酸茶(pickled tea)是一种厌氧发酵茶,主要产于泰国北部(称为“Miang”)[1]、日本四国岛(称为“Awaban-cha”和“Goishi-cha”)、缅甸(称为“Laphet”)和中国云南省少数民族(布朗族和德昂族)地区[2]。酸茶制作主要通过鲜叶杀青(或蒸煮)、揉捻、装罐密封发酵后干燥制成。布朗族酸茶、泰国酸茶Miang、缅甸酸茶Lahpet和日本酸茶Goishi-cha的制备经历前发酵及厌氧发酵这两个阶段的发酵处理,而德昂族酸茶、泰国酸茶Miang-Som和日本酸茶Awaban-cha采用严格的非丝状真菌厌氧发酵。不同地区的酸茶虽存在地理环境、文化和加工工艺的差异,但其加工核心均为厌氧发酵。
特殊的厌氧发酵制作工艺使酸茶具有酸香(也称为乳香或奶酪香)显露、汤色金黄、滋味醇厚回甘等品质特征[3-4]。厌氧发酵能够降低茶叶中咖啡碱和部分儿茶素含量,增加水溶性总糖和游离氨基酸等成分,从而使酸茶苦涩味降低,滋味变柔和醇厚。厌氧发酵微生物能产生大量有机酸促进酸茶“酸香显露、生津回甘”的品质特征形成。有机酸可以进一步降低茶叶pH值,提高茶多酚稳定性,有助于酸茶“生津回甘”。厌氧发酵还能够促进没食子酸(gallic acid,GA)、乳酸、乙酸和间苯二酚等多种功能活性成分积累,抑制表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)水解,增强酸茶抗氧化、抗衰老、抗菌、促进消化和调节脂质代谢等保健功能[5]。厌氧发酵中的部分益生菌,如发酵乳杆菌(Lactobacillus fermentum)和植物乳杆菌(Lactobacillus plantarum),自身也具有抗氧化活性[6]。
近几年来,酸茶因其特殊的民族文化属性和抗氧化等健康属性成为国内外研究的热点,本文综述厌氧发酵及发酵优势菌对酸茶抗氧化成分形成的影响作用,全面阐述酸茶抗氧化物质,为酸茶的保健功效研究及产品开发提供理论参考。
微生物发酵茶因其醇厚的口感和独特的保健功效受到人们的青睐,如普洱茶、茯砖茶和酸茶等。微生物发酵促进以酚类化合物为主的茶叶成分发生结构转化,形成一系列具有生物活性的化合物,如没食子酸、茶褐素、简单儿茶素和糖苷化合物等,这些成分具有提高茶叶抗氧化、降血脂、抗动脉粥样硬化和抗菌等保健功效[7-8]。但不同的发酵方式对茶叶成分转化和功能作用的影响显著不同。
在有氧发酵过程中,儿茶素、黄酮及其糖苷等抗氧化成分主要通过氧化聚合、生物降解和糖基化途径转化为茶褐素、没食子酸和糖苷衍生物等降脂功效为主的活性成分。因此,与未发酵茶(晒青茶或绿茶)相比,以六堡茶、茯砖和普洱茶为代表的有氧发酵茶的降血脂作用显著增强(48%~50%),而抗氧化能力显著降低(31%~49%)[9]。
酸茶具有与未发酵茶基本相同的抗氧化能力,酸茶的抗氧化活性成分主要有多酚类、有机酸和微生物类(表1)。KETWAL等[10] 研究发现,酸茶Miang也具有与其他茶制品一样的抗氧化能力。CHUPEERACH等[11]证明了酸茶有显著的体外抗氧化活性,发现蒸煮和发酵后酸茶的总酚含量和抗氧化活性显著增加,在DPPH的清除能力、铁离子还原抗氧化能力和氧自由基吸收能力上均显示出显著的体外抗氧化活性。
表1 酸茶中的抗氧化物质
Table 1 Antioxidative substances of pickled tea
酸茶抗氧化成分抗氧化活性多酚类 EGCG(1)EGCG是茶叶中含量最高的儿茶素,具有显著清除自由基和抗氧化能力;(2)酸茶的酸性厌氧发酵环境能够提高EGCG稳定性,减少EGCG的水解没食子酸(1)没食子酸是茶叶中主要抗氧化组分之一,酸茶具有高含量没食子酸水平(25.7 mg/g);(2)厌氧发酵具有多途径促进酸茶没食子酸合成,且前体物和途径与有氧发酵茶不同间苯二酚和邻苯三酚(1)间苯二酚能够以浓度依赖的方式降低细胞活性氧(reactive oxygen species,ROS)水平;(2)邻苯三酚具有较高的抗氧化和抗糖基化活性,且能够提高儿茶素的生物利用度;(3)已从日本酸茶Awaban-cha中分离鉴定出间苯二酚和邻苯三酚有机酸类乳酸、琥珀酸和柠檬酸(1)乳酸、柠檬酸和琥珀酸有助于提高酸茶抗氧化能力;(2)有机酸促进酸性的发酵环境形成,从而有助于提高多酚稳定性微生物类发酵乳杆菌发酵乳杆菌FTL10BR和FTL2311能够分泌抗氧化活性物质,通过降低自由基含量和增强还原能力的机制发挥抗氧化作用植物乳杆菌植物乳杆菌ST和STDA10能够显著清除DPPH自由基和ABTS阳离子自由基
酸茶抗氧化物质的生成与其特殊的厌氧发酵工艺紧密相关,厌氧发酵能够促进酸茶多种抗氧化活性物质的生成(图1)。在厌氧发酵过程中,乳酸菌和酵母等优势微生物能够产生多种有机酸,其中乳酸、柠檬酸和琥珀酸有助于提高酸茶抗氧化能力[12]。有机酸还能降低茶叶pH值,形成酸性的发酵环境。缺氧的酸性发酵环境有助于提高多酚稳定性,抑制EGCG水解,使其在整个发酵过程中保持相对稳定水平[13-14]。酸茶厌氧发酵中存在多条没食子酸合成途径,能够稳定合成高含量的没食子酸。厌氧发酵还能产生酸茶特有的新抗氧化成分,如间苯二酚[15] 和邻苯三酚[16]。厌氧发酵中的部分益生菌自身也具有抗氧化活性,是酸茶中的主要抗氧化物质之一。
图1 厌氧发酵过程中酸茶的抗氧化物质生成途径
Fig.1 The biosynthetic pathway of antioxidant substances of pickled tea in anaerobic fermentation
微生物对形成发酵茶特有的风味和保健功效具有重要作用。在固态发酵过程中,微生物一方面能够以茶叶为底物进行转化反应,合成多种活性成分;另一方面,微生物的代谢产物及菌体本身均可作为活性物质,促进茶叶品质提升。曲霉(Aspergillus)和冠突散囊菌(Eurotium)等真菌是普洱茶和茯砖茶发酵的优势菌群,而以乳酸菌为主的细菌和酵母是酸茶发酵的优势菌群[17-18]。与曲霉等真菌相比,细菌具有三羧酸循环、碳水化合物代谢、氨基酸代谢和脂质代谢等多条代谢途径,在酸性厌氧发酵环境中活性较好[19]。
茶叶富含茶多酚等抗菌活性物质,能够抑制微生物生长。乳酸菌和酵母等微生物通过生成鞣酸酶、酚酸脱羧酶和苯醇脱氢酶来提高多酚耐受性,成为酸茶的主要发酵菌群[20-21]。其中以植物乳杆菌、发酵乳杆菌和戊糖乳杆菌(Lactobacillus pentosus)为主的乳酸菌是最主要的发酵细菌菌群[22-23],其次是醋酸杆菌(Acetobacter)[24]和芽孢杆菌(Bacillus)[25-26]。酸茶发酵中的优势真菌为嗜酒假丝酵母(Candida ethanolica)和毕赤酵母属(Pichia)[24]。但不同地区的酸茶微生物群落存在差异。日本酸茶Awaban-cha中戊糖乳酸菌占比高于植物乳杆菌[27],而日本酸茶Ishizuchi-kurocha和泰国酸茶Miang中植物乳杆菌占主导地位[22-23]。
茶叶具有多种有机酸,其含量约为干物质质量的3%左右,是茶叶香气、滋味及抗氧化功效的主要成分[28-29]。微生物的产酸作用能够增加发酵茶中有机酸含量和种类[27,30],大量的有机酸的产生有助于酸茶独特的“酸香”品质特征和酸性发酵环境的形成[13] (图1)。
酸茶发酵中存在多种产酸微生物。醋酸杆菌是产生乙酸的主要微生物,酵母能够产生乙酸、柠檬酸、葡萄糖醛酸和琥珀酸等多种有机酸,乳酸菌(发酵乳杆菌除外)能够同质发酵产生乳酸,也能异质发酵产生乙酸和琥珀酸[31]。在整个发酵过程中,酸茶有机酸呈现先增后稳定的动态变化。在发酵初期,乳酸菌和酵母菌丰度增加导致乳酸和葡萄糖醛酸含量迅速增加,其中乳酸量几乎是其他酸的两倍[24,32]。酸茶发酵过程中,乳酸含量变化具有先增后减趋势,这与乳酸菌数量呈正相关。葡萄糖醛酸和琥珀酸含量分别在发酵初期和发酵后期达到最大值后趋于稳定,直至发酵结束[24]。茶叶pH值变化与有机酸含量相关,呈现先降低后趋于稳定(4.5~4.7)的趋势[13,24]。
乳酸菌还是构成酸茶抗氧化作用的重要组成部分,体内及体外实验均证实乳酸菌具有抗氧化、抗衰老和抑菌等多种生理活性,且对高浓度胆汁酸具有耐受性[33]。乳酸菌可以单独作为一种抗氧化剂来缓解邻苯二甲酸二(2-乙基己基)酯和全氟辛酸诱导的氧化应激和肝脏损伤[34-35],也能与茶联合摄入,协同提高黄酮类生物利用度,保护细胞免受d-半乳糖和H2O2诱导的氧化损伤[36-37]。
与有氧发酵茶相比,厌氧发酵的酸茶富含具有抗氧化能力的乳酸菌。CAO等[6]从德昂酸茶中分离出25株乳杆菌,并从中筛选出抗氧化和抗菌活性较好的两株植物乳杆菌ST和STDA10,发现其对胃肠道环境具有较好耐受性,能够显著清除DPPH自由基和ABTS阳离子自由基。KLAYRUNG等[38]从泰国酸茶Miang中也分离出两株具有高耐酸耐胆汁的发酵乳杆菌FTL10BR和FTL2311,它们能够分泌抗氧化活性物质,通过降低自由基含量和增强还原能力的机制发挥抗氧化作用。
酚类化合物是茶叶中一种高效、天然安全的抗氧化剂,茶叶中酚类化合物的含量与其抗氧化能力呈正相关,其中以儿茶素最为重要。在有氧发酵过程中,茶多酚通过氧化聚合和生物降解等途径转化生成大量茶褐素,表没食子儿茶素(epigallocatechin,EGC)和没食子酸等降脂活性成分,从而大幅度降低普洱茶[39]和茯砖茶[40]中的多酚含量,使其抗氧化能力减弱[9]。而在酸茶加工过程中,蒸煮杀青和厌氧发酵能够使酸茶中茶多酚保持较高水平。
植物中酚类物质通常以结合酚的形式广泛存在于植物基质中,蒸煮杀青能够破坏植物细胞壁,打破酚类物质与植物基质之间的相互作用,增加酚类物质的释放,导致蒸熟茶叶中酚类物质的含量高于新鲜茶叶[41]。厌氧微生物产生的大量有机酸能够降低茶叶pH值,形成酸性发酵环境[20, 27]。酸性的厌氧发酵环境有助于提高茶多酚(特别是EGCG)稳定性,减少EGCG的水解[42] (图1)。
由于不同地区酸茶制作工艺的区别,酸茶发酵过程中多酚动态变化的研究结果存在地区性差异。CHUPEERACH等[11]和SOMSONG等[43]的研究均发现,在蒸煮杀青和发酵后,茶鲜叶的生物活性物质发生了结构和数量的变化,总酚含量和抗氧化活性显著提高,从而使泰国酸茶Miang具有显著清除DPPH自由基、吸收氧自由基能力和铁离子还原能力。魏琳等[44]也发现厌氧发酵能显著增加德昂酸茶中茶多酚的含量。而HUANG等[3-4]研究表明耐单宁的乳酸菌和酵母能够分泌单宁酶降解茶多酚,将酯型儿茶素水解为非酯型儿茶素和没食子酸,从而改变儿茶素组并降低酸茶的苦涩度。
没食子酸广泛存在于多种天然植物中,具有抗氧化、抗菌和抗炎等功能。茶树中没食子酸常以酯的形式连接在儿茶素的羟基位上,形成酯型儿茶素衍生物,如黄烷-3-醇没食子酸酯,因此未发酵茶中的没食子酸含量较低(1.67 mg/g)[45]。
在微生物发酵过程中,茶叶中黄烷-3-醇没食子酸酯在微生物的多种水解酶作用下生成没食子酸[46-48]。近年来的研究表明,普洱茶中没食子酸含量介于1.61~20.72 mg/g,平均含量为 9.01 mg/g,而厌氧发酵的酸茶没食子酸含量均可到五倍子的水平(25.7 mg/g)[3,14]。酸茶发酵过程中没食子酸含量的变化与普洱茶和茯砖茶的类似,呈现先增后减的变化趋势[14]。但与之不同的是,有氧发酵茶没食子酸增加的同时总多酚和总儿茶素均降低,尤其是EGCG[9]。酸茶EGCG的含量在发酵过程中保持相对稳定[1,13-14],这说明有氧型和厌氧型发酵茶的没食子酸合成的前体物和途径不同。
EGCG属于黄烷-3-醇没食子酸酯,是茶叶中含量最高的儿茶素。曲霉和冠突散囊菌介导的EGCG水解是有氧发酵茶没食子酸生物合成的主要途径[49]。在酸茶厌氧发酵过程中,曲霉属的数量与菌群丰富度和多样性相比非常低,所分泌的水解酶类有限[14]。同时,缺氧和酸性的发酵条件会抑制单宁酶活性,其将大量EGCG转化为没食子酸的能力下降,从而使EGCG在整个厌氧发酵过程中保持相对稳定[16] (图1)。
酸茶厌氧发酵过程中具有大量与没食子酸生成相关的微生物,如芽孢杆菌、乳酸菌、海枣曲霉(Aspergillus phoenicis)和塔宾曲霉(Aspergillus tubingensis),这些微生物能够产生单宁酶、羧酸酯酶以及葡糖苷酶等促进儿茶素没食子酸酯(epicatechin gallate,ECG)、表阿夫儿茶精-3-没食子酸盐(epiafzelechin-3-O-gallate,EAF-G)和7-没食子儿茶素(7-galloylcatechin,7-GC)的水解反应,进而提高没食子酸含量[14]。
酸茶没食子酸的增加量(24.6 mg/g)远大于儿茶素的减少量(4.3 mg/g)[3],表明厌氧发酵中存在多途径促进高含量没食子酸的形成,ECG、EAF-G和7-GC的水解并不是增加酸茶没食子酸的主要来源。研究发现,细菌源的没食子酸是厌氧发酵中高含量没食子酸形成的另一途径(图1)。微生物除了能够分泌单宁酶水解黄烷-3-醇没食子酸酯合成没食子酸之外,自身也能够通过莽草酸代谢等途径合成没食子酸。芽孢杆菌和植物乳杆菌是两种已被报道生产没食子酸的关键微生物,它们能够利用莽草酸脱氢酶合成没食子酸[50]。
间苯二酚和邻苯三酚作为天然抗氧化活性成分存在于多种植物中,如摩洛哥坚果(Argania spinosa)和牛乳树(Mimusops elengi)。间苯二酚的自由基清除活性相当于绿茶中的EGCG,它能够以浓度依赖的方式降低人胚胎肾细胞系HEK293、人脐静脉内皮细胞和急性T细胞白血病细胞的ROS水平,且没有任何毒性作用[15]。邻苯三酚不仅具有较高的抗氧化和抗糖基化活性,还能够提高儿茶素的生物利用度。HIASA等[15]和ZHANG等[16]分别从日本酸茶Awaban-cha中分离鉴定出间苯二酚和邻苯三酚,且这两种多酚物质仅存在于厌氧发酵茶中。间苯二酚和邻苯三酚的合成可能与儿茶素和没食子酸的代谢有关,但生物合成途径尚未清楚。
综上所述,酸茶厌氧发酵能够促进多种抗氧化物质生成,包括茶多酚等多种抗氧化活性成分和具有抗氧化作用的乳酸菌。在厌氧发酵过程中,曲霉属的数量与菌群丰富度和多样性相比非常低,而以乳酸菌、芽孢杆菌和酵母菌为主的微生物在厌氧环境中代谢活跃,成为酸茶发酵的优势菌群。在厌氧发酵过程中,乳酸菌和酵母等优势菌能够产生多种有机酸,如乳酸、乙酸和琥珀酸,有助于提高酸茶抗氧化活性和形成“酸香”品质特征。大量的有机酸积累还能够降低茶叶pH值,形成酸性发酵环境,从而提高茶多酚的稳定性,减少多酚物质(尤其是EGCG)的降解。植物乳杆菌ST和STDA10与发酵乳杆菌FTL10BR和FTL2311本身具有抗氧化活性,且对高浓度胆汁酸具有耐受性,能够通过降低自由基含量和增强还原能力等机制发挥抗氧化作用,缓解多种氧化剂诱导的细胞损伤。
酸茶具有高含量没食子酸水平,且厌氧发酵中存在多条没食子酸合成途径。与有氧发酵不同,少部分酸茶没食子酸来自芽孢杆菌等细菌介导的ECG、EAF-G和7-GC等黄烷-3-醇没食子酸酯水解,大部分可能来自微生物自身合成。在厌氧发酵过程中会产生酸茶特有的抗氧化性成分——间苯二酚和邻苯三酚。目前,对酸茶的研究主要围绕历史文化挖掘和加工工艺优化方面,对酸茶健康功效的深入研究较少。现有的功效研究表明厌氧发酵能够促进酸茶多种抗氧化活性物质的生成,这些研究结果可以为进一步研究酸茶功效提供理论依据,也为新型功能性酸茶产品的开发提供一定的参考。
[1] KHANONGNUCH C, UNBAN K, KANPIENGJAI A, et al.Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis var.assamica) of northern Thailand[J].Journal of Ethnic Foods, 2017, 4(3):135-144.
[2] 梁名志, 杨天铭, 卢凤美,等.德昂族酸茶研究进展[J].云南农业科技, 2021(6):16-18.
LIANG M Z, YANG T M, LU F M, et al.Research progress of De′ang sour tea[J].Yunnan Agricultural Science and Technology, 2021(6):16-18.
[3] HUANG Y Y, XIAO X D, CONG L, et al.A fermented tea with high levels of gallic acid processed by anaerobic solid-state fermentation[J].LWT-Food Science and Technology, 2016, 71:260-267.
[4] HUANG Y Y, LIU C, XIAO X D.Quality characteristics of a pickled tea processed by submerged fermentation[J].International Journal of Food Properties, 2016, 19(6):1194-1206.
[5] WANGKARN S, GRUDPAN K, KHANONGNUCH C, et al.Development of HPLC method for catechins and related compounds determination and standardization in miang (Traditional Lanna Fermented Tea Leaf in northern Thailand)[J].Molecules, 2021, 26(19):6052.
[6] CAO Z H, PAN H B, LI S J, et al.In vitro evaluation of probiotic potential of lactic acid bacteria isolated from Yunnan De’ang pickled tea[J].Probiotics and Antimicrobial Proteins, 2019, 11(1):103-112.
[7] DENG X J, HOU Y, ZHOU H J, et al.Hypolipidemic, anti-inflammatory, and anti-atherosclerotic effects of tea before and after microbial fermentation[J].Food Science &Nutrition, 2021, 9(2):1160-1170.
[8] UNBAN K, KHATTHONGNGAM N, SHETTY K, et al.Nutritional biotransformation in traditional fermented tea (Miang) from north Thailand and its impact on antioxidant and antimicrobial activities[J].Journal of Food Science and Technology, 2019, 56(5):2687-2699.
[9] MA W J, SHI Y L, YANG G Z, et al.Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components[J].Food Chemistry, 2022, 375:131877.
[10] KETWAL S, CHUEAMCHAITRAKUN P, THEPPAKORN T, et al.Contents of total polyphenol, microorganisms and antioxidant capacities of pickled tea (miang) commercially available in Chiang Rai, Thailand [C].The 16th Food Innovation Asia Conference.Bangkok.2014:567-575.
[11] CHUPEERACH C, AURSALUNG A, WATCHARACHAISOPONSIRI T, et al.The effect of steaming and fermentation on nutritive values, antioxidant activities, and inhibitory properties of tea leaves[J].Foods, 2021, 10(1):117.
[12] ZHANG D D, NIE S P, XIE M Y, et al.Antioxidant and antibacterial capabilities of phenolic compounds and organic acids from Camellia oleifera cake[J].Food Science and Biotechnology, 2020, 29(1):17-25.
[13] BOUPHUN T, WEI X, DAN W, et al.Dynamic changes in chemical constituents during processing of Miang (Thai fermented tea leaf) in various degree of tea leaf maturity[J].ETP International Journal of Food Engineering, 2018, 4:178-185.
[14] ZHANG H A, LIU Y Z, XU W C, et al.Metabolite and microbiome profilings of pickled tea elucidate the role of anaerobic fermentation in promoting high levels of gallic acid accumulation[J].Journal of Agricultural and Food Chemistry, 2020, 68(47):13751-13759.
[15] HIASA M, KUROKAWA M, OHTA K, et al.Identification and purification of resorcinol, an antioxidant specific to Awa-ban (pickled and anaerobically fermented) tea[J].Food Research International, 2013, 54(1):72-80.
[16] ZHANG M M, OTAKE K, MIYAUCHI Y, et al.Comprehensive NMR analysis of two kinds of post-fermented tea and their anti-glycation activities in vitro[J].Food Chemistry, 2019, 277:735-743.
[17] ZHAO M, SU X Q, NIAN B, et al.Integrated meta-omics approaches to understand the microbiome of spontaneous fermentation of traditional Chinese Pu-erh tea[J].mSystems, 2019, 4(6):e00680-19.
[18] KIM B H, JANG J O, LEE J B, et al.Microbial diversity comparison between Korean, Japanese, and Chinese post-fermented tea (Chungtaejeon, Awabancha, and Puerh tea)[J].Journal of the Korean Society of Food Science and Nutrition, 2020, 49(4):385-393.
[19] PHROMRUKACHAT S, TIENGBURANATUM N, MEECHUI J.Assessment of active ingredients in pickled tea[J].Asian Journal of Food and Agro-Industry, 2010, 3(3):312-318.
[20] XIAO P, HUANG Y Y, YANG W P, et al.Screening lactic acid bacteria with high yielding-acid capacity from pickled tea for their potential uses of inoculating to ferment tea products[J].Journal of Food Science and Technology, 2015, 52(10):6727-6734.
[21] UEDA S, NOMOTO R, YOSHIDA K I, et al.Comparison of three tannases cloned from closely related lactobacillus species:L.Plantarum, L.Paraplantarum, and L.Pentosus[J].BMC Microbiology, 2014, 14:87.
[22] CHAIKAEW S, BAIPONG S, SONE T, et al.Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract[J].Journal of Microbiology, 2017, 55(9):720-729.
[23] HORIE M, SATO H, TADA A, et al.Regional characteristics of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha[J].Bioscience of Microbiota, Food and Health, 2019, 38(1):11-22.
[24] UNBAN K, KHATTHONGNGAM N, PATTANANANDECHA T, et al.Microbial community dynamics during the non-filamentous fungi growth-based fermentation process of Miang, a traditional fermented tea of north thailand and their product characterizations[J].Frontiers in Microbiology, 2020, 11:1515.
[25] UNBAN K, KODCHASEE P, SHETTY K, et al.Tannin-tolerant and extracellular tannase producing Bacillus isolated from traditional fermented tea leaves and their probiotic functional properties[J].Foods, 2020, 9(4):490.
[26] RUNGSIRIVANICH P, PARLINDUNGAN E, O’CONNOR P M, et al.Simultaneous production of multiple antimicrobial compounds by Bacillus velezensis ML122-2 isolated from assam tea leaf [Camellia sinensis var.assamica (J.W.Mast.) kitam.][J].Frontiers in Microbiology, 2021, 12:789362.
[27] NISHIOKA H, MIZUNO T, IWAHASHI H, et al.Changes in lactic acid bacteria and components of Awa-bancha by anaerobic fermentation[J].Bioscience, Biotechnology, and Biochemistry, 2020, 84(9):1921-1935.
[28] ZHANG X A, DU X A, LI Y Z, et al.Are organic acids really related to the sour taste difference between Chinese black tea and green tea?[J].Food science &nutrition, 2022, 10(6):2071-2081.
[29] IVANIOV E, K, TERENTJEVA M, et al.The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage[J].Journal of Food Science and Technology, 2020, 57(5):1840-1846.
[30] DE FILIPPIS F, TROISE A D, VITAGLIONE P, et al.Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation[J].Food Microbiology, 2018, 73:11-16.
[31] TANG V, SUN J C, PUA A, et al.Biovalorization of spent Konacha tea leaves via single-culture fermentation involving wine yeasts and lactic acid bacteria[J].Journal of Applied Microbiology,2022,133:1461-1478.
[32] NISHIOKA H, OHNO T, IWAHASHI H, et al.Diversity of lactic acid bacteria involved in the fermentation of awa-bancha[J].Microbes and Environments, 2021, 36(4):ME21029.
[33] HANCHI H, SEBEI K, MOTTAWEA W, et al.An agar-based bioassay for accurate screening of the total antioxidant capacity of lactic acid bacteria cell-free supernatants[J].Journal of Microbiological Methods, 2022, 195:106437.
[34] SHI L T, PAN R L, LIN G P, et al.Lactic acid bacteria alleviate liver damage caused by perfluorooctanoic acid exposure via antioxidant capacity, biosorption capacity and gut microbiota regulation[J].Ecotoxicology and Environmental Safety, 2021, 222:112515.
[35] CHEN Q, KONG Q M, TIAN P J, et al.Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota[J].Environmental Pollution, 2022, 305:119197.
[36] ZHAO D Y, SHAH N P.Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates D-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system[J].The Journal of Nutritional Biochemistry, 2016, 38:116-124.
[37] ZHAO D Y, SHAH N P.Synergistic application of black tea extracts and lactic acid bacteria in protecting human colonocytes against oxidative damage[J].Journal of Agricultural and Food Chemistry, 2016, 64(11):2238-2246.
[38] KLAYRAUNG S, OKONOGI S.Antibacterial and antioxidant activities of acid and bile resistant strains of Lactobacillus fermentum isolated from miang[J].Brazilian Journal of Microbiology, 2009, 40(4):757-766.
[39] LIU K Y, WANG L Y, JIANG B, et al.Effect of inoculation with Penicillium chrysogenum on chemical components and fungal communities in fermentation of Pu-erh tea[J].Food Research International, 2021, 150:110748.
[40] LI Q, JIN Y L, JIANG R G, et al.Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process[J].Food Chemistry, 2021, 344:128576.
[41] 郭天杰, 王利妍, 段双梅,等.酸茶发酵样品微生物与化学成分研究[J].食品工业, 2019, 40(2):322-327.
GUO T J, WANG L Y, DUAN S M, et al.Study on the microorganism and chemical composition in fermented samples of Suancha[J].The Food Industry, 2019, 40(2):322-327.
[42] JANG J H, PARK Y D, AHN H K, et al.Analysis of green tea compounds and their stability in dentifrices of different pH levels[J].Chemical and Pharmaceutical Bulletin, 2014, 62(4):328-335.
[43] SOMSONG P, TIYAYON P, SRICHAMNONG W.Antioxidant of green tea and pickle tea product, miang, from northern Thailand[J]. Acta Horticulturae, 2018(1210):241-248.
[44] 魏琳, 卢凤美, 邵宛芳,等.酸茶发酵过程中感官品质及主要成分变化分析[J].食品研究与开发, 2019, 40(14):69-74.
WEI L,LU F M,SHAO W F, et al.Changes of sensory quality and main components during fermentation of Suancha[J].Food Research and Development, 2019, 40(14):69-74.
[45] KONGPICHITCHOKE T, CHIU M T, HUANG T C, et al.Gallic acid content in Taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKCδ activation:In vitro and in silico studies[J].Molecules, 2016, 21(10):1346.
[46] LAI G P, CUI Y Q, GRANATO D, et al.Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea:From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing[J].Food Research International, 2022, 155:111041.
[47] ZHU M Z, LI N, ZHOU F, et al.Microbial bioconversion of the chemical components in dark tea[J].Food Chemistry, 2020, 312:126043.
[48] DAI X L, LIU Y J, ZHUANG J H, et al.Discovery and characterization of tannase genes in plants:roles in hydrolysis of tannins[J].New Phytologist, 2020, 226(4):1104-1116.
[49] 王绍梅, 李晓君, 宋文明, 等.普洱茶中没食子酸及其改善饮食诱导的糖脂代谢紊乱研究进展[J].茶叶科学, 2020, 40(4):431-440.
WANG S M, LI X J, SONG W M, et al.Research progress of gallic acid in puer tea and its improvement of diet induced glucose and lipid metabolism disorder[J].Journal of Tea Science, 2020, 40(4):431-440.
[50] AGUILAR-ZRATE P, CRUZ M A, MONTAEZ J, et al.Gallic acid production under anaerobic submerged fermentation by two bacilli strains[J].Microbial cell factories, 2015, 14(1):1-7.