大曲是中国白酒酿造中重要的发酵剂和粗酶制剂,其发酵和贮存是酿酒功能菌群定向及相应酶系代谢调控的关键过程[1]。贮存过程是大曲最复杂、最关键的环节,大量的微生物、酶系及挥发性物质在外界条件的胁迫作用下,不断演替而趋于平衡[2],奠定后续多边平衡过程的重要基础。迄今对大曲成熟的判断主要通过感官经验,受人为因素影响较大,故大曲贮存过程中微生物及代谢组分动态规律的研究是行业关注的重点。如HU等[3]揭示了白云边高温大曲140 d周期内的微生物变化趋势,耐热微生物是优势菌,尤其在高温期,贮存的温度相对稳定,但微生物群落结构变化显著;GUAN等[4]解析了浓香型大曲贮存过程中微生物的改变,Weissella、Lactobacillus、Pediococcus、Bacillus和Acetobacter是优势细菌,而Pichia和Thermoascus是优势真菌,相对人工踩曲,机械大曲的真菌多样性略高且更稳定;FAN等[5]解析了芝麻香型大曲贮存过程群落变迁规律,Absidia、Trichocomaceae-norank和Rhizopus是优势菌,经贮存,群落结构演变为更适合白酒的多边发酵,不愉快的风味物质消失,独特风味物质增多。但迄今对大曲贮存过程中微生物互作关系和理化性质、风味物质与微生物相关性的研究鲜见报道。
本研究探究了2种类型大曲贮存过程中微生物群落结构、理化性质及挥发性代谢组分的变化趋势。2类大曲分别是传统机械大曲(B曲)和基于Bacillus licheniformis的强化大曲(F曲)。应用生物信息学技术研究了优势种属互作关系、微生物与理化指标、风味物质的相关性,旨在解析B曲和F曲贮存过程中群落和代谢组分变化的异同,科学确定强化曲贮存周期。
大曲的制备:2类大曲,生产于泸州老窖股份有限公司大曲生产基地,常温贮存周期为6个月。强化大曲,接种分离自太空曲的分离株Bacillus licheniformis菌悬液,按菌悬液∶小麦=1∶100(mL∶g),使其初始接种浓度达到8×105 CFU/g。传统大曲(自然制曲)作为对照。
样品收集:每隔30 d,按照文献[6]的方法分别从曲堆上、中、下层取样粉碎,混合均匀,每次取200 g,并送至实验室保藏(-20和-80 ℃)至检测。从转房30 d(初始成曲)每隔30 d取样,强化和传统大曲样品分别标注为F-30~F-180和B-30~B-180。
辛酸甲酯,北京百灵威化学试剂有限公司;其他化学试剂,均为分析纯,本地化学商品试剂供应商。
Trace 1300-TSQ9000气相色谱-质谱联用仪,美国赛默飞世尔公司;50/30 μm DVB/CAR/PDMS固相微萃取头,美国Supelco公司。
1.4.1 大曲微生物群落组成检测
按照Fast DNA SPIN提取试剂盒提得基因组DNA,用1%琼脂糖凝胶电泳测其纯度,取3 μL经NanoDrop ND—1000分光光度计测定A260/A280,检验是否有RNA和蛋白质污染。用338F和806R对细菌的16S rRNA基因高变区V3~V4区域和真菌的ITS5和ITS1区域进行PCR扩增。扩增体系:25 μL:5×reaction buffer和5×GC buffer 各5 μL,0.25 μL DNA聚合酶(5 U/μL,Q5 High-Fidelity),2 μL dNTPs(2.5 mmol/L),正反引物各1 μL(10 μmol/L),2 μL DNA模板,8.75 μL ddH2O。细菌扩增程序为98 ℃预热2 min,98 ℃变性15 s,55 ℃退火30 s,72 ℃延伸30 s,一共25个循环,最后72 ℃保持5 min。真菌扩增程序:95 ℃预热3 min,95 ℃变性30 s,61 ℃退火30 s,72 ℃延伸45 s,共32个循环,最后72 ℃保持10 min。PCR产物琼脂糖凝胶电泳进行目的片段纯化回收。纯化样品送派森诺生物科技有限公司在2×300 Illumina MiSeq平台上测序。
原始序列使用QIIME pipeline进行处理,依据CAPORASO等[7]描述的方法去除一些低质量序列。最后使用UCLUST把高质量的序列聚成不同的操作性分类单元(operational taxonomic units,OTU)[8]。多样性是指某个群落或生境内部的物种多样性,Chao1和Observed species指数用于反映菌群丰度,Shannon和Simpson指数用于表征菌群多样性。
1.4.2 理化性质的检测
水分、酸度、液化力、糖化力、发酵力和酯化力参照QB/T 4257—2011《酿酒大曲通用分析方法》进行检测,每种样品取3组平行样进行检测。
1.4.3 挥发性成分的检测
样品的前处理:参考DING等[9]的方法稍作修改。称取样品1.00 g于25 mL顶空瓶中,加入10 μL的辛酸甲酯(0.007 9 g/100 mL)作为内标。置于恒温搅拌器中500 r/min、(60±1) ℃预热平衡15 min,吸附提取50 min。结束后,将DVB/CAR/PDMS固相微萃取头插入GC进样口解吸5 min,检测挥发性组分。
GC-MS检测操作条件:40 ℃保持5 min,以4 ℃/min升至100 ℃,再以6 ℃/min升至230 ℃保持10 min,进样口温度为270 ℃。离子源温度为300 ℃,质谱扫描范围为m/z 35~400。
检测质谱数据通过与标准谱库(NIST2017)对照进行组分鉴定,对匹配度大于800的物质予以分析。采用峰面积归一化法确定挥发性组分的相对含量。
冗余分析(redundancy analysis,RDA):使用Canoco 5.0软件对优势微生物群落与风味组分及理化性质进行关联分析。微生物互作关系分析:使用IBM SPSS Statistics 19软件对优势微生物属(相对丰度>0.5%)采用Spearman算法构建共发生网络,并使用Cytoscape(v3.6.1)进行可视化。
由表1所示,贮存过程中B曲和F曲的群落α-多样性的变化趋势类似,两者的细菌和真菌丰富度都是交替降升,F曲的细菌群落丰富度和多样性显著高于B曲,真菌的则相反。2种类型大曲贮存过程显著改变了细菌群落的丰富度和多样性,尤其是贮存120 d时细菌丰富度显著增大。贮存过程中B曲的真菌多样性略减,F曲的则略增。
表1 贮存过程不同大曲微生物群落α-多样性指数的差异
Table 1 Differences in α-diversity indexes among Daqu samples during storage process
编号丰富度指数多样性指数Chao 1指数Observed speciesShannon指数Simpson指数细菌真菌细菌真菌细菌真菌细菌真菌B-30796.2580.69718.0076.104.543.020.860.84B-60350.6196.60290.4094.904.112.740.860.76B-90488.7482.49442.1081.304.552.850.880.77B-1203 295.0341.002 349.7041.006.423.020.890.82B-1503 156.2052.512 460.1052.007.022.770.930.76B-1804 530.3680.693 131.5080.007.492.950.940.75F-301 014.1958.75912.8057.105.781.490.920.46F-60864.0046.40697.0045.605.791.250.950.39F-90959.8557.60760.5055.905.921.510.950.47F-1205 892.3144.634 051.8043.509.191.180.990.29F-1504 405.5344.853 588.7044.608.721.470.990.40F-1803 980.0257.022 959.2056.808.441.890.980.53
2种类型大曲优势细菌主要是Firmicutes(厚壁菌门)和Actinobacteria(放线菌门),但经贮存后属水平上的差异显著扩大,可能与Bacillus的起始丰度和来源有关,B曲主要来源于环境及原料[10],而F曲则是接种B.licheniformis使Bacillus丰度增高,改变了群落结构。
细菌属水平上共有435个OTU,其中丰度>0.5%的有9种(图1-a)。B曲中优势细菌属包括魏氏斯菌属(Weissella)和刺糖多孢菌属(Saccharopolyspora),Weissella在30 d的相对丰度是38.94%,贮存至120 d则增至54.47%,而在180 d又降至41.89%。Saccharopolyspora相对丰度从30 d(29.87%)到90 d(12.46%)持续下降,而在180 d增高到22.00%。Kroppenstedtia在30和90 d检测到的相对丰度分别为10.16%和8.72%,但在其余几个跟踪点丰度<1.00%。F曲经贮存后,Bacillus相对丰度从19.96%非单调增至48.42%,Bacillus能分泌淀粉酶、糖化酶等多种水解酶[11]。Thermoactinomyces非单调减至9.17%,但始终高于B曲(1.09%~3.30%),该菌属能分泌多种高温蛋白酶,且能形成各类风味物质[12],Staphylococcus在整个贮存过程中从14.10%减少至1.76%。
a-细菌;b-真菌
图1 从属水平分析不同大曲贮存过程的细菌和真菌组成
Fig.1 Bacterial and fungal community at genus level of different Daqu during storage
2种类型大曲中共检出92个真菌属OTU,相对丰度>0.5%的真菌属共有10种,如图1-b所示。优势真菌包括Ascomycota(子囊菌门)和Mucoromycota(毛霉门)。贮存后,B曲的优势真菌中,Pichia相对丰度从48.67%降至19.06%,Thermoascus和Thermomyces非单调递增至47.58%和16.44%(180 d),Rhizomucor相对丰度从22.78%逐渐降至6.99%,Aspergillus在贮存前期较稳定4.01%~4.75%,从90至180 d非单调增至8.03%。F曲的优势真菌为Thermomyces(71.87%~87.28%)和Thermoascus(6.73%~18.50%),它们均能高效降解碳水化合物[13],与F曲升温快有关。此外,2种类型大曲均在60~120 d时检出了曾多在高温大曲中常见的节担菌属(Wallemia)[14],但相对丰度仅为0.5%~1.5%。随着贮存时间的推移,微生物结构逐渐达到稳定状态,这也印证了大曲贮存的重要性。
如图2所示,9个细菌属和10个真菌属构建了90对微生物互作关系,B曲和F曲分别有48和44对正相关关系。B曲丰度较高的Weissella与Rhizomucor、Pichia和Lichtheimia呈负相关,而与Aspergillus、Rhizopus和Thermomyces呈正相关。Saccharopolyspora与多数微生物呈负相关,另外,Lactobacillus与Pichia、Rhizomucor、Wallemia和Lichtheimia呈正相关,而与Aspergillus和Rhizopus呈负相关。F曲的群落互作关系与B曲差异较大,Weissella与Wallemia和Pichia转为正相关,Lactobacillus仅与Lichtheimia呈较强正相关,Bacillus与多数真菌属(Thermomyces、Aspergillus、Pichia和Thermoascus)呈正相关,这可能有利于酯类物质的生成[15]。另外,Rhizomucor和Lichtheimia与Wallemia、Lactobacillus和Thermoactinomyces呈正相关,这类丝状真菌具有较强次级产物代谢能力[16]。Thermoactinomyces在F曲中丰度更高,其能够分泌水解酶,加速底物降解,且与Rhizopus、Wallemia、Lichtheimia和Hyphopichia呈正相关,这有利于大曲成熟进程[17]。2种大曲中Saccharopolyspora与多数优势种属呈负相关但F曲中强度减弱。综上,接种B.licheniformis后使微生物互作关系改变,进而使有益的风味物质积累。
a-传统大曲;b-强化大曲
图2 传统大曲和强化大曲在贮存过程中微生物的主要关系网络图
Fig.2 Relationship network analysis of microorganisms in traditional and fortified Daqu during storage
进一步分析2种类型大曲贮存过程理化性质的变化结果如表2所示。贮存过程中,2种类型大曲的酸度均非单调减,且在120 d达到峰值,B曲和F曲分别为(0.89±0.00)和(0.94±0.01)mmol/10 g,贮存至180 d又分别降至(0.54±0.01)和(0.67±0.02)mmol/10 g,其变化趋势与贮存过程中乳酸菌类丰度变化规律是一致的。F曲的发酵力随贮存时间先增后降,且显著高于B曲,同时酸度和发酵力呈反比例关系,在90~120 d时发酵性能最高。F曲糖化力[(654.87±2.39)~(822.96±3.05)U]和液化力[(0.70±0.01)~(1.09±0.00)U]显著高于B曲[(505.27±1.65)~(737.39±1.65)U和(0.61±0.00)~(0.92±0.00)U],且变化趋势均先增后降,这可能与F曲有更高丰度的Bacillus有关[11]。此外,F曲的酯化力始终低于B曲,可能与F曲中Aspergillus丰度更低有关[18]。
表2 贮存过程不同大曲理化性质变化
Table 2 Differences in physicochemical properties among Daqu samples during storage
编号水分/%酸度/[mmol·(10 g)-1]液化力/U糖化力/U发酵力/U酯化力/UB-3010.01±0.002a0.66±0.01f0.92±0.00b505.27±1.65g0.17±0.02a5.35±0.69fB-608.93±0.000bc0.61±0.01g0.79±0.00c737.39±0.69c0.24±0.06a4.99±0.45cdeB-909.94±0.001ab0.77±0.00c0.75±0.00d712.44±2.07cd0.25±0.02a4.66±0.43bcdeB-12010.37±0.000a0.89±0.00b0.61±0.00f702.23±1.45cd0.24±0.02a4.57±0.24cdeB-1509.82±0.007ab0.62±0.01g0.79±0.01c582.24±6.11f0.22±0.03b3.61±0.61deB-1809.74±0.009abc0.54±0.01i0.74±0.01d681.60±0.78de0.19±0.04a5.14±0.79efF-309.44±0.005bc0.69±0.01e0.91±0.01b654.87±2.39e0.30±0.03d2.51±0.05abF-608.68±0.001ac0.74±0.01d0.94±0.01b858.01±3.11ab0.27±0.01cd2.73±0.17bcdF-909.88±0.001ab0.62±0.00g0.70±0.01e871.71±1.72a0.34±0.02bcd3.07±0.09aF-12010.39±0.000a0.94±0.01a1.09±0.01a868.09±2.15a0.29±0.02bcd2.87±0.06abcF-1509.88±0.006ab0.57±0.01h0.72±0.00de822.96±3.05b0.28±0.03d2.50±0.11abcF-1809.87±0.006ab0.67±0.02f0.82±0.00c728.64±6.11c0.25±0.02bc3.35±0.21bcde
注:同列不同小写字母代表差异显著(P<0.05)
贮存过程中,从大曲样品中共检出了89种挥发性成分。其中F曲检出74种,而B曲检出48种,可分为酯、醇、酸、醛、酮、吡嗪、烷烃、酚和其他类(图3)。B曲中挥发性组分的含量在(4 888.22±298.83)~(9 804.45±354.37)μg/kg,高于F曲[(2 552.34±364.33)~(6 384.41±840.76)μg/kg]。贮存过程中挥发性含量变化趋势均是先增再降后保持稳定,B曲贮存60 d后,其总含量达到峰值,为(6 384.09±84.07)μg/kg,而F曲在90 d才达到峰值,其含量是(9 804.45±35.44)μg/kg(图3)。酯类始终是大曲优势组分,醇类在B曲中优势为十六醇(11.18~60.80 μg/kg),而F曲中主要是2,3-丁二醇(24.06~102.80 μg/kg)和苯乙醇(12.07~81.84 μg/kg),其中赋予大曲玫瑰香味的苯乙醇可由真菌代谢产生[19],且被认为是小分子信号物质参与微生物群落定向进化的调控[20]。另外,F曲中的吡嗪类总含量先增后降[(813.35±33.11)~(1 418.14±75.58)μg/kg],尤其是主要成分四甲基吡嗪高于B曲,该物质是中国白酒中的重要香气化合物[21],也赋予了人体有益健康的功能。
图3 大曲贮存过程中挥发性物质含量变化
Fig.3 Change in flavor components of Daqu during storage
贮存后,F曲中有更多种类的酯类,且均随贮存过程非单调增,而B曲中的非单调减,2种大曲的酸类种类均增加,仅在120 d后的F曲中检出6,9,12-十八碳三烯酸、3-甲基丁酸和2-甲基-2-戊烯酸。另外F曲中的吡嗪种类随贮存时间增加(180 d有8种),仅在后期检出了2,5-二甲基吡嗪、2,3,5-三甲基-6-乙基吡嗪和2-乙烯基-6-甲基-吡嗪,而B曲中仅在60 d前检出了2种吡嗪(三甲基吡嗪、四甲基吡嗪),可能是由于接入的B.licheniformis能代谢产生更多且更稳定的吡嗪。由此可见,接种B.licheniformis制成的强化大曲,经贮存后对挥发性总含量和种类的形成有积极作用。
通过RDA揭示微生物与理化性质和挥发性成分关系结果如图4所示。贮存过程中,B曲中霉菌属和嗜热真菌属降解底物的能力较高,使得酸度与Aspergillus和Thermomyces等呈正相关(图4-a),而F曲中Bacillus和Thermomyces的丰度提高,能分泌更多的水解酶类[11],因此强化后酸度和液化力与Bacillus和Thermomyces呈正相关(图4-b)。2种类型大曲酯化力均与Pichia、Rhizomucor和Thermoactinomyces呈正相关,不同的是B曲中Bacillus与糖化力和发酵力呈正相关而在F曲中为负相关。2种大曲中酯类物质均与Saccharopolyspora、Pseudonocardiaceae和Pichia呈正相关,与曾报道Pichia有较强的产酯能力[22]一致。B曲中为主的十六醇与Weissella和Aspergillus密切相关,而F曲中2,3-丁二醇、苯乙醇与Saccharopolyspora、Bacillus和Thermomyces呈正相关。吡嗪类(三甲基吡嗪、四甲基吡嗪、2,3-二甲基吡嗪和2-乙基-3,5-二甲基吡嗪)作为F曲的特征性物质与Bacillus、Thermomyces显著正相关。Saccharopolyspora在F曲中丰度较低(3.14%~7.11%),但与多数挥发性成分呈正相关,这可能与Saccharopolyspora能产生活性成分促进挥发性物质形成有关[23]。总体而言,B.licheniformis强化后改变菌群互作关系而使理化性质发生改变,同时对挥发性组分有正面的影响。
a-B曲;b-F曲
图4 传统大曲和强化大曲微生物与理化及风味的关联性分析
Fig.4 Correlation analysis of microorganism and flavor in different Daqu
基于PICRUSt2预测2种类型大曲菌群代谢途径中关键酶的差异如图5所示。这些关键酶主要涉及糖化、醇代谢和四甲基吡嗪的合成的代谢途径。B.licheniformis的介入上调了与碳水化合物代谢有关的水解酶类活力,包括α-淀粉酶、纤维素酶、磷酸葡萄糖激酶及1,6-葡萄糖苷酶等。这些酶活力的上调有益淀粉、纤维素等大分子的降解。其降解产物经糖酵解途径(Embden-Meyerhof pathway,EMP)、三羧酸循环及脂肪酸代谢等途径被转化为各种风味成分。细菌群落经EMP将其碳水化合物水解物转化为醇类的能力强于真菌群落,而苯丙氨酸经芳香醇脱氢酶催化产物之一的苯乙醇则受真菌的调控更强[24]。F曲中乙酰乳酸合成酶和谷氨酰胺酶丰度显著上调,使得EMP产生的丙酮酸通过乙酰乳酸合成酶的酶促作用形成α-乙酰乳酸,再经α-乙酰乳酸脱羧酶催化转化为乙偶姻,随之与氨基酸的含氮化代谢物合成四甲基吡嗪[25]。因2,3-丁二醇和乙偶姻可在丁二醇脱氢酶催化下相互转化,使得F曲中2,3-丁二醇的含量增高,进而调控乙偶姻和四甲基吡嗪含量[26]。
图5 热图分析大曲代谢途径关键酶的差异性
Fig.5 Difference of key enzymes in Daqu metabolic pathway analyzed by heat map
贮存后,F曲的细菌群落的丰富度和多样性与B曲的差异增大。强化后,F曲的Bacillus丰度提高到48.42%(180 d),其优势真菌为Thermoascus和Thermomyces;B曲优势细菌为Weissella(41.89%),优势真菌是Pichia。接种B.licheniformis使贮存过程中Weissella与Wallemia和Pichia的关系转为正相关。同时显著提高了水解力和发酵力,且贮存后提高挥发性成分含量,尤其是四甲基吡嗪的含量显著提高。F曲吡嗪类含量增高与其Bacillus和Thermomyces的丰度增高有关。基于PICRUSt2预测佐证了B.licheniformis的介入上调了与碳水化合物代谢有关的水解酶类活力,其降解物经EMP产生的丙酮酸转化为乙偶姻,随之与氨基酸的含氮化代谢物合成四甲基吡嗪的贡献。
[1] GOU M,WANG H Z,YUAN H W,et al.Characterization of the microbial community in three types of fermentation starters used for Chinese liquor production[J].Journal of the Institute of Brewing,2015,121(4):620-627.
[2] FAN G S,FU Z L,SUN B G,et al.Roles of aging in the production of light-flavored Daqu[J].Journal of Bioscience and Bioengineering,2019,127(3):309-317.
[3] HU Y L,DUN Y H,LI S N,et al.Changes in microbial community during fermentation of high-temperature Daqu used in the production of Chinese ‘Baiyunbian’ liquor[J].Journal of the Institute of Brewing,2017,123(4):594-599.
[4] GUAN T W,YANG H,OU M Y,et al.Storage period affecting dynamic succession of microbiota and quality changes of strong-flavor Baijiu Daqu[J].LWT,2021,139:110544.
[5] FAN G S,FU Z L,TENG C,et al.Effects of aging on the quality of roasted sesame-like flavor Daqu[J].BMC Microbiology,2020,20(1):1-16.
[6] 吴秋霞,黄钧,江东材,等.基于共培强化提高浓香大曲吡嗪类及4-乙基愈创木酚组分含量的研究[J].食品科技,2017,42(5):2-6.
WU Q X,HUANG J,JIANG D C,et al.Exploring the improvement of contents of pyrazines and 4-EG in Luzhou-flavor Daqu based on fortifying by co-culture[J].Food Science and Technology,2017,42(5):2-6.
[7] CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
[8] EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2 460-2 461.
[9] DING X F,WU C D,HUANG J,et al.Characterization of interphase volatile compounds in Chinese Luzhou-flavor liquor fermentation cellar analyzed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (HS-SPME/GC/MS)[J].LWT-Food Science and Technology,2016,66:124-133.
[10] DU H,WANG X S,ZHANG Y H,et al.Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter[J].International Journal of Food Microbiology,2019,297:32-40.
[11] LI Z M,CHEN L,BAI Z H,et al.Cultivable bacterial diversity and amylase production in two typical light-flavor Daqus of Chinese spirits[J].Frontiers in Life Science,2015,8(3):264-270.
[12] XIAO Z J,MA C Q,XU P,et al.Acetoin catabolism and acetylbutanediol formation by Bacillus pumilus in a chemically defined medium[J].PLoS One,2009,4(5):e5627.
[13] MCCLENDON S D,BATTH T,PETZOLD C J,et al.Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J].Biotechnology for Biofuels,2012,5(1):1-10.
[14] 李静心,王艳丽,何宏魁,等.基于高通量测序技术解析高温大曲和中高温大曲的真菌群落结构[J].食品与发酵工业,2018,44(12):52-59.
LI J X,WANG Y L,HE H K,et al.High-throughput sequencing revealed fungal community structures at high temperature Daqu and medium temperature Daqu[J].Food and Fermentation Industries,2018,44(12):52-59.
[15] AHMED E H,RAGHAVENDRA T,MADAMWAR D.A thermostable alkaline lipase from a local isolate Bacillus subtilis EH 37:Characterization,partial purification,and application in organic synthesis[J].Applied Biochemistry and Biotechnology,2010,160(7):2 102-2 113.
[16] 方程,杜海,徐岩.大曲丝状真菌的物种多样性及其次级代谢产物的合成潜力[J].食品与发酵工业,2019,45(15):1-8.
FANG C,DU H,XU Y.Diversity of Daqu filamentous fungi and their potentials for synthesizing bioactive compounds[J].Food and Fermentation Industries,2019,45(15):1-8.
[17] 冯慧军,翟磊,程坤,等.高温放线菌属研究进展[J].食品与发酵工业,2017,43(11):257-261.
FENG H J,ZHAI L,CHENG K,et al.The research advance of genus Thermoactinomyces[J].Food and Fermentation Industries,2017,43(11):257-261.
[18] ZHENG X W,TABRIZI M R,NOUT M J R,et al.Daqu—A traditional Chinese liquor fermentation starter[J].Journal of the Institute of Brewing,2011,117(1):82-90.
[19] HAZELWOOD L A,DARAN J M,VAN MARIS A J A,et al.The Ehrlich pathway for fusel alcohol production:A century of research on Saccharomyces cerevisiae metabolism[J].Applied and Environmental Microbiology,2008,74(8):2 259-2 266.
[20] CHEN H.Feedback control of morphogenesis in fungi by aromatic alcohols[J].Genes & Development,2006,20(9):1 150-1 161.
[21] FAN W L,XU Y,ZHANG Y H.Characterization of pyrazines in some Chinese liquors and their approximate concentrations[J].Journal of Agricultural and Food Chemistry,2007,55(24):9 956-9 962.
[22] ZHANG Q,HUO N R,WANG Y H,et al.Aroma-enhancing role of Pichia manshurica isolated from Daqu in the brewing of Shanxi Aged Vinegar[J].International Journal of Food Properties,2017,20(9):2 169-2 179.
[23] XIE M W,LV F X,MA G X,et al.High throughput sequencing of the bacterial composition and dynamic succession in Daqu for Chinese sesame flavour liquor[J].Journal of the Institute of Brewing,2020,126(1):98-104.
[24] FAN G S,CHENG L J,FU Z L,et al.Screening of yeasts isolated from Baijiu environments for 2-phenylethanol production and optimization of production conditions[J].3 Biotech,2020,10(6):1-17.
[25] ZHU B,XU Y,FAN W L.Study of tetramethylpyrazine formation in fermentation system from glucose by Bacillus subtilis XZ1124[J].New Biotechnology,2009,25:S237.
[26] ZHANG X,YANG T W,LIN Q,et al.Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation[J].World Journal of Microbiology and Biotechnology,2011,27(12):2 785-2 790.