食品在加工、流通和贮藏过程中,包装是非常重要的一个工序。包装的主要目的是保护食品免受外部环境的危害,延长食品的贮存期[1]。但目前常见的食品包装并不能主动显示食品的真实质量信息。智能包装是一种将智能功能与常规包装相结合的包装系统,具有感知、检测、记录产品外部或内部变化的功能[2]。pH响应型智能包装因其成本低、体积小、制备方便和指示效果好等优点而备受关注。
用于pH响应的指示剂可以分为合成和天然指示剂2种类型。合成指示剂主要有甲基红、甲酚红、溴甲酚绿、溴甲酚紫、溴百里酚蓝等[3-4]。大多数合成指示剂具有一定的毒性,难降解,对环境不友好,而且合成指示剂的使用会增加食品安全的隐患。因此,有必要寻找可再生、无毒的天然指示剂来替代合成指示剂。与合成指示剂相比,天然指示剂具有来源广、成本低、安全性高等优点。近年来,多种天然指示剂如花青素、姜黄素等[5]作为指示物在智能包装中被使用[6-8]。花青素因其来源广泛,pH响应范围广、安全可靠、以及具有抑菌和抗氧化等特性而被广泛研究[9-10]。本文对花青素的来源、结构及变色机理进行了阐述,总结了以花青素或富含花青素的提取物为指示剂的pH响应智能包装膜的制备方法和应用,并对其应用局限性和研究方向进行了分析和展望。
花青素是一类多酚类的黄酮化合物,广泛存在于花、水果、蔬菜和精选谷物中,使其呈现出不同的颜色,如,橙色、蓝色、紫色、粉色和红色[11-12]。花青素的分子质量为400~1 200,其基本结构是2-苯基苯并吡喃的糖基化多羟基或聚甲氧基衍生物。羟基的数量、羟基的甲基化程度以及附着在分子上的糖基的性质和数量造成花青素在结构上的差异[13],同时,附着在糖上的脂肪酸或芳香酸的位置、性质和数量同样也影响着花青素的结构。天然花青素主要有矢车菊素、芍药素、牵牛花素、锦葵素、天竺葵素、飞燕草素6种[14],其在植物中的分布为:矢车菊素50%,飞燕草素12%,芍药素12%,天竺葵素12%,锦葵素7%和牵牛花素7%[15-16]。
黄酮离子是花青素的显色基团,它对pH具有高度的敏感性和不稳定性。在不同的pH值溶液中,由于离子结构的转变使花青素呈现出不同的结构和颜色。在高酸性条件下(pH<3),黄酮离子的存在使花青素溶液呈现红色、紫色或橙色。随着pH值的增加,黄酮离子在2号位置水化的可能性增加,羟基发生质子转移反应,黄酮离子在pH值为4~5时转化为甲醇假碱,呈现为无色或淡粉色,并在pH值为6~7时重新排列其结构,形成共振稳定的醌基形式。在pH值为7~8时醌基进一步脱质子,形成阴离子醌基,使溶液呈现出蓝色。在pH>8时形成查尔酮结构,溶液颜色加深,呈现出深褐色[17-18]。
在以花青素作为指示剂制备pH响应型智能包装膜的研究报道中,制膜的方法主要有溶液浇铸、静电纺丝、纳米颗粒包埋、热压和挤压法等[16,19]。
溶液浇铸法是制备pH响应智能包装膜研究中使用最广泛的方法,将配制好的膜液浇铸在磨具上,在室温或者特定的温度下干燥成膜,并将成型的膜置于特定的相对湿度的环境中存放一段时间后再进行应用。该方法操作简单,成本低,非常适合实验室规模的制备和应用。天然花青素的热稳定性较低,在热压或挤压过程中容易因产生的高温而分解,因此,溶液浇铸法有利于维持花青素的稳定[20-22]。溶液浇铸法由于成膜的时间长,处理量少,很难实现大规模的工业生产。CHEN等[23]从甘薯中提取花青素作为指示剂,采用溶液浇铸技术制备了牛至精油-纤维素纳米纤维的pH响应纳米纤维包装膜。在pH值为2~12时,纳米包装膜的颜色由红色变化到黄色。EZATI等[24]采用溶液浇铸法制备了富含花青素的茜草色素-壳聚糖pH响应复合膜,并用于检测鱼肉的品质变化。在酸性条件下膜呈现出微黄色,随着鱼肉贮存时间的延长,膜变为浅棕色,表明变质开始,最后复合膜呈紫色,表明鱼肉完全变质。ZHANG等[25]基于溶液铸造技术,研制出含游离和微胶囊包埋的桑渣提取物的车前籽胶pH响应膜。该智能膜在pH值为2~12时表现出较大的红蓝色差。桑渣提取物的加入使包装膜具有较好的性能和经济性,是非常具有潜力的活性、pH敏感的食品包装材料。
静电纺丝是一种用于制备聚合物纳米纤维的技术,在强电场作用下,将不同的大分子均匀地电纺成数纳米量级的超细纤维。因此,静电纺丝法制备的纳米复合纤维具有比表面积大、孔隙率高、孔径小、吸光度高等特点,是pH响应型复合膜的潜在候选材料[26-27]。DUAN等[28]采用静电纺丝技术,以姜黄素和花青素为指示剂,普鲁兰多糖和甲壳素纳米纤维为基质,研制了主动智能的静电纺丝纳米纤维包装膜。在pH敏感性方面,仅含有姜黄素的纳米纤维膜对pH响应不敏感,仅含花青素和2种指示剂均有的纳米纤维膜颜色随着pH值的变化发生显著变化。KUNTZLER等[29]利用静电纺丝技术,采用螺旋藻提取物作为指示剂,以聚乳酸和聚氧化乙烯为膜液制备出智能纳米纤维膜。智能膜的颜色在不同pH值下呈现出从棕色到绿色的变化。MAFTOONAZAD等[27]采用静电纺丝技术制备了聚乙烯醇和红甘蓝提取物的纳米纤维pH感应膜,并用于评价新鲜枣果的质量。随着鲜枣pH值的降低,膜的颜色由紫色变成深紫色,表明鲜枣完全腐败。
花青素容易受温度、光、pH、氧气等因素影响而发生降解,采用纳米颗粒或纳米聚合物包埋技术,可增强其稳定性,并提高其颜色变化的显著性。在pH指示剂的开发中,纤维素纳米纤维、结冷胶、壳聚糖、淀粉等天然生物聚合物通常作为结构复合材料来承载和稳定指示剂[30]。ZHANG等[31]利用壳聚糖和TiO2纳米颗粒,以黑李皮提取物为pH指示剂,开发出一种pH响应食品包装膜。在不同的pH值下,复合膜呈现出3种不同的颜色,pH值2~6时为红色,pH值7~12时为蓝色,pH值13时为暗黄色。壳聚糖-TiO2纳米颗粒的存在有助于保护食品免受紫外和可见光的辐照,也便于观察颜色变化。研究表明该pH响应包装膜可用于评价易变质食品的新鲜度或变质程度。
热压和挤压法是采用热压机或挤压机将含有指示剂的膜液压缩成膜。该方法可用于包装薄膜的大规模生产,但在热压和挤压过程中容易产生高温使指示剂分解,降低其敏感性或失去指示性能。这是制约含天然指示剂的pH响应智能膜大规模生产的主要因素之一。URANGA等[32]将红甘蓝中分离出来的花青素与明胶混合,采用热压法制备活性膜。与明胶膜相比,其抗氧化活性、力学性能和疏水性均有所提高,但光学性能略有下降,水蒸气渗透性提高。GUTIÉRREZ等[33]以玉米淀粉、蓝莓提取物和纳米粘土为原料,采用挤压法制备pH响应膜。挤出膜未呈现出良好的pH响应性能,这可能是因挤压过程中色素的降解所致。
食品在贮藏的过程中,随着食物质量的变化,食物的pH值也会改变。因此,pH值检测是评判食品新鲜或变质程度的一种方法。在这方面,使用pH响应包装是实现对食品质量实时监测的一种简便易行的方法。食品在贮存期品质变化时会发生一系列生物或化学反应,产生有机酸、挥发性含氮化合物或硫衍生物等物质,可与指示剂作用,使指示剂呈现出明显的颜色变化,以实时监控食品品质[34-36]。以花青素为指示剂的pH响应智能包装已被广泛研究应用于各类食品的包装中。目前的研究报道主要集中在对肉制品、奶制品和水产品等食品的新鲜度监测。
pH的改变是生鲜肉腐败变质的一个重要的表现因素。挥发性胺类等是肉类在贮存过程中因微生物降解而产生的代谢物质,此类代谢产物会导致肉制品及其包装环境的pH发生显著的变化[37-38]。GUO等[39]将甜菜根提取物加入西瓜皮果胶中制备pH敏感指示剂膜,并用于监测冷藏牛肉在贮藏过程中品质的变化。智能膜在较宽的pH值(3~10)范围内均表现出明显的颜色响应。在对冷藏牛肉的监控中,随着冷藏牛肉的腐败变质,膜的颜色由第0天的粉红色变为第8天的棕色,这表明该智能膜在冷鲜牛肉品质监测的应用方面具有很大的潜力。ZHU等[40]采用从葡萄皮和山竹皮中提取的天然花青素为指示剂,以木薯淀粉和聚乙烯醇为基质制备了智能pH指示膜。在猪肉贮藏期的监测中,添加了葡萄皮花青素智能膜的颜色呈现出由粉色、蓝色、紫色到黄色的变化,含有山竹皮花青素的智能膜的颜色显示出浅黄色、亮黄色、绿色到深绿色的变化,表明这2种pH响应包装膜可用于监测猪肉的新鲜度。ZHANG等[41]通过将负载花青素的卵蛋白-海藻酸丙二醇纳米复合物加入到聚乙烯醇中制备智能包装膜,并将其应用于监测猪肉的新鲜度。随着猪肉新鲜度的降低,膜的颜色呈现出由紫红色到深蓝色的显著变化,表明其可以用于实时监测肉制品的新鲜度。KOSHY等[42]利用碳点和蝶豆花花青素制备出智能淀粉基生物高分子薄膜。随着猪肉贮存时间的延长,薄膜的颜色从紫色变为绿色。该膜具有灵敏的pH指示性,可用于检测包装猪肉的新鲜度。
奶制品在贮存过程中由于微生物的降解代谢使奶制品的pH值发生变化。PIRSA等[43]采用石榴皮提取物和香蜂草精油作为活性成分,以壳聚糖为基质制备了抗菌生物可降解复合膜并用于奶酪腐败监测。随着贮藏时间的延长和贮藏温度的升高,奶酪的pH值发生变化,因石榴皮中花青素的存在使复合膜的颜色从蓝色变为红色,且变化是肉眼可见的,表明该复合膜可以用来估计奶酪的保质期。MOAZAMI-GOODARZI等[44]将黑胡萝卜花青素固定在淀粉基质中制备了一种智能新鲜度指示标签。制备的标签在4、20 ℃避光和20 ℃光照条件下保存一个月后,在不同的pH值下仍具有显著的颜色变化,且颜色具有良好的稳定性。在对巴氏杀菌后牛奶的贮存监测中发现,该指示标签可以实现对鲜奶储藏时开始腐败和完全腐败的过程监测。
目前关于水产品新鲜度的监测报道主要集中在鱼、虾这两类食品中。鱼和虾在腐败时会产生挥发性的含氮化合物。挥发性含氮化合物呈碱性,对pH值影响较大,因此,可采用pH敏感膜监测这类食品中的挥发性含氮化合物的含量以实现对新鲜度的监测[45]。NAGHDI等[46]向马铃薯淀粉膜中加入甜菜花青素制备出对pH和氨敏感的食品包装标签。在对鲈鱼4 ℃贮存的监测中,随着总挥发性氮的增加,标签的颜色从粉色变为黄色。EZE等[47]以壳聚糖和紫莓香米的酚类提取物为原料,研制了一种多功能比色指示剂膜。该比色膜在pH值为2~12对挥发性氨有显著的颜色变化。将其应用于鲜虾保鲜时,该膜因虾的变质颜色由橙红色变为黄色,表明该膜具有应用于现场视觉检测海鲜新鲜度的潜力。WEN等[48]以TEMPO氧化细菌纤维素为基质,采用富含花青素的百里香和紫薯提取物作为指示剂,制备了一种智能活性膜。在对鲜虾保鲜研究中发现,经过3个周期后,膜仍保持良好的抗氧化、抗菌和显色反应性能。BAO等[49]以马铃薯淀粉为底物,蓝莓花青素为指示剂,制备pH敏感的食品新鲜度指示膜。在4 ℃下应用于虾的新鲜度监测,指示膜灵敏地呈现出由粉红色到浅灰色,最后到灰绿色的视觉可见的颜色变化,为虾的新鲜度监测提供了一种新颖、高灵敏度的方法。
花青素具有来源广泛、价格低廉、易于与壳聚糖、纤维素或淀粉等环保型水基聚合物结合的优势。花青素pH响应膜在监测肉类、奶制品和水产品等食品的新鲜度方面显示出巨大的潜力。然而目前仅局限在实验室规模的研究和应用。这可能是由于,首先花青素具有不稳定性,对温度、pH、氧气、光等环境因素敏感,在智能膜的制备过程中易发生降解;其次,目前各种制膜工艺均存在相应的缺陷,如,溶液浇铸、静电纺丝和纳米颗粒包埋法不适合大规模生产,而热压、挤压法容易产生高温而造成花青素的降解。这使得花青素pH响应智能包装在实际应用方面仍面临诸多挑战。ZHAI等[50]利用结冷胶、明胶和红萝卜花青素制备出智能膜,在相对湿度75%和荧光灯下对不同温度下贮存30 d的花青素智能膜的颜色稳定性进行了测试。随着膜贮藏时间的延长,红色逐渐褪去,随着贮藏温度的升高,变色更加明显。花青素在高温下变色是由于氧化反应和其较低的热稳定性造成的,这将降低膜在监测时的敏感性。CHAYAVANICH等[51]研究了加入红萝卜花青素的明胶-淀粉基智能膜的稳定性。由于花青素的热稳定性较低,膜的颜色在室温下比在冷藏温度下更不稳定。因此,寻找提高花青素稳定性的方法、优化和开发新的制膜工艺、研究提高膜的贮藏性能等,以实现工业化生产和应用将成为今后花青素pH响应智能包装的研究方向。
智能包装除了具有常规包装的功能外,还兼具对食品质量信息监测和反馈等功能而备受关注。pH响应型智能包装是智能包装中一种简便快捷、可以无损监测食品新鲜度的方法,为监测和反馈食品的新鲜度和腐败程度提供新的策略。花青素来源广泛、无毒、pH响应范围宽、具有抗氧化和抑菌等功能特点,在pH响应型智能包装中被广泛研究。花青素pH响应型智能包装膜在对肉制品、奶制品和水产品的储存期新鲜度检测中表现出显著的颜色变化,在食品新鲜度监控方面显示出很大的发展潜力。但是由于花青素的不稳定性和当前的制膜技术不够成熟,限制了由其制备的智能包装在消费市场中的普遍应用,这也为今后的研究趋势明确了方向。
[1] 李田田, 李洋, 王磊明.智能包装指示器在食品工业中的研究进展[J].食品研究与开发, 2019, 40(15):190-199.
LI T T, LI Y, WANG L M.Research progress of intelligent packaging indicators in food industry[J].Food Research and Development, 2019, 40(15):190-199.
[2] 邵平, 刘黎明, 吴唯娜, 等.传感器在果蔬智能包装中的研究与应用[J].食品科学, 2021, 42(11):349-355.
SHAO P, LIU L M, WU W N, et al.Research and application of sensors in intelligent packaging of fruits and vegetables[J].Food Science, 2021, 42(11):349-355.
[3] MUSSO Y S, SALGADO P R, MAURI A N.Gelatin based films capable of modifying its color against environmental pH changes[J].Food Hydrocolloids, 2016, 61:523-530.
[4] 廖恺芯, 夏宇轩, 王军.果蔬可视化新鲜度检测智能包装研究进展[J].湖南包装, 2021, 36(2):35-37;44.
LIAO K X, XIA Y X, WANG J.Research progress of intelligent packaging for visual freshness detection of fruits and vegetables[J].Hunan Packaging, 2021, 36(2):35-37;44.
[5] 刘丹飞, 崔子杰, 尚咪, 等.用于食品质量监测的pH智能指示剂的研究进展[J].食品安全质量检测学报, 2020, 11(22):8 351-8 358.
LIU D F, CUI Z J, SHANG M, et al.Research progress of pH intelligent indicators for food quality monitoring[J].Journal of Food Safety and Quality, 2020, 11(22):8 351-8 358.
[6] ANDRETTA R, LUCHESEU C L, TESSARO I C, et al.Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression[J].Food Hydrocolloids.2019, 93:317-324.
[7] LIU J R, WANG H L, GUO M, et al.Extract from Lycium ruthenicum Murr.incorporating κ-carrageenan colorimetric film with a wide pH-sensing range for food freshness monitoring[J].Food Hydrocolloids, 2019, 94:1-10.
[8] ETXABIDE A, KILMARTIN P A, MATE J I.Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development[J].Food Control, 2021, 121:107645.
[9] ROTARIU L, LAGARDE F, JAFFREZIC R N, et al.Electrochemical biosensors for fast detection of food contaminants trends and perspective[J].TrAC Trends in Analytical Chemistry, 2016, 79:80-87.
[10] WANG L, XUE J, ZANG Y.Preparation and characterization of curcumin loaded caseinate/zein nanocomposite film using pH-driven method[J].Industrial Crops and Products, 2019, 130:71-80.
[11] YOUSUF B, GUL K, WANI A A, et al.Health benefits of anthocyanins and their encapsulation for potential use in food systems:A review[J].Critical Reviews in Food Science and Nutrition, 2016, 56(13):2 223-2 230.
[12] WALLACE T C, GIUSTI M M.Anthocyanins-nature′s bold, beautiful, and health-promoting colors[J].Foods(Basel,Switerland), 2019, 8(11):550.
[13] KHOO H E, AZLAN A, TANG S T, et al.Anthocyanidins and anthocyanins:colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J].Food and Nutrition Research, 2017, 61(1):1361779.
[14] CLIFFORD M N.Anthocyanins-nature, occurrence and dietary burden[J].Journal of the Science of Food & Agriculture, 2000, 80(7):1 063-1 072.
[15] CASTAEDA-OVANDO A, PACHECO M, PAEZ M, et al.Chemical studies of anthocyanins:A review[J].Food Chemistry, 2009, 113(4):859-871.
[16] ROY S, RHIM J W.Anthocyanin food colorant and its application in pH-responsive color change indicator films[J].Critical Reviews in Food Science and Nutrition, 2021, 61(14):2 297-2 325.
[17] BECERRIL R, NERIN C, SILVA F.Bring some colour to your package:Freshness indicators based on anthocyanin extracts[J].Trends in Food Science & Technology, 2021,111:495-505.
[18] 王芳. 基于花青素的猪肉新鲜度智能指示包装膜的制备与研究[D].西安:陕西科技大学, 2020.
WANG F.Preparation and exploration of intelligent indication packaging film for anthocyanin-based pork freshness[D].Xi′an:Shaanxi University of Science and Technology, 2020.
[19] LUO Q Y, HOSSEN A, SAMEEN D E, et al.Recent advances in the fabrication of pH-sensitive indicators films and their application for food quality evaluation[J/OL].Critical Reviews in Food Science and Nutrition, 2021:1-17.
[20] PEIGHAMBARDOUST S J, PEIGHAMBARDOUST S H, POURNASIR N, et al.Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications[J].Food Packaging and Shelf Life, 2019, 22:100420.
[21] VUKOJA J, PICHLER A, KOPJAR M.Stability of anthocyanins, phenolics and color of tart cherry jams[J].Foods(Basel,Switzerland), 2019, 8(7):255.
[22] ROY S, SHANKAR S, RHIM J W.Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films[J].Food Hydrocolloids, 2019, 88:237-246.
[23] CHEN S L, WU M, LU P, et al.Development of pH indicator and antimicrobial cellulose nanofibre packaging film based on purple sweet potato anthocyanin and oregano essential oil[J].International Journal of Biological Macromolecules, 2020, 149:271-280.
[24] EZATI P, RHIM J W.pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications[J].Food Hydrocolloids,2020,102:105629.
[25] ZHANG X, ZHAO Y, SHI Q L, et al.Development and characterization of active and pH-sensitive films based on Psyllium seed gum incorporated with free and microencapsulated mulberry pomace extracts[J].Food Chemistry, 2021, 352:129333.
[26] ZHANG X S, SUN G G, XIAO X Q, et al.Application of microbial TTIs as smart label for food quality:Response mechanism, application and research trends[J].Trends in Food Science & Technology, 2016, 51:12-23.
[27] MAFTOONAZAD N, RAMASWANY H.Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab)[J].Polymer Testing, 2019, 75:76-84.
[28] DUAN M X, YU S, SUN J S, et al.Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging[J].International Journal of Biological Macromolecules, 2021, 187:332-340.
[29] KUNTZLER S G, COSTA J A V, BRIZIO A P D R, et al.Development of a colorimetric pH indicator using nanofibers containing Spirulina sp.LEB 18[J].Food Chemistry,2020, 328(30):126768.
[30] EBRAHIMI TIRTASHI F, MORADI M, TAJIK H, et al.Cellulose/chitosan pH-responsive indicator incorporated with carrot anthocyanins for intelligent food packaging[J].International Journal of Biological Macromolecules, 2019, 136(1):920-926.
[31] ZHANG J J, ZOU X B, ZHAI X D, et al.Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness[J].Food Chemistry, 2019, 272(30):306-312.
[32] URANGA J, ETXABIDE A, GUERRERO P, et al.Development of active fish gelatin films with anthocyanins by compression molding[J].Food Hydrocolloids, 2018, 84:313-320.
[33] GUTIÉRREZ T J, ALVAREZ V A.Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract[J].Food Hydrocolloids, 2018, 77:407-420.
[34] KUSWANDI B, WICAKSONO Y, JAYUS, et al.Smart packaging:sensors for monitoring of food quality and safety[J].Sensing & Instrumentation for Food Quality & Safety, 2011, 5(3/4):137-146.
[35] 谢勇, 刘林, 王凯丽, 等.包装用智能标签的应用及研究进展[J].包装工程, 2017, 38(19):121-127.
XIE Y, LIU L, WANG K L, et al.Application and research progress of the intelligent label for packaging[J].Packaging Engineering, 2017, 38(19):121-127.
[36] 高琳, 易凯, 蔡锋, 等.可视化智能包装在减少食物浪费中的应用[J].包装工程, 2020, 41(7):125-133.
GAO L, YI K, CAI F, et al.Application of visible intelligent packaging in reducing food waste[J].Packaging Engineering, 2020, 41(7):125-133.
[37] 贾惜文, 王浩, 曹传爱, 等.颜色指示型智能包装监测生鲜肉新鲜度的研究进展[J].食品工业科技, 2020, 41(6):318-324.
JIA X W, WANG H, CAO C A, et al.Research advances in application of color indicator intelligent packaging for monitoring freshness of raw meat[J].Science and Technology of Food Industry, 2020, 41(6):318-324.
[38] 李洪军, 王俊鹏, 贺稚非, 等.智能包装在动物源性食品质量与安全监控中应用的研究进展[J].食品与发酵工业, 2019, 45(21):272-279.
LI H J, WANG J P, HE Z F, et al.Research progress on intelligent packaging in quality and safety monitoring of animal derived food products[J].Food and Fermentation Industries, 2019, 45(21):272-279.
[39] GUO Z L, GE X Z, LI W, Z et al.Active-intelligent film based on pectin from watermelon peel containing beetroot extract to monitor the freshness of packaged chilled beef[J].Food Hydrocolloids, 2021, 119:106751.
[40] ZHU B F, LU W W, QIN Y Y, et al.An intelligent pH indicator film based on cassava starch/polyvinyl alcohol incorporating anthocyanin extracts for monitoring pork freshness[J].Journal of Food Processing and Preservation, 2021, 45(10):e15822.
[41] ZHANG X Y, ZOU W J, XIA M Q, et al.Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nano complexes as a stable pH indicator of monitoring pork freshness[J].Food Chemistry, 2022, 368(30):130825.
[42] KOSHY R R, KOSHY J T, MARY S K, et al.Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork[J].Food Control, 2021, 126:108039.
[43] PIRSA S, KARIMI SANI I, PIROUZIFARD M K, et al.Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage[J].Food Additives & Contaminants:Part A, 2020, 37(4):634-648.
[44] MOAZAMI GOODARZI M M, MORADI M, TAJIK H, et al.Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment[J].International Journal of Biological Macromolecules, 2020, 153(15):240-247.
[45] 李洋, 冯刚, 王磊明, 等.新鲜度指示型智能包装的研究进展[J].现代食品科技, 2018, 34(4):287-293.
LI Y, FENG G, WANG L M, et al.Review:Freshness indicator intelligent packaging[J].Modern Food Science and Technology, 2018, 34(4):287-293.
[46] NAGHDI S, REZAEI M, ABDOLLAHI M.A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish[J].International Journal of Biological Macromolecules, 2021, 191:161-170.
[47] EZE F N, JAYEOYE T J, SINGH S.Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract[J].Food Chemistry, 2022, 366:130574.
[48] WEN Y Y, LIU J, JIANG L, et al.Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp[J].Food Packaging and Shelf Life, 2021, 29:100709.
[49] BAO Y W, CUI H J, TIAN J L, et al.Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring[J].Food Control, 2022, 131:108441.
[50] ZHAI X D, LI Z H, ZHANG J J, et al.Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging[J].Journal of Agricultural and Food Chemistry, 2018, 66(48):12 836-12 846.
[51] CHAYAVANICH K, THIRAPHIBUNDET P, IMYIM A.Biocompatible film sensors containing red radish extract for meat spoilage observation[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 226(5):117601.