采后果蔬在贮藏过程中由于生理代谢活动会消耗自身营养物质,导致其抗病能力和品质不断下降,造成极大的损失和浪费。低温贮藏可以降低采后果蔬的呼吸作用,削弱病原微生物的繁殖,延长采后果蔬贮藏期,提高果蔬贮藏保鲜效果,然而,冷敏型果蔬在低温贮藏时易发生冷害,影响采后果蔬的食用价值和商品价值,这使得低温贮藏在采后冷敏型果蔬中的应用受到了一定的局限[1]。因此,亟需开发安全、有效的贮藏保鲜技术减轻采后果蔬冷害的发生。
草酸(oxalic acid)是一种广泛分布在植物体内的有机酸,在苋科、天南星科、藜科、番杏科、马齿苋科等植物中含量较高[2]。草酸处理具有高效、低廉、无毒、方便等优点,可作为一种保鲜剂应用到采后果蔬贮藏保鲜,提高其贮藏品质,例如草酸可提高番茄果实番茄红素含量[3],降低猕猴桃贮藏后期乙醛和乙醇含量的积累[4]、抑制荔枝果皮褐变的发生[5]、降低冬笋木质化程度[6],提高猕猴桃的抗病性等[7]。近些年还发现,草酸处理还能减轻采后芒果[8]、猕猴桃[9]、番茄[3]、哈密瓜[10]、茄子[11]、杏[12]等果蔬的冷害,但目前关于草酸处理减轻采后果蔬冷害的机理还不够明确,因此本文着重从细胞膜、抗氧化系统、能量代谢、渗透调节物积累、糖代谢和细胞壁物质代谢等方面对草酸处理减轻采后果蔬冷害机制进行了详细综述,以期为草酸在采后果蔬低温贮藏保鲜中的应用提供依据和实践参考。
冷敏型果蔬在低温下易发生冷害,这是冷敏型果蔬对低温逆境胁迫的一种不良反应,是一种低温生理伤害,严重影响采后果蔬的贮藏品质[13]。不同种类和品种果蔬的冷害症状不同,主要表现为(1)果皮或果肉发生褐变,例如芒果、香蕉、桃等;(2)表面出现水渍状斑点、表皮出现凹陷斑,例如芒果、西葫芦、青椒等;(3)果实硬度不正常增加、果实不能正常后熟软化,例如芒果、番茄、番木瓜等;(4)果实失去光泽、果实不能正常着色,例如番茄等;(5)果蔬抗病性减弱,易遭病原菌侵害,果实易腐烂、产生异味,例如猕猴桃等。
外源草酸处理能影响采后果蔬生理代谢活动,提高果蔬对低温的抗冷性,减轻采后果蔬冷害症状,提高采后果蔬贮藏品质。LI等[8]用5 mmol/L草酸处理芒果能减轻芒果果肉褐变程度以及果皮凹陷斑程度,显著抑制了芒果硬度和可滴定酸含量的下降,显著抑制了可溶性固形物含量的上升,延缓了芒果衰老进程;采用10 mmol/L草酸处理番茄能减轻低温贮藏下番茄表面凹陷斑的面积,减轻冷害发生[3],显著提高了常温后熟过程番茄的番茄红素含量和贮藏品质。王静等[10]采用15 mmol/L草酸处理哈密瓜,能降低低温贮藏期间哈密瓜果皮出现的褐色失水斑块,减轻冷害症状,抑制了整个贮藏期果实硬度和维生素C含量下降,提高贮藏前期果实可溶性固形物含量,维持了哈密瓜较好贮藏品质。郭雨萱等[11]采用6 mmol/L草酸处理能降低茄子表面出现的褐变斑,降低冷害指数,显著提高了抗氧化酶活性,抑制了细胞膜透性,延缓了细胞膜膜脂过氧化反应,提高了茄子冷藏品质。WANG等[12]采用5 mmol/L草酸处理能显著降低杏果肉褐变、表皮凹陷的冷害症状,显著提高总糖含量,显著抑制杏果实丙二醛含量上升和相对电导率增加,保持杏较好的冷藏品质。梁春强等[9]采用5 mmol/L草酸处理能减轻猕猴桃果皮凹陷、皮下果肉组织木质化、果肉褐化及水渍化等冷害症状,可使猕猴桃冷害出现的时间推迟10 d,明显降低了呼吸速率和乙烯释放速率,推迟了呼吸跃变和乙烯释放高峰,维持了猕猴桃冷藏期间较高好果率和较低质量损失率。由此可见,草酸处理不仅能有效减轻采后果蔬冷害的发生,还能维持采后果蔬低温贮藏期间较好品质。
采后果蔬冷害的发生与细胞膜的结构和功能密切相关。果蔬受到冷害后会破坏细胞膜结构,导致细胞膜受损,影响细胞膜正常的结构和功能[14]。草酸处理对果蔬细胞膜的影响及其与冷害的关系如表1所示,草酸处理减轻采后果蔬冷害的发生与其维持果蔬细胞膜结构和功能的完整有关。草酸处理能降低脂氧合酶活性,提高抗氧化酶活性,减轻细胞膜膜脂过氧化反应,减少丙二醛的积累,抑制细胞膜透性升高,保持细胞膜正常的结构和功能,降低果蔬冷害的发生[9,11,15-17]。此外,研究发现,采后果蔬细胞膜中不饱和脂肪酸含量越高,膜脂不饱和程度越高,越有利于维持细胞膜的流动性和正常的功能,减轻冷害的发生[18-19]。采用草酸处理果蔬后,果蔬细胞膜中饱和脂肪酸含量较低,不饱和脂肪酸含量较高,维持细胞膜较高膜脂不饱和度,保持细胞膜有较好的流动性,从而增强果蔬抗冷性,减轻冷害发生[20]。
表1 草酸处理对果蔬细胞膜的影响及其与冷害关系
Table 1 Effect of oxalic acid treatment on cell membrane of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源16 mmol/L草酸结合UV-C处理紫红长茄子能抑制紫红长茄子细胞膜透性升高,2 ℃条件下紫红长茄子贮藏3 d不发生冷害[11]25 mmol/L 草酸处理“华优”猕猴桃草酸处理能降低脂氧合酶活性和丙二醛积累,显著提高抗坏血酸过氧化物酶和谷胱甘肽还原酶活性,加强活性氧清除能力,维持果实细胞膜的完整性,降低冷害发生[9]35 mmol/L草酸处理Zill芒果草酸处理能提高果实质膜稳定性,降低采后芒果果实冷害[15]415 mmol/L 草酸处理“Youhou阳丰”甜柿草酸处理甜柿会抑制低温诱导的膜损伤,降低电解质渗漏和丙二醛浓度,抑制甜柿冷害发生[16]55 mmol/L草酸与间歇升温复合处理“白凤”水蜜桃草酸复合间歇升温处理抑制了桃果实中多酚氧化酶和脂氧合酶活性,有效抑制了丙二醛含量积累和超氧阴离子生成速率,减轻了膜脂过氧化程度,阻止了桃果实冷害发生[17]615 mmol/L草酸处理“西周密25号”哈密瓜采用草酸处理能通过提高哈密瓜果皮与膜结合的Ca2+含量,促进脂氧合酶和磷脂酶D表达量的下降和活性降低,抑制细胞膜渗透率和丙二醛含量上升,提高果实低温耐受性,降低哈密瓜冷害指数。同时,草酸处理能维持哈密瓜较低的棕榈酸和硬脂酸含量、较高的亚油酸、亚麻酸和二十碳四烯酸含量,提高膜脂脂肪酸不饱和指数和不饱和度,增加膜脂的不饱和程度,促进膜的流动性,控制果实冷害的发展,减轻冷害发生[10,20]
采后果蔬活性氧积累是引发冷害的一个主要原因。逆境胁迫下,活性氧在采后果蔬体内积累,打破了活性氧代谢平衡,引发了膜脂过氧化反应,积累的活性氧又加重了果蔬膜脂过氧化,最终导致果蔬冷害发生[1,19]。采后果蔬具有酶促和非酶促抗氧化防御系统清除活性氧,酶促清除系统主要包括超氧化物歧化酶(superoxide dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽还原酶(glutathione reductase,GR)等,非酶促清除系统主要包括抗坏血酸(维生素C)、谷胱甘肽(glutathione,GSH)等。研究表明,采后果蔬抗氧化相关酶活性影响其抗冷性,抗氧化酶活性较高会降低果蔬对低温的敏感性,降低冷害发生[21]。邵婷婷等[22]采用44 ℃热处理青椒果实12 min,显著提高了青椒果实CAT和GR活性,维持较高GSH含量,提高了青椒的抗氧化能力和活性氧清除能力,提高了青椒的抗冷性,减轻了冷害发生。赵昱瑄等[23]采用短时热处理能显著延缓黄瓜冷藏期间CAT、POD、APX和SOD活性的下降,减少了丙二醛的积累,减轻了黄瓜果实冷害。代慧等[24]研究表明逐步降温可增强黄瓜体内CAT、POD和SOD等活性,减弱膜脂氧化伤害,维持黄瓜更高的抗氧化活性,减轻冷害发生。姚文思等[25]采用甘氨酸甜菜碱处理西葫芦能抑制POD活性,促进CAT和APX活性,减少活性氧产生和积累,维持西葫芦较高的抗氧化活性,减轻冷害发生。很多文献研究报道表明草酸处理延缓采后果蔬衰老及减轻冷害的作用与提高果蔬抗氧化系统作用有关。GARCA-PASTOR等[26]认为草酸处理会显著提高果蔬抗氧化酶活性,增强果蔬抗氧化系统,延缓果蔬衰老作用。表2列出了草酸处理对不同果蔬低温冷藏中抗氧化系统的影响及其与冷害的关系,草酸处理主要是通过提高采后果蔬中SOD、CAT、APX、GR等抗氧化酶活性,提高GSH等抗氧化物质含量,从而提高活性氧清除能力,减轻冷害的发生。
表2 草酸处理对果蔬抗氧化系统的影响及其与冷害的关系
Table 2 Effect of oxalic acid treatment on antioxidant system of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源15 mmol/L草酸处理白凤水蜜桃抑制POD活性,提高SOD、CAT和APX活性,提高GSH含量,减轻桃冷害发生[17]25 mmol/L草酸处理'Magenta'葡萄草酸处理提高了鲜食葡萄贮藏中APX、POD和CAT活性,提高了酶促和非酶促抗氧化系统并降低了ABA代谢,延缓了葡萄成熟和衰老过程[26]35 mmol/L草酸处理“Samar Bahisht Chaunsa”芒果提高CAT、POD和SOD活性,延缓软化,能维持较高总酚和抗氧化剂含量,保持较好品质[27]45 mmol/L草酸处理“Zill”芒果提高采后芒果SOD、CAT、APX、GR抗氧化酶活性和GSH含量而减轻芒果冷害发生[28]510 mmol/L草酸处理“欧美圆”番茄提高番茄果实SOD、CAT、POD活性,降低冷害发生[3]65 mmol/L草酸处理‘华优’猕猴桃草酸处理能降低脂氧合酶活性和丙二醛积累,显著提高了APX和GR活性,加强了活性氧清除能力,减轻了冷害的发生[9]75 mmol/L草酸处理“阳丰”甜柿提高甜柿果实SOD和CAT活性,降低脂氧合酶活性,减轻甜柿冷害发生[29]815 mmol/L草酸处理“西周密25号”哈密瓜提高维生素C和GSH含量;提高冷藏前期APX活性,冷藏中期POD、GR、SOD活性;增加GR、APX、POD酶基因表达水平,降低哈密瓜果实冷害程度[30]91.5%壳聚糖复合5 mmol/L 草酸处理“Rabbab-e- Neyriz”石榴复合处理提高了石榴果实总酚含量,提高了维生素C含量和CAT活性,减轻了石榴冷害发生[18]105 mmol/L草酸与间歇升温复合处理“白凤”水蜜桃草酸复合间歇升温处理减缓了水蜜桃APX活性下降,降低了活性氧的积累,降低了膜脂过氧化反应,减轻了桃果实冷害发生[17]115 mmol/L草酸处理、草酸复合冷激处理青椒草酸处理、草酸复合冷激处理能提高抗氧化酶活性,抑制活性氧积累,抑制丙二醛和膜相对透性增加,减轻冷害发生[31]
低温胁迫下采后果蔬为维持正常生命活动需要足够的能量,果蔬衰老过程与ATP含量、能荷水平密切相关。当果蔬受低温伤害时会引起线粒体结构和功能破坏,导致能量亏缺,果蔬代谢发生紊乱,最终引发细胞凋亡甚至死亡。果蔬中ATP水平下降会引起细胞膜损伤加重,导致采后果蔬冷害发生,其冷害程度与果蔬能量水平呈负相关,能量亏缺越多,果蔬冷害越严重[32]。WANG等[21]研究表明红阳猕猴桃Ⅱ期和Ⅲ期抗冷性较高可能与其能量代谢如酶活性、ATP水平和能量电荷较高有关。PAN等[33]研究了16、11、6、1 ℃贮藏条件下番木瓜果实冷害与能量代谢的关系,发现冷藏过程中木瓜果实处于较高的能量状态,有助于缓解冷害的发生。祝美云等[34]认为采后桃果实5 ℃贮藏冷害程度比0 ℃贮藏冷害程度严重的主要原因是贮藏于5 ℃下的桃果实ATP含量较低,能量亏缺严重,采用冷锻炼处理、低温预贮等方法能维持采后桃果实体内较高ATP含量和能荷水平,延缓膜脂质过氧化反应,从而减轻桃果实冷害发生。曹继璇等[35]采用减压结合1-MCP处理能维持较高的ATP和ADP含量,保证了桃果实能量生成速率,减轻了桃果实冷害。先前很多文献研究表明,草酸处理可以加强低温贮藏果蔬的氧化磷酸化,提高能量代谢相关酶的活性,保持较高的ATP产生效率,保持细胞膜的完整性,减少活性氧的积累,缓解果蔬冷害发生[3,36]。草酸处理对果蔬能量代谢的影响及其与冷害关系见表3,草酸处理能提高采后果蔬中ATP等能量物质含量、维持较高能荷水平,这是草酸减轻采后果蔬冷害的重要原因之一。琥珀酸脱氢酶、细胞色素C氧化酶、H+-ATPase和Ca2+-ATPase是线粒体膜上的关键呼吸酶,直接影响采后果蔬ATP的生成及能荷水平,这些酶活性下降会引起果蔬线粒体生成ATP受到阻碍,导致果蔬能荷下降,引起果蔬冷害发生,而草酸处理能显著提高采后果蔬琥珀酸脱氢酶、细胞色素C氧化酶、H+-ATPase和Ca2+-ATPase活性,提高果蔬三羧酸循环以及电子传递链的效率,生成更多的ATP等能量物质,维持采后果蔬较高的能荷水平,减轻采后果蔬冷害发生。
表3 草酸处理对果蔬能量代谢的影响及其与冷害关系
Table 3 Effects of oxalic acid treatment on energy metabolism of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源15 mmol/L草酸处理Zill芒果增加果实ATP含量和能荷水平,提高能量代谢相关酶H+-ATPase、Ca2+-ATPase、琥珀酸脱氢酶、细胞色素C氧化酶活性,维持较高的能量状态,降低冷害发生。[8]25 mmol/L草酸处理“白凤”水蜜桃增加果实ATP含量和能荷水平,提高能量代谢相关酶H+-ATPase、Ca2+-ATPase、琥珀酸脱氢酶、细胞色素C氧化酶活性,维持较高的能量状态,降低冷害发生。[37]35 mmol/L草酸与间歇升温复合处理“白凤”水蜜桃草酸复合间歇升温处理均能维持桃果实较高ATP水平和能量水平,减轻细胞能量亏缺,减轻冷害的发生。复合处理保持了较高的H+-ATPase和Ca2+-ATPase酶活性,维持了线粒体结构完整,维持了ATP合成效率,为保护细胞膜完整性提供了更多原动力。复合处理能维持较高的琥珀酸脱氢酶和细胞色素C氧化酶活性,维持线粒体正常功能,保证能量ATP的正常合成。[17]
采后果蔬中脯氨酸含量水平与其对低温的耐受力密切相关。低温胁迫下采后果蔬会积累脯氨酸,调节细胞渗透平衡,缓解低温胁迫对采后果蔬造成的伤害,减轻冷害发生。张爱琳等[38]认为脯氨酸含量增加是果蔬对低温的应急反应和对细胞损伤的结果,鸭梨采用早采收缓慢降温处理可减缓脯氨酸积累,使果肉和果心抗冷性提高,抑制低温伤害。刘芳等[39]认为冷害温度下采后白兰瓜果实脯氨酸含量要高于非冷害温度,说明低温胁迫会引起采后果实脯氨酸积累。姜玉等[40]研究表明冷激、水杨酸以及二者结合处理均能促进黄瓜果实脯氨酸的积累而降低采后黄瓜冷害的发生。脯氨酸在果蔬体内的积累主要受到合成代谢和分解代谢的调控,1-吡咯琳-5-羧酸合成酶和鸟氨酸转移酶是脯氨酸合成代谢过程中关键酶,脯氨酸脱氢酶是脯氨酸分解代谢过程中关键酶,低温胁迫下采后果蔬中1-吡咯琳-5-羧酸合成酶、鸟氨酸转移酶、脯氨酸脱氢酶活性影响脯氨酸积累以及果蔬的冷害[31]。HUANG等[41]研究表明外源精氨酸处理后木瓜果实中脯氨酸积累量较高,这可能与鸟氨酸转移酶和1吡咯琳-5-羧酸合成酶活性升高和脯氨酸脱氢酶活性被抑制有关,减轻了冷害发生。CAO等[42]采用10 μmol/L茉莉酸甲酯处理枇杷果实,黄琦辉等[43]采用25 μL/L丁香酚熏蒸青茄果实,均能提高1-吡咯琳-5-羧酸合成酶和鸟氨酸转移酶活性,降低脯氨酸脱氢酶活性,维持果蔬较高脯氨酸含量,提高果蔬的低温耐受性,降低冷害发生。先前很多研究也表明草酸处理降低采后果蔬冷害的发生与调控低温贮藏下果蔬脯氨酸代谢有关,表4列出了草酸处理对采后果蔬脯氨酸代谢的影响及其与冷害的关系。采后果蔬经草酸处理后能调控脯氨酸代谢,提高1-吡咯琳-5-羧酸合成酶和鸟氨酸转移酶活性,降低脯氨酸脱氢酶活性,引起低温胁迫下果蔬脯氨酸物质积累,提高果蔬抗冷性,减轻冷害发生。
表4 草酸处理对果蔬脯氨酸代谢的影响及其与冷害关系
Table 4 Effects of oxalic acid treatment on proline metabolism of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源15 mmol/L草酸处理“欧美圆”番茄草酸处理能调控采后番茄果实脯氨酸代谢,提高番茄果实中脯氨酸含量,减轻冷害发生[3]25 mmol/L草酸处理“Zill”芒果草酸处理能提高采后芒果脯氨酸含量,减轻芒果冷害发生,进一步研究发现芒果中脯氨酸积累主要是由于草酸处理提高了芒果果实脯氨酸代谢关键酶1-吡咯琳-5-羧酸合成酶、脯氨酸脱氢酶等酶活性而引起的[8,28]35 mmol/L草酸、草酸复合冷激处理青椒草酸处理及草酸复合冷激处理均能促进采后青椒果实脯氨酸积累,增加1-吡咯琳-5-羧酸合成酶和鸟氨酸-δ-氨基转移酶活性,降低脯氨酸脱氢酶活性,减轻青椒果实冷害[31]
低温胁迫下果蔬积累可溶性糖,通过参与调节渗透压、稳定细胞膜、抗氧化等提高果蔬对逆境胁迫的抵抗力。采后果蔬的糖代谢参与了抗冷性的诱导,采后果蔬能通过调节自身物质代谢增加可溶性糖质量浓度,减轻低温的伤害,因此采后果蔬的抗冷性及冷害发生与糖代谢密切相关。ZHAO等[44]研究发现近冰温贮藏能显著降低油桃果实蔗糖代谢相关酶的活性,使蔗糖含量升高,并维持较高的己糖激酶和果糖激酶活性,减轻油桃果实冷害发生。CAI等[45]研究表明低温锻炼能增加枇杷果实贮藏过程中可溶性糖含量而减少冷害发生。ZHAO等[46]采用茉莉酸处理能调节桃果实糖代谢增强桃果实耐冷性,增加可溶性糖含量。陈克明等[47]认为水蜜桃果实采后0 ℃低温贮藏期间果糖损失可能是加剧果实冷害发生的重要原因。草酸处理对采后果蔬糖代谢的影响及其与冷害的关系见表5,草酸处理能调控采后果蔬糖代谢过程,提高果蔬可溶性糖含量,尤其是葡萄糖和果糖的含量,从而减轻冷害发生。通过转录组分析表明,草酸处理对低温胁迫下采后果蔬碳水化合物代谢通路有较大影响,能显著影响糖代谢而减轻采后果蔬冷害。
表5 草酸处理对果蔬糖代谢的影响及其与冷害关系
Table 5 Effects of oxalic acid treatment on sugar metabolism of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源15 mmol/L草酸处理“华优”猕猴桃草酸处理猕猴桃果实能显著提高果实可溶性糖含量,降低猕猴桃果实冷害发生[48]25 mmol/L草酸处理“Diaogan”杏杏果实抗冷性的提高与糖代谢有关,5 mmol/L草酸处理能抑制蔗糖合成酶活性,提高蔗糖合酶裂解酶、酸性转化酶、山梨糖醇脱氢酶、山梨糖醇氧化酶活性,显著提高葡萄糖和果糖含量,降低蔗糖和山梨醇含量,提高杏果实的抗冷性[12]315 mmol/L草酸处理“西周密25号”哈密瓜低温胁迫下草酸缓解哈密瓜果实冷害的发生主要富集在碳水化合物代谢等通路上,其中蔗糖磷酸合成酶、蔗糖合成酶基因及葡萄糖苷酶基因显著正调控,说明草酸处理能调节采后哈密瓜果实糖代谢发生变化而降低哈密瓜果实冷害[49]
果蔬细胞壁主要由纤维素、半纤维素、木质素和果胶质等物质组成,正常情况下细胞壁组分在果胶甲酯酶(pectin methyl esterase,PME)、β-半乳糖苷酶(β-galactosidase,β-Gal)、多聚半乳糖醛酸酶(polygalacturonase,PG)、纤维素酶(cellulase,Cx)等作用下会发生降解,引起果蔬细胞壁结构解体,果蔬正常后熟软化[50],然而低温胁迫会造成果蔬细胞壁纤维素和果胶质等降解过程受阻,导致果蔬细胞壁代谢异常,引起果蔬冷害的发生。陈克明等[47]认为果胶类物质代谢异常是引起水蜜桃果实冷害的重要原因,桃果实受冷害严重时果实不能正常软化,无法完成正常的后熟过程,低温抑制了可溶性果胶的降解,减少了水溶性果胶的积累,果实软化能力降低,正常后熟进程被阻断。沈丽雯等[51]认为调控细胞壁代谢能提高采后果蔬抗冷性、减轻冷害程度,这主要是由于热激处理能有效推迟黄瓜果肉多聚半乳糖醛酸酶和纤维素酶活性上升,降低β-葡萄糖苷酶活性高峰,抑制果胶甲酯酶活性,延缓细胞壁组分降解,维持细胞壁结构完整性,减轻冷害症状。ZHAO等[52]研究表明硝普钠处理可通过调节半乳糖醛酸酶、木葡聚糖内转糖基酶、纤维素酶和β-半乳糖苷酶等细胞壁代谢相关酶活性来减轻桃果实冷害。由此可见,冷害的发生与果蔬细胞壁代谢相关。草酸处理对采后果蔬细胞壁物质代谢的影响及其与冷害的关系见表6,草酸处理能提高低温胁迫下采后果蔬抗冷性,维持果蔬细胞壁物质的正常降解,调节低温贮藏下采后果蔬细胞壁代谢,减轻果蔬冷害发生。低温胁迫下采后果蔬细胞壁代谢异常会引起细胞壁物质降解受阻,表现为果蔬硬度不正常增加,而草酸处理能调控采后果蔬细胞壁代谢酶活性,维持果蔬正常的细胞壁代谢过程,减轻果蔬冷害症状。
表6 草酸处理对果蔬细胞壁代谢的影响及其与冷害关系
Table 6 Effect of oxalic acid treatment on cell wall metabolism of fruits and vegetables and its relationship with chilling injury
序号处理方法处理材料研究结果文献来源15 mmol/L草酸处理“阳丰”甜柿采用草酸处理甜柿果实后,能维持低温下甜柿果胶的正常降解,促进甜柿原果胶含量下降和可溶性果胶含量增加,减轻冷害发生[29]25 mmol/L草酸处理“华优”猕猴桃采用5 mmol/L草酸处理“华优”猕猴桃果实,能显著降低猕猴桃冷藏期间木质素含量,有效抑制4-香豆酸辅酶A连接酶,这表明草酸处理能调控猕猴桃冷藏期间细胞壁代谢过程,这是草酸减轻猕猴桃果实冷害的原因之一[53]35 mmol/L草酸处理桂七芒果草酸处理能显著提高低温贮藏下桂七芒果果实细胞壁代谢相关酶(果胶甲酯酶、β-半乳糖苷酶、多聚半乳糖醛酸酶和纤维素酶)活性,维持低温贮藏下桂七芒果正常的细胞壁代谢过程,减轻冷害发生[50]
冷害的发生导致采后果蔬贮藏品质下降,严重影响其商品价值和贮藏期。草酸作为一种安全、低廉、方便、高效的果蔬保鲜剂,可以通过维持细胞膜结构和功能、提高抗氧化系统作用、提高渗透调节物积累、调控能量代谢、糖代谢、细胞壁物质代谢等作用而减轻冷害发生,延长采后果蔬贮藏期,降低采后果蔬贮藏损失,在采后果蔬的贮藏保鲜中有广阔的应用前景。虽然对于草酸减轻采后果蔬冷害的发生已有一定的研究,但尚不深入,今后应进一步从生理生化和分子水平上深入研究草酸处理对采后果蔬冷害的调控机制,特别是果蔬对低温环境的应答机制及信号传导途径,深入揭示草酸减轻果蔬冷害发生的机制,为草酸调控采后果蔬冷害的发生提供一定的理论参考。
[1] 侯梦阳, 胡文忠, 修志龙, 等.水杨酸处理减轻果蔬冷害机制的研究进展[J].食品与发酵工业, 2016, 42(10):257-261.
HOU M Y, HU W Z, XIU Z L, et al.Research progress on mechanisms in reducing chilling injury of postharvest fruits and vegetables by salicylic acid treatment[J].Food and Fermentation Industries, 2016, 42(10):257-261..
[2] 张英鹏, 杨运娟, 杨力, 等.草酸在植物体内的累积代谢及生理作用研究进展[J].山东农业科学, 2007, 39(6):61-67.
ZHANG Y P, YANG Y J, YANG L, et al.Research progress of oxalate accumulation and metabolism in plant and its physiological function[J].Shandong Agricultural Sciences, 2007, 39(6):61-67.
[3] LI P Y, YIN F, SONG L J, et al.Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid[J].Food Chemistry, 2016, 202:125-132.
[4] ALI M, LIU M M, WANG Z E, et al.Pre-harvest spraying of oxalic acid improves postharvest quality associated with increase in ascorbic acid and regulation of ethanol fermentation in kiwifruit cv.Bruno during storage[J].Journal of Integrative Agriculture, 2019, 18(11):2 514-2 520.
[5] SHAFIQUE M, KHAN A S, MALIK A U, et al.Exogenous application of oxalic acid delays pericarp browning and maintain fruit quality of litchi cv.‘gola’[J].Journal of Food Biochemistry, 2016, 40(2):170-179.
[6] ZHENG J, LI S G, XU Y H, et al.Effect of oxalic acid on edible quality of bamboo shoots (Phyllostachys prominens) without sheaths during cold storage[J].LWT, 2019, 109:194-200.
[7] ZHU Y Y, YU J, BRECHT J K, et al.Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage[J].Food Chemistry, 2016, 190:537-543.
[8] LI P Y, ZHENG X L, LIU Y, et al.Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress[J].Food Chemistry, 2014, 142:72-78.
[9] 梁春强, 吕茳, 饶景萍.草酸处理对采后“华优”猕猴桃果实耐冷性的影响[J].食品科学, 2017, 38(19):230-235.
LIANG C Q, LYU J, RAO J P.Effect of postharvest oxalic acid treatment on chilling resistance in ‘huayou’ kiwifruits under low temperature stress[J].Food Science, 2017, 38(19):230-235.
[10] 王静, 茅林春, 李学文, 等.草酸处理对哈密瓜采后冷害及品质的影响[J].食品研究与开发, 2017, 38(16):167-172.
WANG J, MAO L C, LI X W, et al.Research of the effects of oxalic acid-treatment on the chilling injury and quality of harvested hami melon[J].Food Research and Development, 2017, 38(16):167-172.
[11] 郭雨萱, 郝利平, 卢银洁.不同处理对茄子采后冷害及相关酶活性的影响[J].山西农业大学学报(自然科学版), 2016, 36(9):668-672;684.
GUO Y X, HAO L P, LU Y J.Effects of different treatments on chilling injury and relevant enzymes activities of eggplant[J].Journal of Shanxi Agricultural university(Natural Science Edition), 2016, 36(9):668-672;684.
[12] WANG Z, CAO J K, JIANG W B.Changes in sugar metabolism caused by exogenous oxalic acid related to chilling tolerance of apricot fruit[J].Postharvest Biology and Technology, 2016, 114:10-16.
[13] RAI A, KUMARI K, VASHISTHA P.Umbrella review on chilling injuries:Post-harvest issue, cause, and treatment in tomato[J].Scientia Horticulturae, 2022, 293:110710.
[14] WANG Z Q, PU H L, SHAN S S, et al.Melatonin enhanced chilling tolerance and alleviated peel browning of banana fruit under low temperature storage[J].Postharvest Biology and Technology, 2021, 179:111571.
[15] 薛锡佳, 李佩艳, 宋夏钦, 等.草酸处理减轻杧果采后果实冷害的机理研究[J].园艺学报, 2012, 39(11):2 251-2 257.
XUE X J, LI P Y, SONG X Q, et al.Mechanisms of oxalic acid alleviating chilling injury in harvested mango fruit under low temperature stress[J].Acta Horticulturae Sinica, 2012, 39(11):2 251-2 257.
[16] LI J Y, HAN Y, HU M, et al.Oxalic acid and 1-methylcyclopropene alleviate chilling injury of ‘Youhou’ sweet persimmon during cold storage[J].Postharvest Biology and Technology, 2018, 137:134-141.
[17] 朱虹. 间歇升温和草酸复合处理减轻桃果实冷害的作用及其机理研究[D].南京:南京农业大学, 2013.
ZHU H.Study on the effect of intermittent warming combined with oxalic acid on chilling injury of peach fruit[D], Nanjing:Nanjing Agricultural University, 2013.
[18] EHTESHAMI S, ABDOLLAHI F, RAMEZANIAN A, et al.Enhanced chilling tolerance of pomegranate fruit by edible coatings combined with malic and oxalic acid treatments[J].Scientia Horticulturae, 2019, 250:388-398.
[19] LIANG S M, KUANG J F, JI S J, et al.The membrane lipid metabolism in horticultural products suffering chilling injury[J].Food Quality and Safety, 2020, 4(1):9-14.
[20] 王静, 茅林春, 杨璐, 等.草酸处理对采后哈密瓜果实膜脂代谢的影响[J].中国食品学报, 2019, 19(8):189-198.
WANG J, MAO L C, YANG L, et al.Effect of oxalic acid on reduction of membrane lipids metabolism of hami melon′s fruit in postharvest[J].Journal of Chinese Institute of Food Science and Technology, 2019, 19(8):189-198.
[21] WANG F, YANG Q Z, ZHAO Q F, et al.Roles of antioxidant capacity and energy metabolism in the maturity-dependent chilling tolerance of postharvest kiwifruit[J].Postharvest Biology and Technology, 2020, 168:111281.
[22] 邵婷婷, 张敏, 刘威, 等.采后热水处理对青椒果实低温贮藏期间活性氧代谢及抗氧化物质的影响[J].食品与发酵工业, 2019, 45(12):133-139.
SHAO T T, ZHANG M, LIU W, et al.Effects of postharvest hot water treatment on active oxygen metabolism and antioxidative substances in green peppers during low temperature storage[J].Food and Fermentation Industries, 2019, 45(12):133-139.
[23] 赵昱瑄, 张敏, 姜雪, 等.短时热处理对低温逆境下黄瓜不同部位的冷害及活性氧代谢影响[J].食品与发酵工业, 2020, 46(7):180-187.
ZHAO Y X, ZHANG M, JIANG X, et al.Effects of short time heat treatment on chilling injury and reactive oxygen metabolism in different parts of cucumber under low temperature[J].Food and Fermentation Industries, 2020, 46(7):180-187.
[24] 代慧, 何晓梅, 段志蓉, 等.泡沫箱包装的逐渐降温功能对黄瓜冷害的抑制[J].食品与发酵工业, 2021, 47(18):77-85.
DAI H, HE X M, DUAN Z R, et al.The gradual cooling of foam box packaging inhibits cucumber chilling injury[J].Food and Fermentation Industries, 2021, 47(18):77-85.
[25] 姚文思, 金鹏, 许婷婷, 等.外源甘氨酸甜菜碱处理对西葫芦果实冷害和品质的影响[J].核农学报, 2018, 32(9):1 781-1 788.
YAO W S, JIN P, XU T T, et al.Effects of exogenous glycine betainetreatment on chilling injury and quality of Cucurbita pepo L.under low temperature storage[J].Journal of Nuclear Agricultural Sciences, 2018, 32(9):1 781-1 788.
[26] GARCA-PASTOR M E, GIMÉNEZ M J, SERNA-ESCOLANO V, et al.Oxalic acid preharvest treatment improves colour and quality of seedless table grape ‘magenta’ upregulating on-vine abscisic acid metabolism, relative vv NCED1 gene expression, and the antioxidant system in berries[J].Frontiers in Plant Science, 2021, 12:740240.
[27] RAZZAQ K, KHAN A S, MALIK A U, et al.Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest[J].LWT-Food Science and Technology, 2015,63(1):152-160.
[28] LI P Y, ZHENG X L, CHOWDHURY M G F, et al.Prestorage application of oxalic acid to alleviate chilling injury in mango fruit[J].HortScience, 2015, 50(12):1 795-1 800.
[29] 李佳颖. 草酸与1-甲基环丙烯处理对“阳丰”甜柿采后冷害的控制作用[D].杨凌:西北农林科技大学, 2018.
LI J Y.Effects of oxalic acid and 1-methylcyclopropene treatments on the chilling injury of ‘Youhou’ sweet persimmon during cold storage[D].Yangling:Northwest Agricultural and Forestry University, 2018.
[30] WANG J, MAO L C, LI X W, et al.Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var.reticulatus Naud.) by regulating enzymes involved in antioxidative pathways[J].Scientia Horticulturae, 2018, 241:201-208.
[31] WANG F, YANG Q Z, ZHAO Q F, et al.Cold shock treatment with oxalic acid could alleviate chilling injury in green bell pepper by enhancing antioxidant enzyme activity and regulating proline metabolism[J].Scientia Horticulturae, 2022, 295:110783.
[32] PAN Y G, ZHANG S Y, YUAN M Q, et al.Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage[J].Food Science and Nutrition, 2019, 7(3):1 123-1 130.
[33] PAN Y G, YUAN M Q, ZHANG W M, et al.Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage[J].Postharvest Biology and Technology, 2017, 125:181-187.
[34] 祝美云, 白欢, 梁丽松, 等.冷锻炼处理减轻低温贮藏桃果实冷害的能量代谢机理[J].农业工程学报, 2012, 28(23):257-264.
ZHU M Y, BAI H, LIANG L S, et al.Mechanism of energy metabolism on cold acclimation treatment for alleviating chilling injury of peach fruit during low temperature storage[J].Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(23):257-264.
[35] 曹继璇, 张颖, 娄湘琴, 等.减压结合1-甲基环丙烯处理通过调控中华寿桃能量代谢控制其采后冷害[J].食品与发酵工业, 2020, 46(12):213-219.
CAO J X, ZHANG Y, LOU X Q, et al.Combination of hypobaric and 1-methylcyclopropene treatment can delay post-harvest chilling injury of Prunus persica L.cv.Zhonghuashoutao by regulating its energy metabolism[J].Food and Fermentation Industries, 2020, 46(12):213-219.
[36] CAO J X, ZHANG Y, LOU X Q, et al.Combination of hypobaric and 1-methylcyclopropene treatment can delay post-harvest chilling injury of Prunus persica L.cv.Zhonghuashoutao by regulating its energy metabolism[J].Food and Fermentation Industries, 2020, 46(12):213-219.
[37] JIN P, ZHU H, WANG L, et al.Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents[J].Food Chemistry, 2014, 161:87-93.
[38] 张爱琳, 胡小松, 李晓丹, 等.降温方法对鸭梨采后果肉与果心抗冷性的影响[J].食品与机械, 2011, 27(2):114-118.
ZHANG A L, HU X S, LI X D, et al.Effects of cold-resisting property on the meat and fruits of postharvest YaLi pears with different cooling methods[J].Food and Machinery, 2011, 27(2):114-118.
[39] 刘芳, 陈年来, 李仲芳, 等 低温对白兰瓜果实膜脂过氧化和渗透调节物质的影响[J].食品科学, 2007, 28(5):339-343.
LIU F, CHEN N L, LI Z F, et al.Effects of chilling injury to honey dew fruits on membrane lipid peroxidation and osmotic constituents adjustment[J].Food Science, 2007, 28(5):339-343.
[40] 姜玉, 张苗, 汤静, 等.冷激结合水杨酸处理对黄瓜果实冷害及能量和脯氨酸代谢的影响[J].核农学报, 2021, 35(1):128-137.
JIANG Y, ZHANG M, TANG J, et al.Effects of cold shock combined with salicylic acid treatment on chilling injury, energy and proline metabolism of postharvest cucumber fruit[J].Journal of Nuclear Agricultural Sciences, 2021, 35(1):128-137.
[41] HUANG Q, SONG H L, PAN Y G, et al.Exogenous arginine enhances the chilling tolerance in postharvest papaya fruit by regulating arginine and proline metabolism[J].Journal of Food Processing and Preservation, 2021, 45(10):e15821.
[42] CAO S F, CAI Y T, YANG Z F, et al.MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents[J].Food Chemistry, 2012, 133(4):1 466-1 470.
[43] 黄琦辉, 蔺凯丽, 黄琦, 等.丁香酚熏蒸对青茄采后冷害和脯氨酸代谢的影响[J].核农学报, 2018, 32(5):907-915.
HUANG Q H, LIN K L, HUANG Q, et al.Effect of eugenol fumigation on chilling injury and proline metabolism in green eggplant[J].Journal of Nuclear Agricultural Sciences, 2018, 32(5):907-915.
[44] ZHAO H D, JIAO W X, CUI K B, et al.Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism[J].Food Chemistry, 2019, 289:426-435.
[45] CAI Y T, CAO S F, YANG Z F, et al.MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit[J].Postharvest Biology and Technology, 2011, 59(3):324-326.
[46] ZHAO Y Y, SONG C C, BRUMMELL D A, et al.Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism[J].Food Chemistry, 2021, 338:128005.
[47] 陈克明, 陈伟, 杨震峰.桃果实采后可溶性糖和果胶类物质的变化与低温冷害的关系[J].核农学报, 2013, 27(5):647-652.
CHEN K M, CHEN W, YANG Z F.The relationship between the changes in souble sugars and pectins contents and chilling injure of postharvest peach fruit[J].Journal of Nuclear Agricultural Sciences, 2013, 27(5):647-652.
[48] 梁春强. 草酸处理对采后猕猴桃果实冷害控制效果的研究[D].杨凌:西北农林科技大学, 2017.
LIANG C Q.Effect of oxalic acid treatment on chilling injury in harvested kiwifruit[D].Yangling:Northwest Agricultural and Forestry University, 2017.
[49] 王静, 刘彩红, 吕卓, 等.草酸诱导哈密瓜采后耐冷性的转录组构建与分析[J].食品工业科技, 2019, 40(17):103-109.
WANG J, LIU C H, LYU Z, et al.Transcriptome construction and analysis of cold-resistant induced by oxalic acid in postharvest hami melon fruit[J].Science and Technology of Food Industry, 2019, 40(17):103-109.
[50] 李佩艳,尹飞,党东阳, 等.草酸处理对桂七芒果冷害及细胞壁代谢的影响[J].核农学报, 2020, 34(12):2 742-2 748.
LI P Y, YIN F, DANG D Y, et al.Effect of oxalic acid treatment on chilling injury and cell wall metabolism of guiqi mango[J].Journal of Nuclear Agricultural Sciences, 2020, 34(12):2 742-2 748.
[51] 沈丽雯, 刘娟, 董红敏, 等.热激处理减轻黄瓜冷害与细胞壁代谢的关系[J].食品工业科技, 2015, 36(23):329-332;338.
SHEN L W, LIU J, DONG H M, et al.Impact of heat shock treatment on cucumber cell wall composition and cell wall hydrolase activity[J].Science and Technology of Food Industry, 2015, 36(23):329-332;338.
[52] ZHAO Y Y, TANG J X, SONG C C, et al.Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit[J].Plant Physiology and Biochemistry, 2021, 169:63-69.
[53] 李桦. 低温贮藏猕猴桃果实木质化发生特点及其调控[D].杨凌:西北农林科技大学, 2017.
LI H.Characteristic and regulation on lignification of kiwifruit stored at low temperature[D].Yangling:Northwest Agricultural and Forestry University, 2017.