超高效液相色谱-三重四级杆线性离子阱质谱联用仪结合化学计量学方法对不同大小虹鳟鱼肉中游离氨基酸含量与滋味相关性的研究

鲍守民1,陈生蓉1,田海宁2,孟玉琼2*,马睿1*

1(省部共建三江源生态与高原农牧业国家重点实验室,青海 西宁,810016)2(青海大学 生态环境工程学院,青海 西宁,810016)

摘 要 建立了超高效液相色谱-三重四级杆线性离子阱质谱联用仪(ultra-performance liquid chromatography coupled with triple quadrupole linear ion trap mass spectrometer,UPLC-Q-Trap-MS)分析鱼肉游离氨基酸的方法,并结合化学计量学方法研究不同大小虹鳟鱼肉中16种游离氨基酸的含量与该鱼肉滋味的相关性。采用Acquity UPLC BEH Amide (2.1 mm × 100 mm,1.7 μm)色谱柱,柱温35 ℃,以5 mmol/L甲酸铵-水(含0.1%体积分数甲酸)、5 mmol/L甲酸铵-乙腈(含0.1%体积分数甲酸)为流动相进行梯度洗脱,流速为0.3 mL/min,电喷雾离子源(正离子扫描),多反应监测模式检测;并结合滋味活度值及主成分分析探讨滋味轮廓差异。结果表明,所述分析条件下16种游离氨基酸分别在各自浓度范围内呈良好的线性关系,相关系数均大于0.99,平均加样回收率(n=6)为98.38%~103.57%,相对标准差为0.34%~2.89%;不同大小虹鳟鱼肉中各游离氨基酸含量及其滋味活度值具有显著差异(P<0.01),幼鱼肉呈现甜味、苦味特征,中鱼肉呈现鲜味、甜味和苦味特征,成鱼仅呈现出苦味特征。该研究为虹鳟鱼肉食品的品质评价提供参考。

关键词 虹鳟;游离氨基酸;UPLC-Q-Trap-MS;化学计量学;滋味特征

虹鳟(Oncorhynchus mykiss)为鲑科、太平洋鲑属的一种鲑鱼,该鱼适应生长于冷水环境中[1-3],其鱼肉富含氨基酸、蛋白质,脂肪酸等营养成分,因肉质鲜嫩,口感优良,风味独特,营养价值丰富,深受广大消费者的喜爱[4]。其中,氨基酸作为人体、动物所需营养成分及蛋白质的基本组成单元,是组成生命体的重要基础物质,其含量对人体和动物具有重要的生理意义。有研究报道指出,游离氨基酸含量可以判断肉类食品的滋味特征,是关联和影响肉类食品风味及品质的重要成分[5-9],可分为鲜味(门冬氨酸、谷氨酸)、甜味(苏氨酸、脯氨酸、丙氨酸、甘氨酸和丝氨酸)、苦味(苯丙氨酸、亮氨酸、异亮氨酸、甲硫氨酸、缬氨酸、赖氨酸、酪氨酸、组氨酸和精氨酸)三类[10],可作为肉类食品滋味特征评价的重要指标。因此,对虹鳟鱼肉中游离氨基酸含量测定有助于分析该食品的滋味特征。

目前,氨基酸测定有氨基酸自动分析仪-茚三酮显色法[11]、高效液相色谱-柱前衍生法[12-13]、高效液相色谱-荧光检测法[14]、高效液相色谱-质谱联用仪[15-16]等分析方法[17],多数方法需衍生化试剂处理,且衍生物不稳定,检测信号衰减快,干扰因素较多,影响检测。氨基酸分析仪虽具有灵敏度高、分辨率高和检测准确的优势,但仅应用于氨基酸分析,且衍生物不稳定。因此,本研究建立超高效液相色谱-质谱联用仪分析鱼肉游离氨基酸的方法,同时测定不同大小虹鳟鱼肉中的16种游离氨基酸含量,并结合化学计量学方法分析其含量与滋味特征的关系,以期为虹鳟品质评价及产品开发利用提供参考基础。

1 材料与方法

1.1 试剂与材料

氨基酸混合对照品溶液,日本Shimadzu公司[天冬氨酸(Asp,332.8 μg/mL)、谷氨酸(Glu,367.8 μg/mL)、丝氨酸(Ser,262.7 μg/mL)、组氨酸(His,387.9 μg/mL)、甘氨酸(Gly,187.7 μg/mL)、苏氨酸(Thr,297.8 μg/mL)、精氨酸(Arg,435.5 μg/mL)、丙氨酸(Ala,222.7 μg/mL)、酪氨酸(Tyr,453.0 μg/mL)、缬氨酸(Val,292.9 μg/mL)、甲硫氨酸(Met,373.0 μg/mL)、异亮氨酸(Ile,327.9 μg/mL)、苯丙氨酸(Phe,413.0 μg/mL)、赖氨酸(Lys,365.5 μg/mL)、亮氨酸(Leu,327.9 μg/mL)、脯氨酸(Pro,287.8 μg/mL)];乙腈和甲酸(均为色谱纯),美国Thermo Fisher公司;甲酸铵(色谱纯),上海麦克林生化科技有限公司;水为超纯水;其他试剂均为分析纯。

在青海虹鳟养殖场分别采集三倍体虹鳟幼鱼[LB;体重(0.14±0.01) kg]、中鱼[SY;体重(0.73±0.16) kg)、成鱼[BM;体重(3.97±0.47) kg]各12尾,剖取背部肌肉置于-80 ℃冰箱中待测。

1.2 仪器与设备

AB Sciex QTRAP 5500三重四极杆-线性离子阱质谱仪,美国AB Sciex公司;Exion LC AD超高效液相色谱仪,美国AB Sciex公司;ME204E电子分析天平,德国Sartorius公司;5418 R低温高速离心机,美国Eppendorf公司;LWFS31310水纯化系统仪,美国PALL公司;XHF-D高速内切式匀浆机,宁波新芝生物科技股份有限公司。

1.3 实验方法

1.3.1 对照品溶液的配制

精密吸取适量16种氨基酸混合对照品溶液,置于10 mL棕色容量瓶中,用V(水)∶V(乙腈)=1∶3稀释并定容,得不同浓度梯度的对照品储备液,备用。

1.3.2 样品溶液的制备

参照CHENG等[18]和QI等[19]所述游离氨基酸含量测定方法,有所改动。精确称取虹鳟鱼背部肌肉约0.5 g,置于50 mL离心管中,加入约10 mL[V(水)∶V(乙腈)=1∶3]溶液定容至10 mL刻度,在4 ℃条件下,匀浆至混悬均匀,静置30 min,转移至2 mL离心管中,于13 000 r/min离心15 min;取上清液用0.22 μm微孔滤膜过滤,制得待测样品液。

1.3.3 色谱条件

Acquity UPLC BEH Amide色谱柱(2.1 mm×100 mm,1.7 μm),柱温35 ℃,流速0.3 mL/min。流动相:5 mmol/L 甲酸铵-0.1%甲酸水溶液(A),5 mmol/L 甲酸铵-0.1%甲酸乙腈(B)。梯度洗脱程序:0~2 min,100% B;2~5 min,100% B~87% B;5~8 min,87% B~79% B;8~12 min,79% B;12~17 min,79% B~73% B;17~20 min,73% B~50% B;进样体积2 μL。

1.3.4 质谱条件

电喷雾正离子源(electrospray ionization,ESI+),多反应监测(multiple- reaction monitoring,MRM)模式采集;喷雾电压5.5 kV;离子源温度450 ℃;气帘气压强138 kPa;喷雾气(Gas1) 压强310.3 kPa;辅助加热气压强(Gas2)379.2 kPa;碰撞气为Medium。得该质谱条件下,16种氨基酸的定量检测离子对、去簇电压(declustering potential,DP)、碰撞能量(collision energy,CE)等参数(表1)。

表1 16 种氨基酸的质谱参数
Table 1 Mass spectrum parameters of MRM of 16 kinds of cucurbitacin standard

编号化合物保留时间/min离子对DP/VCE/eV1Phe7.02166.2→120.243142Thr7.03120.2→77.1120113Leu7.12132.0→86.140104Ile7.37132.0→86.140155Met7.66150.1→104.150106Val8.04118.1→72.145107Lys8.05147.1→118.9118168Tyr8.05182.2→136.245179Pro8.08116.1→70.0601010Asp8.67134.1→74.1401011Ala8.9990.1→44.0351012Gly9.4776.0→30.151613Ser10.02106.1→60.045814Glu10.06148.1→84.1501415His12.58156.1→110.1801616Arg12.93175.1→70.16018

1.4 数据处理

所得实验数据采用IBM SPSS Statistics 22 (SPSS Corp, Chicago, USA)处理并进行单因素方差分析,实验数据P<0.05具有统计学意义;多元统计分析采用SIMCA 14.1 (Umerics AB, Malmo, Sweden),进行无监督的主成分分析(principal component analysis,PCA),采用MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/)在线绘制聚类热图。

2 结果与分析

2.1 条件优化

分别使用ESI正、负离子源,MRM检测,发现氨基酸在正离子模式下信号响应度高,故选择该离子模式作为检测条件。另外,因亮氨酸和异亮氨酸属于同分异构体,分子质量及定量离子对相同,需在UPLC色谱中分离且根据保留行为区别,故分别考察了不同的洗脱溶剂,包括向流动相中加入0.1%(体积分数)甲酸或5 mmol/L甲酸铵,有机相选择甲醇、乙腈,流动相等度和梯度洗脱程序等因素;不同的色谱柱,包括Waters Acquity UPLC BEH C18,Waters Acquity UPLC BEH Amide,Agilent ZORBAX SB-C18等;最终以5 mmol/L甲酸铵水溶液(0.1%甲酸)-5 mmol/L甲酸铵乙腈(0.1%甲酸)作为流动相,Waters BEH Amide色谱柱,进行梯度洗脱时为最优分离条件(图1),因此选择该色谱-质谱条件进行后续分析。

图1 16 种氨基酸MRM图
Fig.1 MRM chromatograms of 16 amino acids

2.2 线性关系

精密移取预先配制的各不同浓度混合对照品溶液,按1.3.3项色谱条件和1.3.4项质谱条件测定,以峰面积为纵坐标(y),质量浓度为横坐标(x),得16种氨基酸线性回归方程(表2)。

表2 16种氨基酸的线性方程、相关系数及线性范围
Table 2 Regression equation, correlation and linear range of 16 amino acids

编号名称线性方程r线性范围/(ng·mL-1)1Phey=5 436.20 x+52 8000.999 70.826 0~826.02Thry=7 219.33 x- 2 1140.999 80.595 6~595.63Leuy=5 025.49 x+116 2390.996 80.655 8~655.64Iley=5 025.49 x+116 2390.996 80.655 8~655.65Mety=588.34 x+5650.999 70.746 0~746.06Valy=2 610.87 x+37 4690.999 30.585 8~585.87Lysy=232.71 x+1 6380.999 50.731 0~731.08Tyry=507.53 x+9 1710.998 60.906 0~906.09Proy=3 575.33 x+52 7890.999 60.575 6~575.610Aspy=993.86 x+8840.999 50.665 6~665.611Alay=1 390.22 x+742 3640.995 30.445 4~445.412Glyy=287.35 x+57 9030.999 20.375 4~375.413Sery=688.19 x+49 8170.997 70.525 4~525.414Gluy=1 107.33 x+46 0320.993 50.735 6~735.615Hisy=4 339.76 x+562 0840.998 20.775 8~775.816Argy=2 604.45 x+32 3550.991 70.871 0~871.0

2.3 精密度、重复性和稳定性

采用上述已优化的方法,并考察精密度、重复性和稳定性,按1.3.3项色谱条件和1.3.4项质谱条件测定,计算得出16种氨基酸保留时间的相对标准差(relative standard deviation,RSD)分别为0.03%~0.33%、0.05%~0.98% 和1.22%~3.48%;峰面积的RSD分别为1.16%~3.40%、1.72%~3.98%和2.54%~3.97%。表明此方法仪器精密度和重复性良好,供试样品溶液稳定。

2.4 加样回收率

精密称取已知含量的同一虹鳟鱼肉样品6份,精密加入适量16种氨基酸混合对照品溶液,按1.3.3项色谱条件和1.3.4项质谱条件测定,记录峰面积,计算回收率。16种氨基酸的平均加样回收率为98.38%~103.57%,RSD分别为0.34%~2.89%。

2.5 含量测定

按1.3.2项的样品处理方法及1.3.3项色谱条件和1.3.4项质谱条件,对36个不同大小虹鳟鱼肉样品中16种氨基酸的含量进行测定,并采用外标法计算。结果发现,不同大小虹鳟鱼肉样品中Met含量无显著差异(P>0.05),其他15种氨基酸的含量差异极显著(P<0.01);Gly、His、Ala和Glu四种氨基酸占总游离氨基酸的比例较高(表3)。

2.6 滋味相关性分析

虹鳟鱼肉中游离的氨基酸的含量及阈值对其风味影响具有重要作用,经查阅16种呈味氨基酸的阈值[20-21],并参照CHEN等[22]和SABIKUN等[23]所述的滋味活度值评价方法,氨基酸的滋味活度值大于1对样品的滋味有贡献,滋味活度值小于1贡献不显著,对虹鳟鱼肉进行呈味相关性分析;结果表明在幼鱼鱼肉中滋味活度值大于1的氨基酸为谷氨酸、精氨酸;在中鱼鱼肉中为甘氨酸、精氨酸;在成鱼鱼肉中为甲硫氨酸、精氨酸。总鲜味氨基酸活度贡献值大小依次为:中鱼、幼鱼、成鱼;总甜味氨基酸活度贡献值大小依次为:幼鱼、中鱼、成鱼;总苦味氨基酸活度贡献值大小依次为:成鱼、中鱼、幼鱼(表4)。因此,随着虹鳟鱼体型增长,该鱼肉滋味氨基酸具有差异并呈现动态变化。

表3 不同大小虹鳟鱼肉中游离氨基酸含量 单位:mg/100g

Table 3 Contents of free amino acids in muscle of rainbow trout with different body sizes

名称幼鱼中鱼成鱼Phe4.29±0.19a7.47±0.58b3.25±0.16aThr1.23±0.06a2.21±0.18b0.88±0.04aLeu8.15±0.45a12.66±0.58b7.24±0.34aIle2.77±0.15a4.30±0.25b3.83±0.17bMet5.71±0.356.14±0.226.53±0.31Val7.37±0.34a13.95±0.58c9.89±0.42bLys0.91±0.09b1.99±0.05c0.64±0.05aTyr5.52±0.51b11.61±0.26c4.19±0.30aPro6.52±0.71a8.53±1.40a21.09±1.76bAsp0.20±0.01b0.14±0.02a0.16±0.01abAla37.32±0.61b38.93±1.24b31.54±0.77aGly153.14±6.06c46.78±3.39b24.19±1.79aSer12.98±0.72b6.59±0.72a4.73±0.38aGlu10.95±1.07a32.17±1.13b30.16±1.70bHis52.22±1.39b51.91±1.75b43.14±1.16aArg1.62±0.07a3.91±0.22a12.15±1.23b总含量313.44±10.14c249.28±8.45b203.61±4.23a

注:同行上标字母相同表示无显著差异(P>0.05),不同表示显著差异(P<0.01)

表4 不同大小虹鳟鱼肉中游离氨基酸滋味活度值
Table 4 Taste activity values of free amino acids in muscle of rainbow trout with different body sizes

成分滋味特征阈值幼鱼中鱼成鱼Asp鲜味1000.002±0.000a0.001±0.000a0.033±0.002bGlu鲜味300.365±0.036b1.072±0.038c0.029±0.001aThr甜味2600.005±0.000a0.009±0.001b0.028±0.001cPro甜味3000.030±0.006b0.028±0.005b0.013±0.001aAla甜味600.622±0.010b0.649±0.021b0.109±0.005aGly甜味1301.178±0.047c0.360±0.026b0.076±0.003aSer甜味1500.087±0.005c0.044±0.005b0.004±0.000aPhe苦味900.048±0.002a0.083±0.006b0.047±0.003aLeu苦味1900.043±0.002a0.067±0.003b0.111±0.009cIle苦味900.031±0.002b0.048±0.003c0.002±0.000aMet苦味300.190±0.012a0.205±0.007a1.051±0.026bVal苦味400.184±0.009a0.349±0.014b0.605±0.045cLys苦味500.018±0.002a0.040±0.001b0.095±0.008cTyr苦味910.061±0.006a0.128±0.003b0.332±0.019cHis苦味202.611±0.069b2.596±0.087b2.157±0.058aArg苦味500.032±0.001a0.078±0.005a0.243±0.025b总鲜味0.367±0.036b1.074±0.038c0.062±0.003a总甜味1.922±0.063c1.090±0.040b0.230±0.010a总苦味3.218±0.084a3.592±0.103b4.641±0.099c

注:同行上标字母相同表示无显著差异(P>0.05),不同表示显著差异(P<0.01)

对不同规格虹鳟鱼肉16种氨基酸滋味活度值进行PCA分析(图2-a)和热图聚类分析(图3),结果三者呈现明显的分离效果,且主成分贡献值较高,有效地反映出各变量的信息,在滋味特征方面有明显不同。结合变量投影重要性指标(variable importance in projection,VIP)得分(图2-b)并选择VIP值>1的成分作为起主要作用的成分,Glu、Phe、Gly、Ile和Ser对区分不同规格鱼肉滋味起主要作用。

a-PCA;b-VIP得分图
图2 不同大小虹鳟鱼肉游离氨基酸滋味活度值 PCA及VIP得分图
Fig.2 Principal component analysis and VIP score plot for taste activity values of free amino acids in muscle of rainbow trout with different body sizes

3 结论

本研究采用超高效液相色谱-三重四级杆线性离子阱质谱联用仪测定不同大小虹鳟鱼肉中16种游离氨基酸含量,并结合化学计量学方法,对不同大小虹鳟鱼肉中各游离氨基酸滋味活度值进行PCA分析探讨各游离氨基酸含量对虹鳟鱼肉滋味贡献值,证明不同大小虹鳟鱼肉中各游离氨基酸含量不同,其滋味呈现不同特征。

图3 不同大小虹鳟鱼肉游离氨基酸滋味活度值聚类热图
Fig.3 Clustering heat map for taste activity values of free amino acids in muscle of rainbow trout with different body sizes

参考文献

[1] JIANG X Y, DONG S L, LIU R X, et al.Effects of temperature, dissolved oxygen, and their interaction on the growth performance and condition of rainbow trout (Oncorhynchus mykiss)[J].Journal of Thermal Biology, 2021, 98:102928.

[2] MENG Y Q, QIAN K K, MA R, et al.Effects of dietary lipid levels on sub-adult triploid rainbow trout (Oncorhynchus mykiss):1.Growth performance, digestive ability, health status and expression of growth-related genes[J].Aquaculture, 2019, 513:734394.

[3] SINGH A K, SRIVASTAVA S C.Improved feeding strategy to optimize growth and biomass for up-scaling rainbow trout Oncorhynchus mykiss (Walbaum 1792) farming in Himalayan region[J].Aquaculture, 2021, 542:736851.

[4] 吴永俊. 虹鳟鱼肉风味影响因素研究及鱼骨新产品开发[D].喀什:喀什大学, 2020.

WU Y J.A Study on influencing factors of flavor substances of rainbow trout and development of new fish bone products[D].Kashi:Kashi University, 2020.

[5] LYU H B, MA Y Y, HU C T, et al.The individual and combined effects of hypoxia and high-fat diet feeding on nutrient composition and flesh quality in Nile tilapia (Oreochromis niloticus)[J].Food Chemistry, 2021, 343:128479.

[6] 陈剑岚. 草鱼的生理差异及保藏温度对肌肉呈味成分的影响[D].上海:上海海洋大学, 2017.

CHEN J L.Effects of physiological differences and preservation temperature on taste components of grass carp meat[D].Shanghai:Shanghai Ocean University, 2017.

[7] CHENG X L, LI M F, LENG X J, et al.Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater[J].Food Chemistry, 2021, 354:129498.

[8] JIA W, SHI Q Y, SHI L.Effect of irradiation treatment on the lipid composition and nutritional quality of goat meat[J].Food Chemistry, 2021, 351:129295.

[9] 卢佳芳, 朱煜康, 徐大伦, 等.不同剂量电子束辐照对花鲈鱼肉风味的影响[J].食品科学, 2021, 42(12):153-158.

LU J F, ZHU Y K, XU D L, et al.Effect of electron beam irradiation with different doses on flavor of Lateolabrax japonicus meat[J].Food Science, 2021, 42(12):153-158.

[10] 廖兰, 赵谋明, 崔春.肽与氨基酸对食品滋味贡献的研究进展[J].食品与发酵工业, 2009, 35(12):107-113.

LIAO L, ZHAO M M, CUI C.Review on the taste of peptides and amino acids to foodstuffs[J].Food and Fermentation Industries, 2009, 35(12):107-113.

[11] DAI W L, GU S Q, XU M J, et al.The effect of tea polyphenols on biogenic amines and free amino acids in bighead carp (Aristichthys nobilis) fillets during frozen storage[J].LWT, 2021, 150:111933.

[12] REIS G C L, GUIDI L R, FERNANDES C, et al.UPLC-UV method for the quantification of free amino acids, bioactive amines, and ammonia in fresh, cooked, and canned mushrooms[J].Food Analytical Methods, 2020, 13(8):1 613-1 626.

[13] 黄元河, 黄玉镯, 潘乔丹, 等.柱前衍生化 HPLC 法测定柊叶游离氨基酸成分及风味评价[J].食品工业科技, 2021, 42(1):292-296;303.

HUANG Y H, HUANG Y Z, PAN Q D, et al.Determination of free amino acid compositon in Phrynium rheedei by pre-column derivatization HPLC and flavor quality evaluation[J].Science and Technology of Food Industry, 2021, 42(1):292-296;303.

[14] , et al.The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar and organic acid contents in red and green leaf lettuce cultivated in controlled environment[J].Food Chemistry, 2020, 310:125799.

[15] RAIMBAULT A, NOIREAU A, WEST C.Analysis of free amino acids with unified chromatography-mass spectrometry-application to food supplements[J].Journal of Chromato Graphy A, 2020, 1 616:460772.

[16] QIU X, REYNOLDS R, JOHANNINGSMEIER S, et al.Determination of free amino acids in five commercial sweetpotato cultivars by hydrophilic interaction liquid chromatography-mass spectrometry[J].Journal of Food Composition and Analysis, 2020, 92:103522.

[17] VIOLI J P, BISHOP D P, PADULA M P, et al.Considerations for amino acid analysis by liquid chromatography tandem mass spectrometry:A tutorial review[J]. TrAC Trends in Analytical Chemistry, 2020, 131:116018.

[18] CHENG X L, LI M F, LENG X J, et al.Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater[J].Food Chemistry, 2021, 354:129498.

[19] QI J, ZHANG W W, XU Y, et al.Enhanced flavor strength of broth prepared from chicken following short-term frozen storage[J].Food Chemistry, 2021, 356:129678.

[20] 江津津, 严静, 郑玉玺, 等.不同产地传统鱼露风味特征差异分析[J].食品科学, 2021, 42(12):206-214.

JIANG J J, YAN J, ZHENG Y X, et al.Analysis of flavor characteristics of traditional fish sauce from different regions[J].Food Science, 2021, 42(12):206-214.

[21] 范婷婷, 赵晓燕, 李晓贝, 等.人工栽培和野生羊肚菌游离氨基酸主成分分析及综合评价[J].食品科学, 2022,43(6):295-302.

FAN T T, ZHAO X Y, LI X B, et al.Principal component analysis for comprehensive evaluation of free amino acids in cultivated and wild Morchella[J].Food Science, 2022,43(6):295-302.

[22] CHEN D W, ZHANG M.Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis)[J].Food Chemistry, 2007, 104(3):1 200-1 205.

[23] SABIKUN N, BAKHSH A, RAHMAN M S, et al.Volatile and nonvolatile taste compounds and their correlation with umami and flavor characteristics of chicken nuggets added with milkfat and potato mash[J].Food Chemistry, 2021, 343:128499.

Study on the correlation between free amino acid content and taste of rainbow trout (Oncorhynchus mykiss) with different sizes based on UPLC-Q-Trap-MS combined with chemometrics

BAO Shoumin1,CHEN Shengrong1,TIAN Haining2,MENG Yuqiong2*,MA Rui1*

1(State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China) 2(College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China)

ABSTRACT A method for the analysis of free amino acids in fillets by ultra-performance liquid chromatography coupled with triple quadrupole linear ion trap mass spectrometer(UPLC-Q-Trap-MS) was established. Combined with chemometrics, the correlation between the content of 16 free amino acids and the taste of fillets from rainbow trout (Oncorhynchus mykiss) of different sizes was studied. The analysis conditions were as follows: The chromatographic separation was performed using an Acquity UPLC BEH Amide (2.1 mm×100 mm, 1.7 μm) column and the temperature of the column was maintained at 35 ℃. The mobile phases were 5 mmol/L ammonium formate in water containing 0.10% formic acid and 5 mmol/L ammonium formate in acetonitrile containing 0.10% formic acid, respectively, using a binary gradient elution at the flow rate of 0.3 mL/min. The detection was carried out by electrospray ionization in positive modes and multiple reaction monitoring modes. The difference in taste profiles was investigated by taste activity value and principal component analysis. Results showed that the calibration curves of 16 kinds of amino acids exhibited good linearities within their test ranges (r>0.99). The average recovery rates of the free amino acids in the rainbow trout sample ranged from 98.38%-103.57% and RSD was 0.34%-2.89% (n=6). The contents of free amino acids and the total taste activity value were significantly different in fillets of rainbow trout with different body sizes (P<0.01). The larva rainbow trout tasted sweet and bitter characteristics and the middle rainbow trout showed fresh, sweet and bitter taste characteristics. While the mature rainbow trout showed only bitter taste characteristics. This study provides a reference for the evaluation of the fillet quality of rainbow trout.

Key words rainbow trout; free amino acid; UPLC-Q-Trap-MS; chemometrics; taste characteristics

DOI:10.13995/j.cnki.11-1802/ts.029903

引用格式:鲍守民,陈生蓉,田海宁,等.超高效液相色谱-三重四级杆线性离子阱质谱联用仪结合化学计量学方法对不同大小虹鳟鱼肉中游离氨基酸含量与滋味相关性的研究[J].食品与发酵工业,2022,48(20):238-243.BAO Shoumin,CHEN Shengrong,TIAN Haining, et al.Study on the correlation between free amino acid content and taste of rainbow trout (Oncorhynchus mykiss) with different sizes based on UPLC-Q-Trap-MS combined with chemometrics[J].Food and Fermentation Industries,2022,48(20):238-243.

第一作者:硕士,科研助理(孟玉琼副教授和马睿教授为共同通信作者,E-mail:yuqiongcheer@163.com;myrui713@163.com)

基金项目:国家自然科学基金(31860731);青海省科技项目(2019-NK-A2-3)

收稿日期:2021-11-05,改回日期:2021-12-09