, 52(4):178-194.
[2] EFSA PANEL ON NUTRITION N F, ALLERGENS F, TURCK D, et al.Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283 [J].EFSA Journal, 2021, 19(8):e06778.
[3] KRÖNCKE N, GREBENTEUCH S, KEIL C, et al.Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.) [J].Insects, 2019, 10(4):84.
[4] SON Y J, HWANG I K, NHO C W, et al.Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan [J].Foods, 2021, 10(3):640.
[5] HONG J, HAN T, KIM Y Y.Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal:A review [J].Animals, 2020, 10(11):2 068.
[6] SEHO R E Y, MONTEIRO R L, DE DEA LINDNER J, et al.Effects of vacuum and multiflash drying on the microbiota and colour of dried yellow mealworm (Tenebrio molitor) [J].Journal of Insects as Food and Feed, 2022, 8(1):23-33.
[7] SELALEDI L, MABELEBELE M.The influence of drying methods on the chemical composition and body color of yellow mealworm (Tenebrio molitor L.) [J].Insects, 2021, 12(4):333.
[8] SRIPRABLOM J, KITTHAWEE S, SUPHANTHARIKA M.Functional and physicochemical properties of cookies enriched with edible insect (Tenebrio molitor and Zophobas atratus) powders [J].Journal of Food Measurement and Characterization, 2022, 16(3):2 181-2 190.
[9] RONCOLINI A, V, CARDINALI F, et al.Protein fortification with mealworm (Tenebrio molitor L.) powder:Effect on textural, microbiological, nutritional and sensory features of bread [J].PLoS One, 2019, 14(2):e0211747.
[10] GONZLEZ C M, GARZN R, ROSELL C M.Insects as ingredients for bakery goods.A comparison study of H.illucens, A.domestica and T.molitor flours [J].Innovative Food Science & Emerging Technologies, 2019, 51:205-210.
[11] KOWALSKI S, MIKULEC A, MICKOWSKA B, et al.Wheat bread supplementation with various edible insect flours.Influence of chemical composition on nutritional and technological aspects [J].LWT, 2022, 159:113220.
[12] WU R A, DING Q Z, YIN L T, et al.Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor):Amino acid, fatty acid, and element profiles [J].Food Chemistry, 2020, 323:126818.
[13] SON Y J, CHOI S Y, HWANG I K, et al.Could defatted mealworm (Tenebrio molitor) and mealworm oil be used as food ingredients? [J].Foods, 2020, 9(1):40.
[14] SEVERINI C, AZZOLLINI D, ALBENZIO M, et al.On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects [J].Food Research International, 2018, 106:666-676.
[15] SIOW H S, SUDESH K, MURUGAN P, et al.Mealworm (Tenebrio molitor) oil characterization and optimization of the free fatty acid pretreatment via acid-catalyzed esterification [J].Fuel, 2021, 299:120905.
[16] YU X T, OH E, KIM Y.A comparative study on the functional properties of mealworm (Tenebrio molitor) larvae and soybean protein isolates and hydrolysates [J].International Food Research Journal, 2021, 28(4):816-826.
[17] OKAGU O D, VERMA O, MCCLEMENTS D J, et al.Utilization of insect proteins to formulate nutraceutical delivery systems:Encapsulation and release of curcumin using mealworm protein-chitosan nano-complexes [J].International Journal of Biological Macromolecules, 2020, 151:333-343.
[18] 田晶. 响应面法优化黄粉虫饼干加工工艺 [J].食品研究与开发, 2020, 41(24):119-123.
TIAN J, Optimization of response surface methodology for Tenebrio molitor biscuits [J].Food Research and Development, 2020, 41(24):119-123.
[19] 彭燕, 林华峰, 岳霄霄, 等.黄粉虫蛹蛋白面包的工艺配方研究 [J].安徽农业大学学报, 2013, 40(5):790-794.
PENG Y, LIN H F, YUE X X, et al.Processing formula of Tenebrio molitor pupae protein bread [J].Journal of Anhui Agricultural University, 2013, 40(5):790-794.
[20] KHUENPET K, PAKASAP C, VATTHANAKUL S, et al.Effect of larval-stage mealworm (Tenebrio molitor) powder on qualities of bread [J].International Journal of Agricultural Technology, 2020, 16(2):283-296.
[21] ÇABUK B.Influence of grasshopper (Locusta migratoria) and mealworm (Tenebrio molitor) powders on the quality characteristics of protein rich muffins:Nutritional, physicochemical, textural and sensory aspects [J].Journal of Food Measurement and Characterization, 2021, 15(4):3 862-3 872.
[22] KIM T K, YONG H I, CHA J Y, et al.Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein [J].Food Chemistry, 2022, 373:131519.
[23] AZZOLLINI D, WIBISAPHIRA T, LAKEMOND C M M, et al.Toward the design of insect-based meat analogue:The role of calcium and temperature in coagulation behavior of Alphitobius diaperinus proteins [J].LWT, 2019, 100:75-82.
[24] ORKUSZ A.Edible insects versus meat-nutritional comparison:Knowledge of their composition is the key to good health [J].Nutrients, 2021, 13(4):1 207.
[25] CHO S Y, RYU G H.Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog [J].Food Science and Nutrition, 2021, 9(8):4 408-4 419.
[26] ZHANG F X, CAO C A, KONG B H, et al.Pre-dried mealworm larvae flour could partially replace lean meat in frankfurters:Effect of pre-drying methods and replacement ratios [J].Meat Science, 2022, 188:108802.
[27] KEIL C, GREBENTEUCH S, KRÖNCKE N, et al.Systematic studies on the antioxidant capacity and volatile compound profile of yellow mealworm larvae (T.molitor L.) under different drying regimes[J].Insects, 2022, 13(2):166.
[28] JEON Y-H, SON Y-J, KIM S-H, et al.Physicochemical properties and oxidative stabilities of mealworm (Tenebrio molitor) oils under different roasting conditions [J].Food Science and Biotechnology, 2016, 25(1):105-110.
[29] TZOMPA-SOSA D A, DEWETTINCK K, GELLYNCK X, et al.Consumer acceptance towards potato chips fried in yellow mealworm oil [J].Food Quality and Preference, 2022, 97:104487.
[30] YOON S, WONG N A K, CHAE M, et al.Comparative characterization of protein hydrolysates from three edible insects:Mealworm larvae, adult crickets, and silkworm pupae [J].Foods, 2019, 8(11):563.
[31] KIM T K, LEE M H, YONG H I, et al.Effect of interaction between mealworm protein and myofibrillar protein on the rheological properties and thermal stability of the prepared emulsion systems [J].Foods, 2020, 9(10):1 443.
[32] GROSSMANN K K, MERZ M, APPEL D, et al.New insights into the flavoring potential of cricket (Acheta domesticus) and mealworm (Tenebrio molitor) protein hydrolysates and their Maillard products [J].Food Chemistry, 2021, 364:130336.
[33] BORDIEAN A, M, STOLARSKI M J, et al.Will yellow mealworm become a source of safe proteins for Europe?[J].Agriculture (Switzerland), 2020, 10(6):233.
[34] GARINO C, MIELKE H, KNÜPPEL S, et al.Quantitative allergenicity risk assessment of food products containing yellow mealworm (Tenebrio molitor) [J].Food and Chemical Toxicology, 2020, 142:111460.
[35] BELLEGGIA L, V, CARDINALI F, et al.Listeria dynamics in a laboratory-scale food chain of mealworm larvae (Tenebrio molitor) intended for human consumption [J].Food Control, 2020, 114:107246.
[36] P, BURDOV E, KALHOTKA L.Effect of different storage methods on the microbiological quality of the insect dry powder made from mealworm (Tenebrio molitor, L.) [J].Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2022, 70(1):47-50.
[37] KOOH P, JURY V, LAURENT S, et al.Control of biological hazards in insect processing:Application of HACCP method for yellow mealworm (Tenebrio molitor powders [J].Foods, 2020, 9(11):1 528.
[38] PETRESCU-MAG R M, RASTEGARI KOPAEI H, PETRESCU D C.Consumers′ acceptance of the first novel insect food approved in the European Union:Predictors of yellow mealworm chips consumption [J].Food Science and Nutrition, 2022, 10(3):846-862.
[39] WENDIN K, BERG J, JÖNSSON K I, et al.Introducing mealworm as an ingredient in crisps and patés—Sensory characterization and consumer liking [J].Future Foods, 2021, 4:100082.