人体肠道中寄生有约100万亿微生物,是一个复杂的生态系统。作为人类“第二基因组”, 肠道菌群可参与调节宿主代谢和免疫,对维护宿主健康具有重要作用[1-2]。目前,已鉴定的肠道微生物群包含拟杆菌门 (Bacteroidetes)、厚壁菌门 (Firmicutes)、放线菌门 (Actinobacteria)、变形菌门 (Proteobacteria)、疣微球菌门(Verrucomicrobia)等几十个门,其中拟杆菌门和厚壁菌门占肠道菌群的90%以上。健康的肠道菌群具有稳定和多样化的物种结构。现代社会饮食和生活方式的改变、抗生素滥用等导致肠道微生物群稳态失调和功能变化,与许多疾病的发生密切相关[3]。
猴头菇(Hericium erinaceus),又名猴头菌、猴蘑等,是齿菌科(Hydnaceae)猴头属的一种高等真菌[4]。猴头菇性平味甘,具有“助消化、利五脏”作用,作为一种名贵的药食兼用菌,在我国及其他亚洲国家已经有两千多年的历史。猴头菇主要含有多糖、蛋白质、维生素、矿物质和膳食纤维等成分,其中,猴头菇多糖作为一种新型益生元,近年来受到了越来越多关注[5]。本文总结了不同来源猴头菇多糖的结构特征及其对肠道菌群多样性的影响,综述了猴头菇多糖在调节免疫、抗炎症性肠病(inflammatory bowel disease, IBD)、影响神经系统、抗肥胖、降胆固醇及抗幽门螺杆菌等方面的功效及可能机制,并阐述了其在药品、保健品及功能性食品领域的应用现状和前景,为猴头菇多糖调控肠道微生物稳态的深入探索提供了理论依据,也为该类益生元制剂的开发利用提供了参考。
自上世纪70年代猴头菇多糖的结构被首次报道以来[6],国内外研究人员在其分离和结构鉴定方面进行了大量工作。通过整合化学分析、色谱和光谱技术等方法,目前已从人工培养或野生的猴头菇子实体、菌丝体和发酵培养液中分离和鉴定了许多不同结构的多糖。HE等[7]系统综述了已报道的三十余种猴头菇多糖的结构,提供了有关其分子质量、单糖组成、糖基连接方式等信息。
从猴头菇子实体、菌丝体和发酵培养液中得到的多糖在结构上具有不同特征。从猴头菇子实体中分离的多糖通常是由葡萄糖(glucose,Glc)、木糖(xylose,Xyl)、鼠李糖(rhamnose,Rha)、甘露糖(mannose,Man)、岩藻糖(fucose,Fuc)、半乳糖(galactose,Gal)、阿拉伯糖(arabinose,Ara)等2种或2种以上单糖组成的杂多糖,分子质量约为13~1 000 kDa[7-8]。如,LIU等[9]从猴头菇子实体中分离得到猴头菇多糖HEFP-2b,主要由岩藻糖、半乳糖、葡萄糖和甘露糖组成,分子质量为32.52 kDa,具有→6)-α-D-Glcp-(1→和→4)-β-D-Galp-(1→和→3,6) -α-D-Manp骨架以及(1→和→6)-β-D-Galp、(1→和→4)-α-D-Manp支链单元,末端残基为葡萄糖和岩藻糖。LIAO等[10]也报道了一种新型猴头菇多糖HEPN,分子质量为12.714 kDa,主要由甘露糖(5.13%)、葡萄糖(43.02%)和半乳糖(51.85%)组成,含有(1→)-Glc、(1→4)-Glc、(1→6)-Glc、(1→6)-Man、(1→3,6)-Man以及(1→6)-Gal 6种连接方式。从猴头菇子实体中也发现了多种仅由葡萄糖组成的葡聚糖。有些来自猴头菇子实体的多糖还与蛋白质相结合[11-12],如含有β-(1→3)和(1→6)糖苷链的半乳糖基葡聚糖蛋白和木聚糖蛋白。此外,不同提取方法对猴头菇多糖结构也具有影响。通过微波法提取得到的猴头菇多糖主要为(1→3)-β-D-葡聚糖,而传统热水提取法得到的猴头菇多糖主要为(1→6)-β-D-葡聚糖以及低分子质量岩藻半乳聚糖[13-14]。
与子实体不同的是,猴头菇发酵菌丝体纯化得到的多糖主要是杂多糖和糖蛋白[15]。组成多糖的单糖主要是阿拉伯糖、木糖、甘露糖、半乳糖和葡萄糖。SHAO等[16]从猴头菇菌丝体中分离得到一种新型猴头菇多糖EP-1,分子质量约为3.1 kDa,具有α-D-Glc(1→3)和β-D-Glc(1→3)骨架结构,C-4位置连接有β-D-Glc(1→3)和α-D-Gal-(1→3)支链,末端残基为α-D-Man。CUI等[17]从猴头菇菌丝中分离得到一种分子质量为14.4 kDa的酸性β-糖蛋白,蛋白/多糖比为10∶1,含有D-葡萄糖、L-鼠李糖、D-半乳糖、D-甘露糖,主链由(1→4)连接的半乳糖残基和葡萄糖残基构成。关于猴头菇发酵菌丝体分离的均多糖的报道较少。
从猴头菇培养液中纯化得到的胞外多糖通常是杂多糖、葡聚糖和甘露聚糖。LEE等[18]从采用乙醇沉淀法从猴头菇培养液中提取到一种水溶性粗多糖,通过DEAE纤维素离子交换色谱和琼脂糖凝胶渗透色谱分离,得到一种低分子质量多糖HEB-AP Fr I,具有β-1,3支链-β-1,2-甘露聚糖结构。SHANG等[19]采用超滤和凝胶渗透色谱方法,从猴头菇发酵浓缩液中分离得到一种分子质量为46.9 kDa的均多糖,结构为无支链的α-D-葡聚糖,重复单元为{[-(1→4)Glu]3-(1→6)Glu}n。
猴头菇多糖结构复杂,对肠道菌群的调节作用差异很大。迄今为止,关于猴头菇多糖对肠道菌群组成的影响研究尚处于起步阶段,猴头菇多糖结构与肠道菌群组成之间的关系尚未得出明确结论。表1总结了已报道的猴头菇多糖结构及对肠道菌群的影响。
表1 猴头菇多糖的来源、结构及对肠道菌群的影响
Table 1 The sources and structural features of H.erinaceus polysaccharides and their influences on gut microbiota
来源分子质量/Da单糖组成对肠道菌群影响门水平属/种水平参考文献子实体8.23×105Fuc/Man/Glc/Gal=0.30/1.30/9.80/0.30Firmicutes ↑Actinobacteria ↑Proteobacteria ↓Bifidobacterium ↑Faecalibacterium ↑Escherichia-Shigella ↓Blautia ↑Butyricicoccus ↑Klebsiella ↓[20]子实体1.67×104Fuc/Man/Glc/Gal=1.70/0.50/10.60/10.40Firmicutes ↑Bacteroidetes ↑Actinobacteria ↑Proteobacteria ↓Bifidobacterium ↑Faecalibacterium ↑ Escherichia-Shigella ↓ Blautia ↑Butyricicoccus ↑Klebsiella ↓[20]子实体4.77×103Fuc/Man/Glc/Gal=1.20/1.30/23.70/0.30Firmicutes ↑Bacteroidetes ↑Proteobacteria ↓Faecalibacterium ↑Escherichia-Shigella ↓Blautia ↑Butyricicoccus ↑Klebsiella ↓[20]菌丝体8.67×104Glc/Gal/Ara/Xyl/Rha/Man=76.71/14.26/4.04/2.57/1.32/1.14Bacteroidetes ↑Verrucomicrobia ↓Actinobacteria ↓Clostridiales ↑Akkermansia ↑Desulfovibrio ↑[21]菌丝体4.60×103Man/Glu/Gal=6.5/32.38/52.56Euryarchaeota ↑Methanobrevibacter ↑Candidatus_Soleaferrea ↑Lactobacillus reuteri ↑Streptococcus lutetiensis ↓[22]菌丝体3.1×103Man/Glc/Gal= 6.42/67.87/1.00Firmicutes ↑Bacteroidetes ↑Proteobacteria ↑Actinobacteria ↑Allobaculum ↑Desulfovibrionales ↑[8]菌丝体9.9×103Fuc/Ara/Gal/Glu/Man/Xyl=0.85/5.72/7.11/84.36/0.91/1.05Proteobacteria ↓Akkermansia muciniphila ↑[11]发酵液4.78×103Man/GalA/Glc/Fuc=1.07/3.83/31.37/1Deferribacteres ↑Actinobacteria ↑Cyanobacteria ↑Firmicutes ↓Proteobacteria ↓Bacteroidetes ↑ Ruminococcaceae ↑Lachnospiraceae ↑Staphylococcus ↓Enterobacter ↓[23]
注:GalA, 半乳糖醛酸 (galacturonic acid);↑表示丰度增加,↓表示丰度降低(下同)
猴头菇多糖调节肠道菌群作用与其分子质量和单糖组成有关,在一定程度上还受到多糖的分支度及所连接的官能团的影响。高分子质量多糖由于对细胞膜的穿透能力差,其活性弱于低分子质量多糖。LIU等[24]研究发现,酶法修饰是提高猴头菇多糖活性的一种有效方法,采用内切鼠李糖苷酶对猴头菇多糖进行酶解,可增强腹膜巨噬细胞的活化,提高猴头菇多糖的免疫调节功能。CHEN等[25]从猴头菇子实体中分离得到2种不同分子质量的多糖,并研究了它们对乙醇致胃溃疡大鼠模型的胃保护作用,结果表明,大分子β-葡聚糖H6PC20(2 390 kDa)具有较好的修复防御作用,而低分子质量α-杂多糖HPB-3(15 kDa)具有较强的抗炎作用。猴头菇多糖中的β-(1→3)-葡聚糖含量可能对其生物活性存在影响。研究发现,相比热水法和生理盐水提取的猴头菇多糖HEP-W和HEP-S,采用柠檬酸从猴头菇子实体中提取的HEP-C,具有更强的抗氧化活性和α-糖苷酶、α-淀粉酶抑制活性,后者β-(1→3)-葡聚糖含量更高[26]。主链为(1→6)链吡喃葡萄糖、侧链为(1→3)链吡喃葡萄糖的猴头菇多糖结构对其抗肿瘤和免疫刺激作用至关重要。含有—NH2、—COOH和SO等官能团的HIPS1相比无上述官能团结构的HIPS2,对链脲佐菌素诱导的糖尿病小鼠有更好降血糖作用及胰腺、肝脏、肾脏保护作用[27]。猴头菇多糖的羟乙基化衍生物可增强RAW264.7巨噬细胞活化,使NO、IL-6及TNF-α的产生增加,增强诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表达,提高猴头菇多糖的免疫调节功能[28]。此外,一些猴头菇多糖金属复合物相比修饰前显示了更好的活性和稳定性。例如,采用化学修饰方法在猴头菇多糖羧基上引入Bi3+得到的多糖铋复合物(Bi-HEP)具有更强的抗幽门螺杆菌活性[29]。猴头菇多糖与螯合锌离子形成的多糖锌螯合物(ZnHEP),稳定性和抗氧化活性比猴头菇多糖显著提高。富硒猴头菇冻干粉可显著促进小鼠肠道中乳酸菌(Lactobacillus)和双歧杆菌(Bifidobacteria)增殖,停止给药3 d后肠道双歧杆菌数量恢复到原始水平,但乳酸菌数量仍显著高于对照组[30]。
综上,猴头菇多糖对肠道菌群的调节作用与其分子质量、单糖组成、糖苷键类型、分支度、官能团以及形成复合物等密切相关。葡萄糖、甘露糖、半乳糖、岩藻糖、木糖、阿拉伯糖、鼠李糖等是最常见的单糖,且(1→3)、(1→6)和(1→4)连接出现频率最高。然而,能够刺激特定肠道细菌的多糖结构及其水解后的特征多糖谱尚不明确,阻碍了该领域的进一步研究。因此,围绕肠道菌群调控作用的猴头菇多糖的构效关系研究亟待深入。
猴头菇多糖可通过影响宿主肠道菌群组成和代谢发挥多种健康促进作用,其益生功效涉及调节免疫、抗炎症性肠病、影响神经系统、抗肥胖、降胆固醇、抗幽门螺杆菌等多个方面。猴头菇多糖通过促进肠道益生菌增殖、抑制致病菌生长、增加短链脂肪酸(short-chain fatty acids, SCFA)生成、增强肠道免疫及激活特定信号通路等途径发挥作用。
越来越多研究表明真菌多糖对人体免疫系统具有显著的低毒或无毒作用。真菌多糖可以激活免疫相关细胞,促进细胞因子和趋化因子的产生,在免疫调节中发挥多种作用。猴头菇多糖是一种潜在的天然免疫调节剂,可通过NF-кB、MAPK和PI3K/Akt信号通调节免疫功能。免疫荧光染色显示,猴头菇多糖的酶解产物可显著促进巨噬细胞对NO、CD40和CD86的吞噬作用,增强环磷酰胺诱导免疫抑制小鼠的免疫调节功能[24]。小鼠巨噬细胞(RAW264.7)和人肠上皮细胞系(Caco-2)模型也显示,猴头菇多糖能促进NO、IL-6、IL-10、TNF-α的产生,提高免疫活性[26]。对小鼠、犬及人的肠道菌群的研究均表明,猴头菇多糖可显著改变肠道微生物多样性和丰富度,提高产SCFA细菌含量。
SCFA是肠道微生物发酵膳食纤维的最终产物,是联系肠道菌群与宿主的重要桥梁。SCFA具有改善肠道黏膜屏障、刺激免疫抑制细胞因子生成的作用[31],是调节和维持宿主免疫系统的信号分子[32]。SCFA中的乙酸、丙酸和丁酸可抑制促炎细胞因子的产生,激活Treg细胞,对改善慢性炎症性疾病具有重要作用[33]。乙酸和丁酸还可通过激活GPR41和GPR43,抑制组蛋白脱乙酰酶活性,发挥抗炎作用[8]。猴头菇多糖能显著提高环磷酰胺诱导的免疫抑制小鼠模型的产SCFA细菌水平[34]。此外,猴头菇多糖与微纳米技术相结合或特定分子的功能化将通过靶向递送、增加肠道通透性等提高其免疫调节作用。例如,多壁碳纳米管(multi-walled carbon nanotubes, MWCNTs)封装猴头菇多糖可有效调节小鼠免疫应答反应,显著提高免疫球蛋白水平,促进脾脏淋巴细胞活化[35];硒化猴头菇多糖的聚乳酸-羟基乙酸共聚物纳米颗粒可增强猴头菇多糖的免疫活性,显著增强巨噬细胞吞噬作用以及CD40和CD86的表达[36]。
肠道菌群紊乱可导致宿主肠道黏膜屏障破坏,增加脂多糖(lipopolysaccharide,LPS)分泌。LPS通过肠系膜静脉进入循环系统,作用于靶器官和组织,引起肠道炎症,甚至诱发癌变[37]。研究表明,猴头菇多糖可逆转IBD、溃疡性结肠炎(ulcer colonitis, UC)等实验动物模型的肠道菌群紊乱,显著增加肠道中抗炎细菌丰度,如乳杆菌、拟杆菌(Bacteroides)、双歧杆菌、普雷沃氏菌(Prevotella)等,降低促炎细菌和病原体水平,如棒状杆菌(Corynebacterium)、瘤胃球菌(Ruminococcus)、葡萄球菌(Staphylococcus)、肠杆菌属(Enterobacter)、弯曲杆菌(Campylobacter)、志贺氏菌(Shigella)等,维护肠道屏障的完整性。乳酸杆菌可通过调节肠道菌群、刺激自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞缓解葡聚糖硫酸钠诱导的结肠炎[38]。短双歧杆菌通过降低肿瘤坏死因子TNF-α、白细胞介素IL-1β、IL-6水平及恢复肠道菌群平衡改善结肠炎症状[39]。钟千贵等[40]在体外考察了不同浓度猴头菇多糖对保加利亚乳杆菌(Lactobacillus bulgaricus)、青春双歧杆菌(Bifidobacterium adolescentis)、嗜热链球菌(Streptococcus thermophilus)3种胃肠道益生菌生长的影响,并体外模拟人胃和肠道环境分析了猴头菇多糖对这3种菌在胃肠道模拟环境中的生长影响,结果表明,0.3%~0.5%(体积分数)的猴头菇多糖可促进胃肠道益生菌的生长,而7%(体积分数)的猴头菇多糖可提高益生菌对胃肠道消化液的耐受性。猴头菇多糖也可显著提高溃疡性结肠炎大鼠模型的乙酸和丁酸水平。
阿尔茨海默病(Alzheimer′s disease, AD)患者的肠道菌群与健康人不同,厚壁菌门数量减少,拟杆菌门增加,双歧杆菌减少,一些肠道细菌在属水平上的变化与AD脑脊液中的生物标志物存在显著相关[41]。LIU等[42]的研究发现,与健康人相比,遗忘性轻度认知障碍及痴呆患者的粪便微生物多样性降低,临床AD严重程度评分与微生物组改变之间存在显著相关,变形菌门中的γ -变形杆菌、肠杆菌目(Enterobacteriales)等促炎细菌的富集与AD患者相关。肠道菌群降解多糖产生的SCFA不仅能维持肠道屏障功能和肠道稳态,还能直接或间接影响脑功能。丙酸可增加肠来源的调节性T细胞数量,进一步通过增加髓鞘合成对中枢神经系统产生影响[43]。猴头菇提取物有助于维持肠道菌群的稳定性和多样性,促进厚壁菌门和变形菌门的比例平衡,增加乳杆菌(Lactobacillus)等益生菌以及阿克曼菌属(Akkermanisa)等具有抗炎作用的细菌数量,减少肠杆菌科(Enterobacteriaceae)等机会致病菌数量,调节宿主代谢和胰岛素水平,减缓AD进展。此外,CHENG等[44]报道了分子质量分别为1.7×105、1.1×105 Da 的2种猴头菇多糖(HEPS)对淀粉样蛋白β诱导的大鼠嗜铬细胞瘤细胞(PC12)的神经毒性具有保护作用。猴头菇多糖可清除活性氧,减少磷酸化p38 MAPK/CHOP参与内质网应激信号通路介导的神经元死亡[45]。
最近的研究表明,β-葡聚糖可被肠道微生物组发酵成具有免疫调节活性的SCFA[46]。由表2可知,猴头菇多糖可降低血清总胆固醇、甘油三酯和低密度脂蛋白胆固醇及肝脏胆固醇水平,提高血清高密度脂蛋白胆固醇水平以及粪便胆汁酸、SCFA(特别是丙酸和丁酸)含量。猴头菇多糖可显著减少氧化应激损伤,增加益生菌,降低肠杆菌等有害菌相对丰度,降低病原体感染。猴头菇多糖通过影响SCFA代谢,调节肝脏和血液中血脂水平,从而降低腹部和肝脏脂肪含量。
表2 猴头菇多糖调节肠道菌群的功效与可能机制
Table 2 Effects and potential mechanisms of H.erinaceus polysaccharides by regulating gut microbiota
功效实验对象肠道菌群组成的变化肠道菌群相关代谢物变化可能机制参考文献免疫调节作用健康成人产SCFA菌(Kineothrix aly-soides, Gemmiger formicilis, Fusicatenibacter saccharivorans, Eubacterium rectale, Faecalibac-terium prausnitzii) ↑Streptococcus thermophilus ↓ Bacteroides caaccae↓ Romboutsia timonensis↓NA提高肠道菌群多样性,显著降低血清碱性磷酸酶、低密度脂蛋白、尿酸和肌酐水平[53]正常小鼠Lachnospiraceae ↑, Akkermansi-aceae ↑, Rikenellaceae ↓, Bacteroidaceae ↓NA改变肠道菌群多样性和丰富度,通过NF-кB、MAPK和PI3K/Akt信号通路调节免疫反应[54]正常小鼠Ruminococcaceae ↑,Lachnospir-aceae ↑,Staphylococcus ↓,Enterobacter ↓NA通过激活氯离子通道,增加黏液量和肠道液体分泌,调节肠道菌群,改善肠道健康[23]老年犬Bacteroidetes ↑,Firmicutes ↓,F/B ratio ↓,Campylobacteraceae ↓,Streptococcus ↓,Tyzzerella ↓,Campylobacter ↓NA调节肠道微生态,增强免疫[55]免疫抑制小鼠Alistipse ↑, Muribaculaceae ↑, Lachnospiracea ↑, Lachnospir-aceae_NK4A136_group ↑, Ru-minococcaceae ↑, Ruminococ-caceae_UCG-014 ↑, Lactobacil-lus ↓, Bacteroides ↓, Allopre-votella ↓提高SCFA水平显著提高免疫缺陷小鼠体重和免疫器官指数,调节肠道菌群组成,增加产SCFA菌,提高SCFA水平,增强血清免疫细胞因子,上调TLR4/NF-κB通路关键蛋白(TLR4和 NF-κB p65)[34]溃疡性结肠炎小鼠Proteobacteria ↓Akkermansia muciniphila ↑影响氨基酸代谢和糖代谢,增加SCFA含量降低细胞和小鼠结肠TNF-α、IL-2β、IL-264、iNOS和COX-7 s水平;抑制NLRP3炎症小体、NF-κB、AKT和MAPK通路激活;调节肠道菌群组成和代谢[13]溃疡性结肠炎大鼠恢复肠道Verrucomicrobi、Fir-micutes、Bacteroidetes和Pro-teobacteria水平提高SCFA水平(乙酸、丁酸)调节肠道菌群组成,提高SCFA水平,抑制结肠组织GPR41和GPR43表达,增强免疫[8]
续表2
功效实验对象肠道菌群组成的变化肠道菌群相关代谢物变化可能机制参考文献抗炎症性肠病作用自发性溃疡性结肠炎食蟹猴Euryarchaeota ↑,Methanobre-vibacter ↑,Candidatus_Solea-ferrea ↑, Methanobrevibacter_smithii ↑ NA增加体重,缓解腹泻,减轻结肠组织隐窝脓肿和浆细胞浸润,改善肠道炎症和营养状况(降低粪便隐血和血清C-反应蛋白水平F,提高血清白蛋白水平),重塑肠道菌群[22]炎症性肠病大鼠Bacteroides↑, Bifidobacteri-um↑, Prevotella↑, Para-bacteroides↑, Coprococcus↑, Desulfovibrio↑, Lactobacillus ↑, Corynebacterium↓, Staphylococcus↓, Ruminococ-cus↓, Roseburia↓, Dorea↓, Sutterella ↓ NA显著改善血清促炎细胞因子(IL-1α, IL-2, IL-8, IL-10, IL-11, IL-12, TNF-γ, TNF-α, VGEF, MIP-α, M-CSF),降低结肠髓过氧化物水平,改善结肠Foxp3、NF-κB p65、TNF-α和IL-10 蛋白表达;减少促炎微生物,增加抗炎微生物,促进双歧杆菌及其他有益菌生长[56]炎症性肠病小鼠Clostridiales ↑, Akkermansia ↑;Desulfovibrio ↑ NA下调氧化应激的关键标志物,如NO、丙二醛、总超氧化物歧化酶和髓过氧化物酶等,抑制IL-6、IL-1β和TNF-α 分泌,下调COX-2、iNOS及相关mRNA表达,阻断结肠组织NF-κB, MAPK及 PI3K/AKT 信号通路;维护肠道微生态平衡,保护肠屏障完整性[21]抗炎症性肠病对神经系统疾病的作用 阿尔兹海默症小鼠Lactobacillus ↑,Akkermansia ↑,Akkermanisa ↑, Blautia ↑, Oscillospira ↑, Deha-lobacterium ↑, Ackermansia ↑, Allobaculum ↑, Coprococ-cus ↑,Enterobacteriaceae ↓, Desulfovibrio ↓, Alistipes ↓, Rikenellaceae ↓血清代谢组学分析发现100+差异代谢物,主要集中在脂质代谢相关通路显著改善大鼠学习记忆能力,减轻脑肿胀和神经元凋亡,下调AD标志物Tau、Aβ1-42的表达。靶向肠道菌群,增加了具有抗炎作用的细菌和益生菌丰度,降低了致病菌、机会致病菌及具有促炎作用的细菌的丰度,调节代谢、炎症、免疫和胰岛素水平[57]抗肥胖和降胆固醇作用 肉鸡 NA盲肠内容物中SCFA含量增加,粪便中胆汁酸含量增加降低血清总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,提高高密度脂蛋白胆固醇水平;降低肝脏、腿和胸肌组织总胆固醇含量。肝脏3-羟基-3-甲基戊二酰辅酶A还原酶表达降低[58]肉鸡Lactobacilli ↑,Bifidobacteria ↑,Escherichia coli ↓ NA提高肉仔鸡肠道益生菌含量,抑制大肠杆菌生长,改善营养物质利用,促进生长[59]肉鸡Bacillus licheniformis ↑, Ba-cillus subtilis ↑,Lactobacillus plantarum ↑ NA提高抗氧化能力,增加血清总抗氧化能力、超氧化物歧化酶和谷胱甘肽过氧化物酶水平,降低丙二醛水平,提高平均每日增重量/平均每日进食量。提高抗炎能力,增加血清IL-1受体拮抗剂(IL-1ra)和IL-10水平,降低IL-1β和血清肿瘤坏死因子TNF-α水平。增加益生菌,降低致病菌感染[60]肉鸡Lactobacilli ↑, Bifidobacteria ↑, Escherichia coli ↓盲肠内容物SCFA(丙酸和丁酸)含量显著升高显著提高平均日增重,降低血清胆固醇、甘油三酯和低密度脂蛋白胆固醇水平,升高高密度脂蛋白胆固醇水平,降低腹部脂肪比例和肝脏脂肪含量[61]
肠道微生物群可能是抗H.pylori感染治疗的潜在靶点[47]。H.pylori感染可改变结肠pH值,使拟杆菌门丰度减少,厚壁菌门和变形菌门增加,引起脱硫弧菌(Desulfovibrio)、普雷沃氏菌、嗜血杆菌(Haemophilus)、拟杆菌、副萨特氏菌 (Parasutterella)、阴沟肠杆菌(Enterobacter cloacae)等变化[48-49]。H.pylori感染也可通过改变胃肠道激素分泌重塑肠道代谢,并影响肠道微生物组[50]。H.pylori感染肠道中唾液乳杆菌(Lactobacillus salivarius)的增加和嗜酸乳杆菌(Lactobacillus acidophilus)的减少,与胃酸分泌减少有关[51]。猴头菇多糖对H.pylori有较强抑制作用[52]。ZHU等[29]发现Bi3+-猴头菇多糖(BiHEP)复合物与枸橼酸铋钾有相似的抗H.pylori活性,可减少铋中毒风险及铋剂引发的癫痫、肌阵挛等不良反应。迄今为止,关于猴头菇多糖通过调节肠道菌群组成及其代谢发挥抗H.pylori感染作用尚未见报道,本课题组在此方面进行了系统性工作,研究结果正在整理报道。
由于猴头菇多糖的健康促进作用,目前已开发出多种含猴头菇多糖的药品、保健品及功能食品。表3列举了部分已获公开的发明专利。一些含有猴头菇多糖的复合真菌多糖制剂以及中药复方制剂被用作保护胃黏膜、治疗萎缩性胃炎和抗幽门螺杆菌感染的药物或保健产品。王利丽等[62]报道了鲜猴头菌口服液能显著增强小鼠学习记忆能力,提高免疫抑制小鼠细胞免疫应答水平,并对由糖尿病引起的体重下降有改善作用。猴头菇多糖也用于制备具有减肥降脂功效的营养代餐粉,以及能够改善胃肠功能的乳酸菌制剂、固体饮料、咀嚼片及压片糖果等,具有养护胃肠、加速代谢、提高机体免疫力等作用,具有良好的市场应用前景。
表3 猴头菇多糖益生作用的应用
Table 3 Applications of H.erinaceus polysaccharides in probiotics
应用领域专利名称专利公开号公开时间/年药品 一种猴头菌多糖及其制备方法及其用途CN111892663A2022一种调理肠胃的药物及其制备方法CN113842438A2021一种猴头菇多糖螯合锌微胶囊及其制备方法CN110051647A2019一种具有护胃功效的中药复方制剂及其制备方法CN109528957A2019一种治疗萎缩性胃炎的胶囊剂及其制备方法CN105944089A2016一种具有扶正固本、健脾和胃、增强免疫力功能的复合真菌多糖制剂CN103860580A2014胃肠黏膜保护胶CN101933894A2011保健品 一种具有调节肠道菌群功能的猴头菇多糖的制备方法CN114634581A2022一种对胃黏膜损伤有辅助保护功能的组合物及其应用CN114392337A2022一种猴头菇多糖冻干粉、猴头菇多糖含片及制备方法CN112471315A2021改善胃肠功能的膳食纤维咀嚼片及其制备方法CN110122887A2019一种具有调节肠道菌群和保护胃黏膜功能的粉剂及其制备方法与应用 CN107752031A2018一种减肥降脂营养代餐粉及其制备方法CN104366480A2015增强免疫力修复胃肠功能保护心脑肝肾细胞的营养剂CN101810845A2010健胃猴头菇多糖保健胶囊CN101574513A2009功能性食品一种胃黏膜黏附的益生菌缓释微球、制备方法及用于制备抗幽门螺旋杆菌或缓解胃炎的食品CN115553469A2023一种含有猴头菇的速溶调味料及其制备方法CN112167599A2021一种猴头菇多糖小肽益生菌固体饮料及其生产方法CN112956626A2021一种具有保护胃黏膜作用的猴头菇组合物的制备方法与应用CN112841308A2021一种猴头菇压片糖果及其制备方法与用途CN110326700A2019一种改善儿童及婴幼儿消化吸收的营养食品CN108902677A2018一种调理脾胃功能的多糖啤酒及其制备工艺CN105733864A2016一种含有猴头菇多糖的活性乳酸菌制剂的制备方法CN105962378A2016
同时,猴头菇多糖在功能性饲粮开发上也有良好的应用前景。在饲粮中添加猴头菇多糖能改善营养物质利用,促进肉仔鸡生长[59];同时,可以降低肉仔鸡肝脏和腹部胆固醇沉积,降低血清总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,提高高密度脂蛋白胆固醇水平,用于生产低胆固醇和低脂肪鸡肉[58,61]。含有猴头菇多糖的饲粮可以通过提高肉仔鸡肠道益生菌丰度,如双歧杆菌、乳酸菌、枯草芽孢杆菌(Bacillus subtilis)、地衣芽孢杆菌(Bacillus licheniformis) 等,抑制大肠杆菌生长,增加抗氧化和抗炎活性,降低病原体感染风险[60]。
猴头菇多糖不能在胃和小肠中分解,很难被人体吸收,只能通过大肠内微生物发酵。本文总结了猴头菇多糖的结构和对肠道菌群组成的影响,综述了猴头菇多糖通过影响宿主肠道菌群多样性及其代谢等途径发挥健康促进作用的机制与应用研究进展。然而,猴头菇多糖调节肠道菌群的构效关系及机制研究尚处于起步阶段,肠道菌群对猴头菇多糖的代谢作用也尚未见报道。未来,关于猴头菇多糖调节肠道菌群产生的代谢物对促进宿主健康的作用值得进一步深入探讨。高质量的临床试验以及通过宏基因组学、代谢组学、脂质组学等系统生物学方法进一步挖掘其潜在分子机制,并进行深入实验验证,将有助于系统阐明猴头菇多糖的健康促进作用机制。此外,设计由猴头菇多糖和其他成分如猴头菇活性蛋白[63-64]组成的复合配方,通过靶向多种作用途径和维护肠道微生物稳态,可能对相关疾病预防和管理起到协同作用。
[1] YOON J H, DO J S, VELANKANNI P, et al.Gut microbial metabolites on host immune responses in health and disease[J].Immune Network, 2023, 23(1):e6.
[2] NICHOLSON J K, HOLMES E, KINROSS J, et al.Host-gut microbiota metabolic interactions[J].Science, 2012, 336(6086):1 262-1 267.
[3] KESAVELU D, JOG P.Current understanding of antibiotic-associated dysbiosis and approaches for its management[J].Therapeutic Advances in Infectious Disease, 2023,10:204993612311544.
[4] KAWAGISHI H.Chemical studies on bioactive compounds related to higher fungi[J].Bioscience, Biotechnology, and Biochemistry, 2021, 85(1):1-7.
[5] FERNANDES A, NAIR A, KULKARNI N, et al.Exploring mushroom polysaccharides for the development of novel prebiotics:A review[J].International Journal of Medicinal Mushrooms, 2023, 25(2):1-10.
[6] MCCRACKEN D A, DODD J L.Molecular structure of starch-type polysaccharides from Hericium ramosum and Hericium coralloides[J].Science, 1971, 174 (4 007):419.
[7] HE X R, WANG X X, FANG J C, et al.Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion′s Mane) mushroom:A review[J].International Journal of Biological Macromolecules, 2017, 97:228-237.
[8] REN Y L, SUN Q G, GAO R N, et al.Low weight polysaccharide of Hericium erinaceus ameliorates colitis via inhibiting the NLRP3 inflammasome activation in association with gut microbiota modulation[J].Nutrients, 2023, 15(3):739.
[9] LIU J Y, HOU X X, LI Z Y, et al.Isolation and structural characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its arrest of cell cycle at S-phage in colon cancer cells[J].International Journal of Biological Macromolecules, 2020, 157:288-295.
[10] LIAO B W, ZHOU C H, LIU T T, et al.A novel Hericium erinaceus polysaccharide:Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells[J].International Journal of Biological Macromolecules, 2020, 154:1 460-1 470.
[11] ARUNACHALAM K, SASIDHARAN S P, YANG X F.A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19[J].Food Chemistry Advances, 2022, 1:100023.
[12] KIM S.Biochemical characterization and cytotoxicity of polylactosamine-extended N-glycans binding isolectins from the mushroom Hericium erinaceus[J].International Journal of Biological Macromolecules, 2023, 226:1 010-1 020.
[13] OOKUSHI Y, SAKAMOTO M, AZUMA J I.Effects of microwave irradiation on water-soluble polysaccharides of the fruiting body of Hericium erinaceum[J].Journal of Applied Glycoscience, 2009, 56(3):153-157.
[14] OOKUSHI Y, SAKAMOTO M, AZUMA J I.Optimization of microwave-assisted extraction of polysaccharides from the fruiting body of mushrooms[J].Journal of Applied Glycoscience, 2006, 53(4):267-272.
[15] HOU C L, LIU L Y, REN J Y, et al.Structural characterization of two Hericium erinaceus polysaccharides and their protective effects on the alcohol-induced gastric mucosal injury[J].Food Chemistry, 2022, 375:131896.
[16] SHAO S, WANG D D, ZHENG W, et al.A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors[J].International Immunopharmacology, 2019, 71:411-422.
[17] CUI F J, LI Y H, ZAN X Y, et al.Purification and partial characterization of a novel hemagglutinating glycoprotein from the cultured mycelia of Hericium erinaceus[J].Process Biochemistry, 2014, 49(8):1 362-1 369.
[18] LEE J S, CHO J Y, HONG E K.Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus[J].Carbohydrate Polymers, 2009, 78(1):162-168.
[19] SHANG H M, SONG H, WANG L N, et al.Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers.on performance, gut microflora, and cholesterol metabolism in broiler chickens[J].Livestock Science, 2014, 167:276-285.
[20] TIAN B M, GENG Y, XU T R, et al.Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation[J].Frontiers in Nutrition, 2022, 9:858585.
[21] REN Y L, GENG Y, DU Y, et al.Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota[J].The Journal of Nutritional Biochemistry, 2018, 57:67-76.
[22] REN Z Y, XU Z Z, AMAKYE W K, et al.Hericium erinaceus mycelium-derived polysaccharide alleviates ulcerative colitis and modulates gut microbiota in Cynomolgus monkeys[J].Molecular Nutrition &Food Research, 2023, 67(3):e2200450.
[23] ZHAO C, SUN C, YUAN J, et al.Hericium caput-medusae (Bull.:Fr.) Pers.fermentation concentrate polysaccharides improves intestinal bacteria by activating chloride channels and mucus secretion[J].Journal of Ethnopharmacology, 2023, 300:115721.
[24] LIU X P, REN Z, YU R H, et al.Structural characterization of enzymatic modification of Hericium erinaceus polysaccharide and its immune-enhancement activity[J].International Journal of Biological Macromolecules, 2021, 166:1 396-1 408.
[25] CHEN W C, WU D, JIN Y L, et al.Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats[J].International Journal of Biological Macromolecules, 2020, 159:948-956.
[26] YAN J K, DING Z C, GAO X L, et al.Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions[J].Carbohydrate Polymers, 2018, 193:373-382.
[27] ZHANG C, LI J, HU C L, et al.Antihyperglycaemic and organic protective effects on pancreas, liver and kidney by polysaccharides from Hericium erinaceus SG-02 in streptozotocin-induced diabetic mice[J].Scientific Reports, 2017, 7(1):10847.
[28] REN Z, QIN T, QIU F A, et al.Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7[J].International Journal of Biological Macromolecules, 2017, 105:879-885.
[29] ZHU Y, CHEN Y, LI Q, et al.Preparation, characterization, and anti-Helicobacter pylori activity of Bi3+-Hericium erinaceus polysaccharide complex[J].Carbohydrate Polymers, 2014, 110:231-237.
[30] 李好, 于世军, 王伟, 等.富硒猴头菇对小鼠肠道菌群的调节作用[J].中国微生态学杂志, 2010, 22(8):697-700.
LI H, YU S J, WANG W, et al.Regulation of selenium-enriched Hericium erinaceu on intestinal microflora in mice[J].Chinese Journal of Microecology, 2010, 22(8):697-700.
[31] WASILEWSKI A, M, STORR M, et al.Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease[J].Inflammatory Bowel Diseases, 2015, 21(7):1 674-1 682.
[32] YIN C M, NORATTO G D, FAN X Z, et al.The impact of mushroom polysaccharides on gut microbiota and its beneficial effects to host:A review[J].Carbohydrate Polymers, 2020, 250:116942.
[33] SMITH P M, HOWITT M R, PANIKOV N, et al.The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J].Science, 2013, 341(6 145):569-573.
[34] TIAN B M, LIU R J, XU T R, et al.Modulating effects of Hericium erinaceus polysaccharides on the immune response by regulating gut microbiota in cyclophosphamide-treated mice[J].Journal of the Science of Food and Agriculture, 2023, 103(6):3 050-3 064.
[35] REN Z, LUO Y, MENG Z, et al.Multi-walled carbon nanotube polysaccharide modified Hericium erinaceus polysaccharide as an adjuvant to extend immune responses[J].International Journal of Biological Macromolecules, 2021, 182:574-582.
[36] LUO Y, REN Z, BO R N, et al.Designing selenium polysaccharides-based nanoparticles to improve immune activity of Hericium erinaceus[J].International Journal of Biological Macromolecules, 2020, 143:393-400.
[37] CANDELLI M, FRANZA L, PIGNATARO G, et al.Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases[J].International Journal of Molecular Sciences, 2021,22(12):6242.
[38] PARK J S, CHOI J W, JHUN J, et al.Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and treg cell balance and fibrosis development[J].Journal of Medicinal Food, 2018, 21(3):215-224.
[39] CHEN Y, JIN Y, STANTON C, et al.Alleviation effects of Bifidobacterium breve on DSS-induced colitis depends on intestinal tract barrier maintenance and gut microbiota modulation[J].European Journal of Nutrition, 2021, 60(1):369-387.
[40] 钟千贵, 邱铭锰, 杨娟, 等.猴头菇多糖对胃肠道益生菌生长的影响[J].食品工业科技, 2019, 40(19):301-304; 309.
ZHONG Q G, QIU M M, YANG J, et al.Effects of Hericium erinaceus polysaccharides on the growth of gastrointestinal probiotics[J].Science and Technology of Food Industry, 2019, 40(19):301-304; 309.
[41] VOGT N M, KERBY R L, DILL-MCFARLAND K A, et al.Gut microbiome alterations in Alzheimer′s disease[J].Scientific Reports, 2017, 7:13537.
[42] LIU P, WU L, PENG G P, et al.Altered microbiomes distinguish Alzheimer′s disease from amnestic mild cognitive impairment and health in a Chinese cohort[J].Brain, Behavior, and Immunity, 2019, 80:633-643.
[43] HIRSCHBERG S, GISEVIUS B, DUSCHA A, et al.Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases[J].International Journal of Molecular Sciences, 2019, 20(12):3109.
[44] CHENG J H, TSAI C L, LIEN Y Y, et al.High molecular weight of polysaccharides from Hericium erinaceus against amyloid beta-induced neurotoxicity[J].BMC Complementary and Alternative Medicine, 2016, 16:170.
[45] YADAV S K, IR R, JEEWON R, et al.A mechanistic review on medicinal mushrooms-derived bioactive compounds:Potential mycotherapy candidates for alleviating neurological disorders[J].Planta Medica, 2020, 86(16):1 161-1 175.
[46] RANJBAR R, VAHDATI S N, TAVAKOLI S, et al.Immunomodulatory roles of microbiota-derived short-chain fatty acids in bacterial infections[J].Biomedicine &Pharmacotherapy, 2021, 141:111817.
[47] CHEN X, WANG N X, WANG J N, et al.The interactions between oral-gut axis microbiota and Helicobacter pylori[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:914418.
[48] FAKHARIAN F, ASGARI B, NABAVI-RAD A, et al.The interplay between Helicobacter pylori and the gut microbiota:An emerging driver influencing the immune system homeostasis and gastric carcinogenesis[J].Frontiers in Cellular and Infection Microbiology, 2022, 12:953718.
[49] FROST F, KACPROWSKI T, RüHLEMANN M, et al.Helicobacter pylori infection associates with fecal microbiota composition and diversity[J].Scientific Reports, 2019, 9(1):20100.
[50] HE C, YANG Z, LU N H.Imbalance of gastrointestinal microbiota in the pathogenesis of Helicobacter pylori-associated diseases[J].Helicobacter, 2016, 21(5):337-348.
[51] IINO C, SHIMOYAMA T, CHINDA D, et al.Infection of Helicobacter pylori and atrophic gastritis influence Lactobacillus in gut microbiota in a Japanese population[J].Frontiers in Immunology, 2018, 9:712.
[52] LIU J H, LI L, SHANG X D, et al.Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus[J].Journal of Ethnopharmacology, 2016, 183:54-58.
[53] XIE X Q, GENG Y, GUAN Q J, et al.Influence of short-term consumption of Hericium erinaceus on serum biochemical markers and the changes of the gut microbiota:A pilot study[J].Nutrients, 2021, 13(3):1008.
[54] YANG Y, YE H Q, ZHAO C H, et al.Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota[J].Carbohydrate Polymers, 2021, 262:117668.
[55] CHO H W, CHOI S, SEO K, et al.Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus[J].Journal of Animal Science and Technology, 2022, 64(5):937-949.
[56] CHEN D L, YANG X, ZHENG C Q, et al.Extracts from Hericium erinaceus relieve inflammatory bowel disease by regulating immunity and gut microbiota[J].Oncotarget, 2017, 8(49):85 838-85 857.
[57] ZHU X X, ZHANG Z L, YANG X, et al.Improvement of extraction from Hericium erinaceus on the gut-brain axis in AD-like mice[J].Brain Research, 2022, 1793:148038.
[58] SHANG H M, ZHAO J C, GUO Y, et al.Effects of supplementing feed with fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers.on cholesterol deposition in broiler chickens[J].Livestock Science, 2020, 235:104009.
[59] SHANG H M, SONG H, XING Y L, et al.Effects of dietary fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers.on growth performance, digestibility, and intestinal microbiology and morphology in broiler chickens[J].Journal of the Science of Food and Agriculture, 2016, 96(1):215-222.
[60] ZHANG S T, WANG C F, SUN Y, et al.Xylanase and fermented polysaccharide of Hericium caputmedusae reduce pathogenic infection of broilers by improving antioxidant and anti-inflammatory properties[J].Oxidative Medicine and Cellular Longevity, 2018, 2018:1-11.
[61] SHANG H M, SONG H, SHEN S J, et al.Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers.on fat deposition in broilers[J].Journal of the Science of Food and Agriculture, 2015, 95(2):267-274.
[62] 王利丽, 郭红光, 王青龙, 等.鲜猴头菌口服液益智保健功效初步研究[J].菌物学报,2011, 30(1):85-91.
WANG L L, GUO H G, WANG Q L, et al.A preliminary study of fresh Hericium erinaceus oral liquid on health-care function and promotion of learning and memory[J].Mycosystema, 2011, 30(1):85-91.
[63] CHEN D L, CHEN D L, ZHENG C Q, et al.Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota[J].Frontiers in Immunology, 2017, 8:666.
[64] WANG D D, ZHU X X, TANG X C, et al.Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota[J].Journal of Food Science, 2020, 85(6):1 872-1 890.