短链伯醇氧化酶的研究进展

王首丰,丛文杰,曹昕莼,陆婷,王明轩,周化岚,张建国*

(上海理工大学 健康科学与工程学院,上海,200093)

摘 要 真核甲基营养菌中的短链伯醇氧化酶(short-chain primary alcohol oxidase,SPAOX,EC 1.1.3.13)是一种依赖于黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD),能氧化短链伯醇生成相应醛的蛋白质。SPAOX位于真核生物的过氧化物酶体中,是参与醇类代谢的重要酶。SPAOX的催化反应能循环使用FAD,且底物广泛,广泛应用于检测和生物转化生产。SPAOX的聚体结构,使得其在反应和储存过程中容易受到环境和化合物的影响,这限制了其应用。文章从SPAOX的来源、催化机制和结构、底物、稳定性等方面简述了SPAOX的基本特点,为SPAOX的应用和发展提供了基础,也从分子说展望了SPAOX的研究进展,为SPAOX的研究提供参考。

关键词 短链伯醇氧化酶;黄素腺嘌呤二核苷酸;底物;稳定性

短链伯醇氧化酶(short-chain primary alcohol oxidase,SPAOX,EC 1.1.3.13)是一种依赖黄素腺嘌呤核苷酸(Flavin adenine dinucleotide,FAD)氧化短链伯醇(C1~C8)生成相应的醛和过氧化氢的氧化还原酶。SPAOX最早由JANSSEN等[1]于1968年从Basidiomycete(多孔菌科担子菌)的菌丝体中分离出来。近年来,SPAOX在甲基营养型微生物等多种真核生物中被发现。而且,SPAOX已经较为广泛地应用于醇类分析、生物转化等场景中。与SPAOX相关的研究逐渐得到众多学者的关注,取得一定进展的同时具有广泛的应用前景。本文对比了不同生物来源的SPAOX,阐述了其催化机制,总结了SPAOX性质的优缺点,并对提高SPAOX稳定性的研究进行了展望,以期为其进一步的应用奠定基础。

1 SPAOX的来源和催化机制

SPAOX已经在博乙丁假丝酵母(Candida boidinii)[2]、汉逊酵母(Hansenula polymorpha[3]Ogataea angusta[4])、法夫驹形氏酵母(Komagataella phaffii)[5-6]、毕赤酵母(Pichia sp.)[7]等甲基营养型酵母中发现,也在土曲霉(Aspergillus terreus)[8-9]、黄孢原毛平革菌(Phanerochaete chrysosporium)[10]等丝状真菌中存在。利用软件MEGA7[11]对SPAOX的基因进行进化树分析(图1),表明SPAOX有2个分支;其中上分支第一部分中的SPAOX主要来源于甲基营养型酵母菌、曲霉以及癌肿病菌(Lachnellula willkommii)、特异青霉(Penicillium chrysosporium)、立枯丝核菌(Rhizoctonia solani)等真菌;上分支第二部分则来源于褐孢霉(Fulvia fulva)、密粘褶菌(Gloeophyllum trabeum)、朱红栓菌(Trametes cinnabarina)、牛樟芝(Taiwanofungus camphoratus)、原毛平革菌(Phanerochaete sordida)等真菌。而下分支中的SPAOX主要来源于短梗霉(Aureobasidium sp.)、担子菌(Basidiomycete)、炭疽病菌(Colletotrichum chlorophyti)、裂褶菌(Schizophyllum commune)、环红酵母(Rhodotorula toruloides)、炭角菌(Xylariomycetidae sp.)等真菌。两个分支中微生物种类差异较大。例如,上分支中汉逊酵母、博乙丁假丝酵母、法夫驹形氏酵母等甲基营养型酵母菌中SPAOX序列的分支置信度达100。其他真菌类,例如青霉、曲霉、原毛平革菌、牛樟芝、担子菌等的置信度则为13~99。

图1 短链伯醇氧化酶基因的进化树

Fig.1 Phylogenetic tree of SPAOX gene

因为SPAOX在甲基营养型酵母中参与甲醇代谢,将甲醇氧化成甲醛和过氧化氢,所以很多关于SPAOX的研究以甲基营养型酵母中的SPAOX作为研究对象来开展[12-13]。甲基营养型酵母新生成的SPAOX依靠其过氧化物酶体靶向信号(peroxisome targeting signal,PTS),被运输到过氧化物酶体中发挥作用。SPAOX单亚基的分子质量约为65 k~80 kDa,SPAOX的活性功能体是含有8个FAD辅因子和8个亚基的同源八聚体,分子质量约500~700 kDa。SPAOX属于葡萄糖-甲醇-胆碱(glucose-methanol-choline,GMC)家族氧化还原酶,由FAD结合域和底物结合域组成。GMC家族氧化还原酶的FAD结合域的氨基酸序列保守,而由于不同酶的最适底物不同,使得底物结合域的氨基酸序列差异较大[14]。因为GMC氧化还原酶的催化活性中心(组氨酸/组氨酸或组氨酸/天冬酰胺)高度保守,所以其催化机制相似[15]。SPAOX的催化过程分为还原半反应(还原FAD,以及醇类电子供体底物的氧化)和氧化半反应(FADH2被氧化形成H2O2)[16]。其中催化活性中心进行还原半反应,H567与醇底物结合并在催化过程中携带正电荷,由N616催化醇底物并稳定醇盐的负电荷[17]。结合口袋的W566和F98的芳香族侧链限制了底物分子的可用空间,使其最适底物为短链伯醇[3,18]。还原半反应中底物的氢转移到FAD的异四氧嘧啶上,FAD被还原成FADH2。另一部分氧化半反应的FAD结合域E38与FAD的腺嘌呤基团结合,N97与黄素连接环相互作用,FADH2被氧重新氧化成FAD,并释放H2O2[5, 17]。不同于乙醇脱氢酶(alcohol dehydrogenase,ADH,EC 1.1.1.1)在催化反应中不断消耗辅酶烟酰胺腺嘌呤二核苷酸,SPAOX循环利用FAD是一大优势[19]

表1总结了GMC氧化还原酶家族常见酶的单体分子质量、结构、底物结合口袋等性质。其中,只有SPAOX是八聚体,其他家族中的酶都是单体或二聚体。单体大小除了胆固醇氧化酶(cholesterol oxidase)为36 kDa相对较小,其他都在60 k~80 kDa附近。底物结合口袋中都有H/H或H/N作为底物催化活性中心,而限制底物分子可用空间的氨基酸有所不同。例如SPAOX中的F98在胆碱氧化酶(choline oxidase)中为S101,W566为V464,而F98在芳香醇氧化酶(aryl-alcohol oxidase)中为Y92,在胆固醇氧化酶中为G66,而丝氨酸、缬氨酸、甘氨酸等氨基酸的残基都较小,使得这些氧化酶可催化诸如胆碱、胆固醇等较大醇类底物[5, 17]

表1 GMC氧化还原酶家族结构的比较

Table 1 Comparing of the GMC family of oxidoreductases structures

基本信息单体分子质量/kDa亚单位最适底物底物结合口袋参考文献alcohol oxidase EC 1.1.3.1365^80八聚体甲醇M59、F98、W566、H567、C568、N616[5, 17]aryl-alcohol oxidase EC 1.1.3.770^78单体2-萘乙醇Y92、F367、F501、H502、H546[15, 20]choline oxidase EC 1.1.3.1760二聚体胆碱H99、S101、E312、H351、V464、H466[21]cholesterol oxidase EC 1.1.3.636单体胆固醇H69、G66、H121、W130、R304、E305、P561[22]glucose oxidase EC 1.1.3.480二聚体β-D-葡萄糖Y73、F418、W430、R516、N518、H520、H563[23]pyridoxine 4-oxidase EC 1.1.3.1267^68单体吡哆醇H167、Y169、D542、F454、Y456、H548、N593[16]

SPAOX在过氧化物酶体中组装成八聚体,得益于外界条件的影响,促使亚基相互接触[17]。由于八聚体结构组装较困难,因此SPAOX的稳定性较差,容易受到环境的影响而降解。

2 SPAOX的性质

2.1 底物特异性

SPAOX的底物主要为甲醇、乙醇、正丙醇、正丁醇。随着醇类底物碳链的增长,SPAOX的Km值逐渐变大,活力也逐渐下降(表2)。甲基营养型酵母中多形汉逊酵母(Hansenula polymorpha DL-1)SPAOX的Km值最小,为0.23 mmol/L。其他类型真菌中只有茯苓(Poria contigua)SPAOX的Km为0.2 mmol/L,小于甲基营养型酵母SPAOX的Km值。而且,茯苓SPAOX的最大反应速率为12.8 μmol/(min·nmol),高于目前报道的其他SPAOX的最大反应速率[24]。对SPAOX进行突变可以改变其催化底物的性质。SPAOX对甲醇和乙醇表现出良好的催化活性,对其他底物的低活性限制了SPAOX的进一步应用。SPAOX的蛋白质工程改造使其适配多种底物,将拓宽SPAOX的应用范围。DMYTRUK等[25]对多形汉逊酵母SPAOX进行突变,得到对甲醇Km值从0.62 mmol/L提高到1.1~2.48 mmol/L,拓宽了多形汉逊酵母SPAOX突变体的应用范围。虽然大部分SPAOX也展现出较弱的氧化甲醛的活力(表2),但是KJELLANDER等[26]将毕赤酵母SPAOX固定到纳米多孔氧化铝膜后,固定化SPAOX对甲醛表现出与游离酶对甲醇的102%相对活力,说明固定化技术为保护SPAOX不受甲醛的损伤提供了有力保障。

表2 不同SPAOX的底物特异性比较

Table 2 Comparing of the substrate specificity of SPAOX

来源参数甲醇乙醇正丙醇正丁醇甲醛参考文献BasidiomyceteKm/(mmol/L)1.521054.6133\相对活力/%100285.32.1\[1]Candida methanosorbosaKm/(mmol/L)2.438.23\\\相对活力/%10097.877.552.2\[27]Hansenula polymorpha DL-1Km/(mmol/L)0.234.414402.6Vmax/(U/mol)7.543.763.342.411相对活力/%10049.844.231.90.13[3]Hansenula polymorpha C-105Km/(mmol/L)0.46.6\\10.5kcat/s-16058\\32[18]Pichia sp.Km/(mmol/L)0.5\\\3.5相对活力/%10092745215[7]Pichia pastorisKm/(mmol/L)0.470.751.232.791.59Vmax/(pmol/s)759617485607778相对活力/%10081.363.980102[26]Pichia pastorisKm/(mmol/L)0.67.921.727.5\kcat/Km [L·(mmol/min)]57542149\[5]Ogataea thermosmethanolicaKm/(mmol/L)0.275.4124.91\\Vmax/(nmol/min)0.240.410.37\\相对活力/%10080.352.922.6\[28]Kloeckera sp.Km/(mmol/L)0.442.55.79.12.4Vmax/(U/mol)5.746.14.543.973.18相对活力/%100106796955.4[3]Peniophora giganteanKm/(mmol/L)1.82.9\\\Vmax/[μmol/(min·mg)]9.48.73.42.7\相对活力/%10092.636.228.7\[29]Thermoascus aurantiacus NBRC 31693Km/(mmol/L)相对活力/%Km/(mmol/L)相对活力/%胞内胞外13.515.8\\\10044145\0.510.2\\\100846028\[30]Gloeophyllum trabeumKm/(mmol/L)2.3\\\\kcat/Km/[L/(s·mol)]6.81.10.260.07\相对活力/%100947354\[31]Paecilomyces variotiiKm/(mmol/L)1.93.8\\4.9相对活力/%10010633\28[32]Penicillium purpurescens AIU 063Km/(mmol/L)19.321.5\\Vmax/[μmol/(min·mg)]4.355.122.921.951.28相对活力/%86100573825[33]Poria contiguaKm/(mmol/L)0.218.321.36.1Vmax/[μmol/(min·nmol)]12.8129.4\1.9相对活力/%10093.773.4\14.8[24]

2.2 SPAOX活力

由于SPAOX的八聚体结构,易受到环境因素的影响,因此,很多学者对多种SPAOX的影响因素pH、温度、化合物等进行考察。

2.2.1 环境的影响

表3汇总了pH和温度分别对不同SPAOX活力的影响。SPAOX的最适pH可以低至5,也可以高达9。部分菌株来源的SPAOX具有相同的最适pH,例如Candida 25-A和Komagataella pastoris的最适pH为7.5。Ogataea angustaAspergillus terreusPenicillium purpurescens AIU 063的最适pH为8.5。Phanerochaete chrysosporiumPichia sp.、Phanerochaete chrysosporiumOgataea thermomethanolica的最适pH为9。相比pH性质的较为相似性,不同SPAOX的最适温度差异较大。例如Aspergillus ochraceus[34]Candida methanosorbosa[27]Thermoascus aurantiacus[30]Ogataea angusta[4]Phanerochaete chrysosporium[10]Ogataea thermomethanolica[28]的SPAOX均有较好的热稳定性,最适温度为45~55 ℃左右;而其他SPAOX的最适温度均为25~40 ℃左右。环境因素除了pH和温度,静水压力也会影响SPAOX的活力[35-36]。高静水压力会稳定SPAOX的热失活,尤其是酶的不稳定组分,使得结构更加稳定。高静水压力可以使SPAOX在高温下保持活性并获得更快的反应速度。

表3 不同SPAOX性质的比较

Table 3 Comparing of SPAOX properties

来源pH温度/℃最适活性范围最适活性范围参考文献Aspergillus ochraceus5.5^76.5^8.550^5540[34]Paecilomyces variotii6^105^10<50[32]Gloeophyllum trabeum6^107^11[31]Candida methanosorbosa M-20036^9 6^8.550<50[27]Basidiomycetes6.5^97^925[1]Thermoascus aurantiacus NBRC 316938^115^1130^65[30]Peniophora gigantea7.3-96^935[29]Candida 25-A7.56^837.5<60[37]Komagataella pastoris7.57^837<38[4]Ogataea angustaAspergillus terreus8.58^1045<488.56^11304^4096^1132[9][8]Penicillium purpurescens AIU 0638.55.5^9.535^4020^50[33]Phanerochaete chrysosporium97^1050[10]Pichia sp.9[7]Phanerochaete chrysosporium97^10[38]Ogataea thermomethanolica96^95030^50[28]

2.2.2 化合物的影响

SPAOX溶液中有机、无机化合物、金属离子等物质会影响SPAOX活性(表4、表5)。其中联吡啶对SPAOX活性没有显著影响。羟基喹啉、氨基脲、Cu2+等因为羰基作用对SPAOX活性有一定的抑制[33]。羰基试剂诸如苯肼、羟胺以及肼等也对SPAOX活性有显著抑制作用[32,34]。Cd2+、Hg2+等金属离子对CandidaOgataea polymorphaPaecilomyces variotii的SPAOX活性有显著抑制作用,而其他金属离子对SPAOX活性无显著影响[7,29-30,34,39-40]。这也使得金属螯合剂乙二胺四乙酸(ethylene diamine tetraacetic acid, EDTA)、邻菲咯啉对SPAOX活性也无显著抑制作用[39]。叠氮化钠是甲醇的可逆竞争性抑制剂,结合位点位于SPAOX的活性中心区域,与FAD作用,从而改变SPAOX二级结构[18]。此外,SPAOX在环丙酮中20 ℃、pH 7.5条件下孵育2 h后完全失去活性[41]。但是在隔绝氧气情况下能有效抑制失活。由于SPAOX活性位点附近有巯基,因此,对氯苯甲酸汞(p-chloromercuribenzoate,PCMB)、Cu2+、Hg2+等对巯基有封闭作用的化合物对SPAOX有显著抑制作用。这表明SPAOX中半胱氨酸残基对于维持结构的作用必不可少[24,27,32]。此外,可以通过在Hg2+处理后的SPAOX中添加硫醇或在Cu2+处理后的SPAOX中添加EDTA进行去抑制[40]。过量的β-巯基乙酸可恢复由PCMB引起的失活,表明抑制由有机汞与巯基结合而引起[40]。因此,巯基的抑制作用是可逆竞争性抑制。

表4 化合物对SPAOX活力的影响

Table 4 Effects of chemical compounds on SPAOX activity

注:表格中的数据描述的是SPAOX在与抑制剂共存时的相对活力(%),其中抑制剂浓度均为1 mmol/L,除*为0.1 mmol/L,**为1.8 mmol/L,***为10 mmol/L;Taurantiacus中上行为胞内SPAOX,下行为胞外SPAOX。

来源联吡啶羟基喹啉氨基脲苯肼肼羟胺邻菲咯啉EDTANEMNaN3PCMB参考文献Aspergillus ochraceus10010010000010010096[34]Candida 25-A061∗[37]Candida boidinii50∗∗0[40]Candida methanosorbosa100∗∗∗0100∗∗∗0[27]Ogataea polymorpha10000[39]Paecilomyces variotii10210451125968969∗[32]Penicillium purpurescens1083591076158810890[33]Pichia sp.8794799085[7]Thermoascus aurantiacus939469838962[30]

表5 金属离子对SPAOX活力的影响

Table 5 Effects of metal ions on SPAOX activity

注:表格中的数据描述的是SPAOX在与金属离子共存时的相对活力(%)及相关离子的存在形式,其中抑制剂浓度均为1 mmol/L,除*为10 mmol/L,**为2 mmol/L,***为0.1 mmol/L;T.aurantiacus中上行为胞内SPAOX,下行为胞外SPAOX。

来源Cu2+Cd2+Hg2+Ca2+Co2+Mg2+Mn2+Ni2+Zn2+参考文献Aspergillus ochraceus91(CuCl2)100(CoCl2)102(MgCl2)100(MnCl2)102(NiCl2)[34]Candida 25-A14520∗∗∗[37]Candida boidinii595∗∗0[40]Candida methanosorbosa0(CuSO4)100(CaCl2)∗[27]Ogataea polymorpha000[39]Paecilomyces variotii100(CuSO4)56(HgCl2)[32]Penicillium purpurescens0(CuCl2)94(CoCl2)70(MgCl2)85(MnCl2)80(NiCl2)98(ZnCl2)[33]Peniophora gigantea0(CuSO4)100(CaCl2)100(CoCl2)100(MgSO4)100(MnSO4)100(NiCl2)100(ZnSO4)[29]Pichia sp.50(CuSO4)[7]Thermoascus aurantiacus1054989795891002029376888688[30]

此外,碘乙酸可以使SPAOX可逆失活[40]。炔醇底物使SPAOX不可逆失活,炔醇氧化后产物醛的羟基再与SPAOX的活性中心发生亲电结合,使底物醇不能与SPAOX结合,所以炔醇底物是自杀性底物[2]。此外,底物和产物对SPAOX的稳定性也有影响。在没有过氧化氢酶存在的情况下,SPAOX会被大量产生的过氧化氢可逆抑制[4]。过氧化氢将SPAOX活性中心的巯基可逆氧化。加入巯基乙醇或二硫苏糖醇等还原剂可使SPAOX活性恢复[42]

2.3 SPAOX的稳定性

SPAOX稳定性的相关研究一直受到广泛关注。将SPAOX储存于4 ℃可保持活性数周至数月[8],储存于-20或-80 ℃可保持活性数年[24]。虽然低温保存对活性的影响较小,但反复冻融会使SPAOX快速失活[29]Basidiomycota的SPAOX可在0.05 mol/L的磷酸缓冲液中保持至少5个月活性[1]。添加500 g/L蔗糖可使Pichia putida的SPAOX的稳定性提高10倍,在300~500 g/L蔗糖、-20或-80 ℃下SPAOX活性可保持数年[43]。固定化技术可显著提高SPAOX的活性范围,有利于酶保持稳定性。ZHAO等[44]将SPAOX固定在静电纺丝纤维上后,由于纤维表面的生物相容性和亲水性使得最适温度提高至50 ℃,最适pH范围扩大至6.5~7.5,在40 ℃孵育2 h后SPAOX活性仅降低10%。CHUNG等[45]将SPAOX固定在活性纤维素载体上,SPAOX的最适温度提高至65 ℃,在80 ℃仍有25%活性,pH范围扩大至4~10,并在25 ℃下保持稳定10周以上。KJELLANDER等[26]将SPAOX固定在多孔纳米氧化铝上后,室温下反应50 h后仍能保持50%以上的活性。稳定性在SPAOX作为传感器元件中也发挥了重要作用,固定在含有聚中性红(poly neutral red,PNR)介质的碳膜电极上的SPAOX作为传感器,使用2周后传感器的灵敏度下降0.8%,在pH 7、0.1 mol/L磷酸缓冲液中4 ℃保存6周后,传感器的灵敏度仅下降12%[46]

3 SPAOX的应用

SPAOX的底物广泛、反应的不可逆性和辅因子循环使用的优势使得SPAOX已经在多个方面成功应用。图2从SPAOX的催化机制出发总结了SPAOX的主要应用场景,例如基于固定化SPAOX构建的生物反应器用于醇醛类物质分析检测、醇醛物质的生物转化、生物修复方面的醛类物质降解等。

图2 SPAOX的应用

Fig.2 Applications of SPAOX

3.1 醇类物质的分析检测

固定化的SPAOX常被用于食品中短链醇、醛的检测。根据检测技术分类,可分为光学方法和电化学方法。

光学分析方法基于SPAOX和辣根过氧化物酶(horseradish peroxidase,HRP)耦合,氧化显色物质发生显色反应,进而测定吸光度的变化分析目的物的含量。例如SPAOX、HRP和显色剂混合于两层滤纸之间构成酒精检测试纸,可以快速检测血液或唾液乙醇,其检测范围达10~1 200 mg/L[47]。将二茂铁包埋的SPAOX和包覆HRP的溶胶-凝胶壳聚糖膜逐层固定在多壁碳纳米管(Multi-walled carbon nanotube,MWCNT)修饰的玻碳电极上,制成检测乙醇的生物传感器[48],其检测范围达5~3 000 μmol/L。此外,AHMAD等[49]报道了将SPAOX包埋在含有尼罗蓝(Nile blue chromoionophore,NBCM)的聚丙烯酸酯薄膜上,用于甲醛检测。其原理为SPAOX与甲醛反应的产物甲酸提供的氢离子与NBCM发生离子转移反应,生成深蓝色络合物HNBCM+,进而通过吸光度的变化分析甲醛的含量,其检测范围达10-3~103 mmol/L。基于显色分析的方法操作简单、高效,线性的准确度高,但存在重复性较差的缺点。

电化学分析基于溶解氧含量的测定。例如将SPAOX与纳米金颗粒结合,氧化醇生成的H2O2将苯胺氧化聚合成聚苯胺(polyaniline,PANI),再将PANI包裹的SPAOX-AuNPs组装在玻碳电极上,所制备的生物传感器可用于醇的分析检测,检测范围达10~4 700 μmmol/L[50]。此外,电化学分析方法也可以测定H2O2分解而产生的电流。例如,将SPAOX固定在以氯化高铁血红素和金纳米粒子(CF-H-Au)修饰的碳微纤维而制备成纳米酶,其对H2O2的亲和力比溶液中的氯化血红素高2.6倍,对乙醇的检出限为5 μmol/L,检测范围达0.01~0.15 mmol/L[51]。HOODA等[52]将SPAOX共价固定在聚氯乙烯烧杯上,同时将HRP、Nafion、MWCNT、壳聚糖和金纳米颗粒固定在电极上,检测乙醇的范围为0.01~42 mmol/L。采用电化学分析方法,检测灵敏度高,重复性好,然而生物传感器的搭建较为复杂。

此外,还可以通过气体压力变化检测氧气。ZHANG等[53]将两亲性气凝胶结合Pd @ Pt核壳纳米颗粒,形成密封设备,乙醇经SPAOX和过氧化氢酶得到终产物氧气,通过便携式压力传感器来定量乙醇含量,检出限为0.5 mmol/L。该方法的样品制备和检测反应时间短,且不受醇类的干扰,也为乙醇检测提供了一种新的信号转导途径。

3.2 醇醛物质的生物转化

SPAOX可用于生产甲醛、H2O2、复杂有机物的中间产物[54]。例如,DIENYS等[55]将SPAOX固定在戊二醛活化后的大孔纤维素载体上,用于合成杂环化合物。SPAOX固定在纳米多孔氧化铝膜上,生产H2O2的生产效率远高于葡萄糖氧化酶[26]。为了克服SPAOX稳定性差的问题,MANGKORN等[56]将SPAOX固定在钡铁氧体磁性微粒(BaFe12O19)上不仅提高了SPAOX的热稳定性和催化效率,并且可以固定化SPAOX,在合成醛方面具有良好的工业应用前景。

3.3 环境修复

SPAOX固定于海藻酸钙凝胶中,开发了用于检测或生物修复空气中甲醛的连续生物反应器,能清除90%以上甲醛[57]。DAS等[58]将SPAOX用于燃料电池,链接漆酶,从甲醇基质中发电,用于环境修复中。SPAOX以新颖的生物发电的方式用于环境修复中,开发了SPAOX更大的应用价值。

4 展望

SPAOX的结构和催化原理已经明晰。SPAOX也被成功固定化和应用。但是相对较低的底物亲和力和较差的稳定性限制了SPAOX的应用。未来可以从3个方面克服SPAOX的不足,提高SPAOX在应用中的催化效率和便捷性:

(1)提高SPAOX对特定底物的亲和力。SPAOX氨基酸序列的突变是提高其底物亲和力的有效措施[25]。部分SPAOX由于来自特定物种或是经过改造可以有不同的最适底物,如甘油[10]。着重研究SPAOX的序列及结构,尤其针对底物结合口袋,找到改变底物特异性的关键残基,有利于改变底物结合口袋,控制SPAOX的最适底物,有助于检测应用和特定化合物的生产。

(2)提高SPAOX的环境稳定性。来自O.angustaA.ochraceusT.aurantiacus NBRC 31693的SPAOX有较好的pH和热稳定性[4,30,34]。对这些SPAOX的序列进行研究,有利于在后续进一步提高SPAOX的稳定性,使SPAOX在实际检测应用中的损耗更低,重复性更高。研究不同环境条件对SPAOX活性的影响,从氨基酸序列和蛋白质结构2方面分析环境对SPAOX影响的原因,找到更加合适的反应条件,提高SPAOX的反应速率,使其在生产应用中的生物转化效率更高,产量更大。

(3)开发不同的定量方法,以及将生物转化应用于更多领域。优化传统的光学或电化学分析检测定量方法,并开发诸如气体压力检测等非传统的定量方法,使SPAOX可以在不同应用场景中对短链伯醇类物质进行检测。SPAOX循环利用辅酶FAD的特点,可以在各种场景中随时、长时间反应,使其不仅可以用于生产,还可用于环境修复、生物发电等更多领域,提高了SPAOX的应用价值。

参考文献

[1] JANSSEN F W, RUELIUS H W.Alcohol oxidase, a flavoprotein from several basidiomycetes species[J].Biochimica et Biophysica Acta (BBA) - Enzymology, 1968, 151(2):330-342.

[2] NICHOLS C S, CROMARTIE T H.Irreversible inactivation of the flavoenzyme alcohol oxidase with acetylenic alcohols[J].Biochemical and Biophysical Research Communications, 1980, 97(1):216-221.

[3] KATO N, OMORI Y, TANI Y, et al.Alcohol oxidases of Kloeckera sp.and Hansenula polymorpha. catalytic properties and subunit structures[J].European Journal of Biochemistry, 1976, 64(2):341-350.

[4] COUDERC R, BARATTI J.Oxidation of methanol by the yeast, Pichia pastoris.purification and properties of the alcohol oxidase[J].Agricultural and Biological Chemistry, 1980, 44(10):2279-2289.

[5] KOCH C, NEUMANN P, VALERIUS O, et al.Crystal structure of alcohol oxidase from Pichia pastoris[J].PLoS One, 2016, 11(2):e0149846.

[6] KURTZMAN C P.Description of Komagataella phaffii sp.nov.and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella[J].International Journal of Systematic and Evolutionary Microbiology, 2005, 55(2):973-976.

[7] PATEL R N, HOU C T, LASKIN A I, et al.Microbial oxidation of methanol:Properties of crystallized alcohol oxidase from a yeast, Pichia sp.[J].Archives of Biochemistry and Biophysics, 1981, 210(2):481-488.

[8] KUMAR A K, GOSWAMI P.Purification and properties of a novel broad substrate specific alcohol oxidase from Aspergillus terreus MTCC 6324[J].Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(11):1552-1559.

[9] KUMAR A K, GOSWAMI P.Functional characterization of alcohol oxidases from Aspergillus terreus MTCC 6324[J].Applied Microbiology and Biotechnology, 2006, 72(5):906-911.

[10] LINKE D A, LEHNERT N, NIMTZ M, et al.An alcohol oxidase of Phanerochaete chrysosporium with a distinct glycerol oxidase activity[J].Enzyme and Microbial Technology, 2014, 61-62:7-12.

[11] KUMAR S, STECHER G, TAMURA K.MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Molecular Biology and Evolution, 2016, 33(7):1870-1874.

[12] WANG Y Y, LI J W, ZHAO F G, et al.Methanol oxidase from Hansenula polymorpha shows activity in peroxisome-deficient Pichia pastoris[J].Biochemical Engineering Journal, 2022, 180:108369.

[13] CAI H L, DOI R, SHIMADA M, et al.Metabolic regulation adapting to high methanol environment in the methylotrophic yeast Ogataea methanolica[J].Microbial Biotechnology, 2021, 14(4):1512-1524.

[14] SÜTZL L, FOLEY G, GILLAM E M J, et al.The GMC superfamily of oxidoreductases revisited:Analysis and evolution of fungal GMC oxidoreductases[J].Biotechnology for Biofuels, 2019, 12(1):1-18.

[15] HERNNDEZ-ORTEGA A, FERREIRA P, MARTNEZ A T.Fungal aryl-alcohol oxidase:A peroxide-producing flavoenzyme involved in lignin degradation[J].Applied Microbiology and Biotechnology, 2012, 93(4):1395-1410.

[16] WONGNATE T, CHAIYEN P.The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily[J].FEBS Journal, 2013, 280(13):3009-3027.

[17] VONCK J, PARCEJ D N, MILLS D J.Structure of alcohol oxidase from Pichia pastoris by cryo-electron microscopy[J].PLoS One, 2016, 11(7):e0159476.

[18] SHLEEV S V, SHUMAKOVICH G P, NIKITINA O V, et al.Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha[J].Biochemistry (Moscow), 2006, 71(3):245-250.

[19] CONTENTE M L, MARZUOLI I, IDING H, et al.Screening methods for enzyme-mediated alcohol oxidation[J].Scientific Reports, 2022, 12:3019.

[20] VIA-GONZALEZ J, ALCALDE M.Directed evolution of the aryl-alcohol oxidase:Beyond the lab bench[J].Computational and Structural Biotechnology Journal, 2020, 18:1800-1810.

[21] GADDA G.Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases[J].Biochemistry, 2008, 47(52):13745-13753.

[22] CALDINELLI L, IAMETTI S, BARBIROLI A, et al.Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin[J].Journal of Biological Chemistry, 2005, 280(24):22572-22581.

[23] WITT S, WOHLFAHRT G, SCHOMBURG D, et al.Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of β-D-glucose[J].Biochemical Journal, 2000, 347(2):553-559.

[24] BRINGER S, SPREY B, SAHM H.Purification and properties of alcohol oxidase from Poria contigua[J].European Journal of Biochemistry, 1979, 101(2):563-570.

[25] DMYTRUK K V, SMUTOK O V, RYABOVA O B, et al.Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor[J].BMC Biotechnology, 2007, 7:33.

[26] KJELLANDER M, GÖTZ K, LILJERUHM J, et al.Steady-state generation of hydrogen peroxide:Kinetics and stability of alcohol oxidase immobilized on nanoporous alumina[J].Biotechnology Letters, 2013, 35(4):585-590.

[27] SUYE S I.Purification and properties of alcohol oxidase from Candida methanosorbosa M-2003[J].Current Microbiology, 1997, 34(6):374-377.

[28] MANGKORN N, KANOKRATANA P, ROONGSAWANG N, et al.Purification, characterization, and stabilization of alcohol oxidase from Ogataea thermomethanolica[J].Protein Expression and Purification, 2018, 150:26-32.

[29] DANNEEL H J, REICHERT A, GIFFHORN F.Production, purification and characterization of an alcohol oxidase of the ligninolytic fungus Peniophora gigantea[J].Journal of Biotechnology, 1994, 33(1):33-41.

[30] KO H S, YOKOYAMA Y, OHNO N, et al.Purification and characterization of intracellular and extracellular, thermostable and alkali-tolerant alcohol oxidases produced by a thermophilic fungus, Thermoascus aurantiacus NBRC 31693[J].Journal of Bioscience and Bioengineering, 2005, 99(4):348-353.

[31] DANIEL G, VOLC J, FILONOVA L, et al.Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood[J].Applied and Environmental Microbiology, 2007, 73(19):6241-6253.

[32] KONDO T, MORIKAWA Y, HAYASHI N.Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus[J].Applied Microbiology and Biotechnology, 2008, 77(5):995-1002.

[33] ISOBE K, TAKAHASHI T, OGAWA J, et al.Production and characterization of alcohol oxidase from Penicillium purpurescens AIU 063[J].Journal of Bioscience and Bioengineering, 2009, 107(2):108-112.

[34] ISOBE K, KATO A, OGAWA J, et al.Characterization of alcohol oxidase from Aspergillus ochraceus AIU 031[J].The Journal of General and Applied Microbiology, 2007, 53(3):177-183.

[35] BUCHHOLZ-AFARI M I, HALALIPOUR A, YANG D Y, et al.Increased stability of alcohol oxidase under high hydrostatic pressure[J].Journal of Food Engineering, 2019, 246:95-101.

[36] YANG D Y, REYES-DE-CORCUERA J I.Increased activity of alcohol oxidase at high hydrostatic pressure[J].Enzyme and Microbial Technology, 2021, 145:109751.

[37] YAMADA H, SHIN K C, KATO N, et al.Purification and characterization of alcohol oxidase from Candida 25-A[J].Agricultural and Biological Chemistry, 1979, 43(4):877-878.

[38] NGUYEN Q T, ROMERO E, DIJKMAN W P, et al.Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol[J].Biochemistry, 2018, 57(43):6209-6218.

[39] KLEPACH H M, ZAKALSKIY A E, ZAKALSKA O M, et al. Alcohol oxidase from the methylotrophic yeast Ogataea polymorpha: Isolation, purification, and bioanalytical application[J]. Methods in Molecular Biology, 2021, 2280:231-248.

[40] CROMARTIE T H.Sulfhydryl and histidinyl residues in the flavoenzyme alcohol oxidase from Candida boidinii[J].Biochemistry, 1981, 20(19):5416-5423.

[41] CROMARTIE T H.Irreversible inactivation of the flavoenzyme alcohol oxidase by cyclopropanone[J].Biochemical and Biophysical Research Communications, 1982, 105(2):785-790.

[42] LIU Y P, PAN J F, WEI P L, et al.Efficient expression and purification of recombinant alcohol oxidase in Pichia pastoris[J].Biotechnology and Bioprocess Engineering, 2012, 17(4):693-702.

[43] GVOZDEV A R, TUKHVATULLIN I A, GVOZDEV R I.Purification and properties of alcohol oxidase from Pichia putida[J].Biochemistry (Moscow), 2010, 75(2):242-248.

[44] ZHAO L, LIU Q J, YAN S L, et al.Multimeric immobilization of alcohol oxidase on electrospun fibers for valid tests of alcoholic saliva[J].Journal of Biotechnology, 2013, 168(1):46-54.

[45] CHUNG H J, CHO H Y, KONG K H.Immobilization of Hansenula polymorpha alcohol oxidase for alcohol biosensor applications[J].Bulletin of the Korean Chemical Society, 2009, 30(1):57-60.

[46] BARSAN M M, BRETT C M A.An alcohol oxidase biosensor using PNR redox mediator at carbon film electrodes[J].Talanta, 2008, 74(5):1505-1510.

[47] THEPCHUAY Y, SONSA-ARD T, RATANAWIMARNWONG N, et al.Paper-based colorimetric biosensor of blood alcohol with in-situ headspace separation of ethanol from whole blood[J].Analytica Chimica Acta, 2020, 1103:115-121.

[48] CHINNADAYYALA S R, KAKOTI A, SANTHOSH M, et al.A novel amperometric alcohol biosensor developed in a 3rd generation bioelectrode platform using peroxidase coupled ferrocene activated alcohol oxidase as biorecognition system[J].Biosensors and Bioelectronics, 2014, 55:120-126.

[49] AHMAD M, HENG L Y, TAN L L.Optical enzymatic formaldehyde biosensor based on alcohol oxidase and pH-sensitive methacrylic-acrylic optode membrane[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 267:120535.

[50] CHINNADAYYALA S R, SANTHOSH M, SINGH N K, et al.Alcohol oxidase protein mediated in-situ synthesized and stabilized gold nanoparticles for developing amperometric alcohol biosensor[J].Biosensors and Bioelectronics, 2015, 69:155-161.

[51] SMUTOK O, KAVETSKYY T, PROKOPIV T, et al.New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis[J].Analytica Chimica Acta, 2021, 1143:201-209.

[52] HOODA V, GAHLAUT A, HOODA V.A novel amperometric biosensor for rapid detection of ethanol utilizing gold nanoparticles and enzyme coupled PVC reaction cell[J].Environmental Technology, 2021, 42(21):3318-3328.

[53] ZHANG Y, LIU Q Y, MA C B, et al.Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl alcohol) aerogel assisted by portable pressure meter[J].Theranostics, 2020, 10(11):5064-5073.

[54] SAGIROGLU A, ALTAY V.Bioconversion of methanol to formaldehyde.II.by purified methanol oxidase from modified yeast, Hansenula polymorpha[J].Preparative Biochemistry &Biotechnology, 2006, 36(4):321-332.

[55] DIENYS G, JARMALAVIIUS S, BUDRIEN S, et al.Alcohol oxidase from the yeast Pichia pastoris—A potential catalyst for organic synthesis[J].Journal of Molecular Catalysis B:Enzymatic, 2003, 21(1-2):47-49.

[56] MANGKORN N, KANOKRATANA P, ROONGSAWANG N, et al.Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on Barium ferrite magnetic microparticles[J].Journal of Bioscience and Bioengineering, 2019, 127(3):265-272.

[57] SIGAWI S, SMUTOK O, DEMKIV O, et al.Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde[J].Journal of Biotechnology, 2011, 153(3-4):138-144.

[58] DAS M, BARBORA L, DAS P, et al.Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode[J].Biosensors and Bioelectronics, 2014, 59:184-191.

Research progress of short-chain primary alcohol oxidase

WANG Shoufeng, CONG Wenjie, CAO Xinchun, LU Ting, WANG Mingxuan,ZHOU Hualan, ZHANG Jianguo*

(School of Health Science and Enginering, University of Shanghai for Science and Technology, Shanghai 200093, China)

ABSTRACT Short-chain primary alcohol oxidase from eukaryotic methylotroph is a flavin adenine dinucleotide (FAD)-dependent enzyme that oxidizes short-chain primary alcohols to their corresponding aldehydes. SPAOX locates in peroxisomes of eukaryotes, which is a key enzyme involved in alcohol metabolism. SPAOX has been widely used in detection and biotransformation production due to its wide range of substrate and the recycle of FAD during the reaction. The multimer structure of SPAOX makes it vulnerable to environment and chemicals during the progress of reaction and storage, which limits its application. This review outlines the fundamental characteristics of SPAOX from the perspectives of source, catalytic mechanism and structure, substrate, and stability, puts a foundation for application and development, provides an outlook for future research based on molecular level, and built base for research related to SPAOX.

Key words short-chain primary alcohol oxidase; flavin adenine dinucleotide (FAD); substrate; stabilization

DOI:10.13995/j.cnki.11-1802/ts.033144

引用格式:王首丰,丛文杰,曹昕莼,等.短链伯醇氧化酶的研究进展[J].食品与发酵工业,2023,49(15):296-304.WANG Shoufeng, CONG Wenjie, CAO Xinchun, et al.Research progress of short-chain primary alcohol oxidase[J].Food and Fermentation Industries,2023,49(15):296-304.

第一作者:硕士研究生(张建国教授为通信作者,E-mail:jgzhang@usst.edu.cn)

基金项目:国家自然科学基金项目(31870045)

收稿日期:2022-07-29,改回日期:2022-09-08