普洱茶调节肠道菌群作用的研究进展

杨智1,2,蒋洁琳2,3,官兴丽1,2*,邹小林1,2,符宗林1,2,罗赛1,2,代丽凤1,2

1(云南大益微生物技术有限公司,云南 昆明,650217)2(云南省普洱茶发酵工程研究中心,云南 昆明,650217)3(勐海茶业有限责任公司,云南 勐海,666200)

摘 要 普洱茶作为一种风味独特的后发酵茶,具有多种保健功能。而肠道菌群直接或间接地影响着人类的代谢健康,正逐渐成为治疗疾病的一个新靶点。普洱茶可通过调节肠道菌群改善肥胖、结肠炎、糖尿病等疾病,但其成分复杂,功能性成分对肠道菌群的作用机制尚不清楚,这阻碍了普洱茶进一步开发利用。该文简述了普洱茶调节肠道菌群改善疾病的研究现状,探讨了普洱茶中可能调节肠道菌群的功能成分,以期为普洱茶促健康功能的机制研究和产品开发提供参考。

关键词 普洱茶;肠道菌群;功能成分;保健功效

普洱茶是国家地理标志产品,以云南大叶种茶叶(Camellia sinensis var.assamica)为原料,经特定加工工艺制成,具有独特品质特征。依据加工工艺的差异,可将普洱茶分为普洱生茶和普洱熟茶[1]。普洱熟茶经微生物后发酵制成,大量的微生物参与,催化形成复杂而丰富的化学成分,使普洱茶具有独特风味和保健作用[2-5]。已有研究发现普洱茶具有多种保健功能,如降血脂、降血糖、抗肥胖、抗氧化、缓解代谢综合征等[6-7]。近年来随着研究的深入,发现普洱茶保健作用可能是通过茶中功能性成分与肠道微生物相互作用来实现的[8]

肠道微生物被视为人类的第二基因组,约有1 000种细菌生活在人类肠道中,其中大部分属于厚壁菌门(Firmicutes)和拟杆菌门(Bacteriodetes)[9]。近20年来的研究结果表明,肠道菌群对人体宿主的代谢有一定影响,参与调节多种常见疾病,包括肥胖、2型糖尿病、非酒精性肝病、肠易激综合征、心脏代谢性疾病和自身免疫性疾病,这些疾病的发生均伴随肠道菌群的紊乱[10-11]。肠道菌群已逐渐成为治疗疾病的一个新靶点,尤其在肠道疾病方面,粪便微生物群移植已成为治疗的有效手段[12]。同时,研究发现许多植物及其生物活性成分可以通过影响肠道菌群来预防和治疗人类疾病,如葡萄、浆果、苹果、姜黄、辣椒、大豆、高粱和大麦等,通过增加肠道菌群多样性,上调抗肥胖的肠道菌群丰度,下调导致肥胖的肠道菌群丰度,起到抗肥胖作用[13],一些生物活性成分如多酚、类黄酮和多糖可通过调节肠道菌群来抵抗肠道疾病[14]

普洱茶作为一种风味独特的后发酵茶,促健康作用是其受欢迎的重要原因。近年来已发表许多普洱茶调节肠道菌群改善机体疾病的研究,但其与肠道菌群相互作用的功能成分与作用机制仍需加强研究。因此本文对普洱茶调节肠道菌群的文章进行综述,归纳总结普洱茶通过调节肠道菌群发挥的保健作用和可能的功能成分,以期为普洱茶促健康功能的机制研究和产品开发提供新视角。

1 普洱茶通过调节肠道菌群发挥的促健康作用

普洱茶通过改变肠道菌群的构成和多样性来缓解或治疗多种代谢性疾病,包括肥胖、结肠炎、糖尿病、代谢综合征、慢性饮酒引起的代谢紊乱等,详情见表1。

1.1 普洱茶通过调节肠道菌群改善肥胖

流行病学研究显示,肥胖已成为中国的一项重大公共卫生问题,超重和肥胖人数在过去40年间迅速增加,而肥胖大大增加了患2型糖尿病、非酒精性脂肪肝、高血压、心肌梗塞、癌症等疾病的风险[15-16]。因此,预防或改善肥胖已成为我们面临的重大挑战。越来越多的证据表明,普洱熟茶提取物(Pu-erh tea extract,PTE)可通过调节肠道菌群来预防和改善肥胖。

肠道菌群中厚壁菌门和拟杆菌门的相对丰度可能是指示肥胖易感性的生物标志物,比较肥胖和健康个体的肠道微生物群,肥胖人群中厚壁菌门和拟杆菌门的比值(F/B)较高[17-18],研究认为F/B值增加,可能有利于能量吸收和储存脂肪,而导致体重增加和肥胖[19]。多项研究发现普洱茶提取物能逆转由高脂饮食引起的肥胖小鼠肠道菌群F/B值的升高[20-27],而XIA等[28]和GAO等[29]和高晓余[30]的研究则有相反的结论,这可能是由于检测方法和技术的差异造成,但以上研究均发现普洱熟茶提取物能显著改善肥胖小鼠门水平上的肠道菌群,重构肠道菌群的组成,提升多样性,显著抑制由高脂饮食引起的小鼠体重增加。

在属水平上,乳酸杆菌属(Lactobacillus),芽孢杆菌属(Bacillus),肠球菌属(Enterococcus),乳球菌属(Lactococcus),链球菌属(Streptococcus),明串珠菌属(Leuconostoc)等菌属与胆盐水解酶(bile-salt hydrolase,BSH)活性相关,HUANG等[31]研究发现普洱熟茶中茶褐素可通过抑制这些菌属生长,从而增加回肠结合胆汁酸(bile acids,BAs)水平来抑制肠道FXR-FGF15信号通路,增加BAs肝脏生成和粪便排泄,减少肝脏胆固醇和脂肪生成。而另枝菌属(Alistipes),阿克曼氏菌属(Akkermansia),布劳特氏菌属(Blautia),罗斯氏菌属(Roseburia)等与肥胖呈负相关的菌属,普洱熟茶可显著提升其丰度[20,22-23,26]

在种水平上,嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)定殖于肠道黏膜层并调节基础代谢,已被证明与超重、肥胖和其他代谢综合征存在负相关,通过补充嗜黏蛋白阿克曼氏菌可治疗肥胖[32-33]。灌喂普洱茶能显著提高小鼠中嗜黏蛋白阿克曼氏菌的丰度[20,28-29]。研究显示,普洱茶是通过提高嗜黏蛋白阿克曼氏菌等7-去羟基化菌群,使非12-羟基化的胆汁酸增加,从而促进白色和褐色脂肪组织的能量代谢[25]

除了大量的动物实验研究,人体实验研究发现普洱茶能改变人体微生物组成,降低志愿者血清中胆固醇、甘油三酯水平和腰围/臀围比值,增加粪便中BAs排出量,这表明普洱茶在促进脂质代谢和调节肝脏功能方面具有一定潜力[30-31],但普洱茶是否通过调节肠道菌群来调节脂质代谢从而实现降脂减肥的功效,还有待进一步研究。

1.2 普洱茶通过调节肠道菌群改善肠道炎症

炎症性肠病(inflammatory bowel disease,IBDs)主要指溃疡性结肠炎(ulcerative colitis,UC)和克罗恩病(Crohn’s disease,CD),是一种病因不明的慢性胃肠道疾病,在世界范围内尤其发达国家非常流行。虽然IBDs的确切病因尚不完全清楚,但目前的共识是,疾病的开始或发展往往与人类遗传学、环境因素、宿主免疫反应和肠道菌群之间的相互作用有关[34]。近年来,茶对结肠炎的预防和保护作用得到了极大的关注和广泛的研究,有研究表明普洱茶辅助治疗葡聚糖硫酸钠(dextran sulfate sodium, DSS)诱导的小鼠结肠炎是最有效的[35-36]。HUANG等[37]研究也证明了普洱茶可通过调节NF-κB和HIF-1α信号通路减轻小鼠DSS诱导的结肠炎。

同时,肠道微生物参与宿主消化和代谢,调节上皮屏障、宿主免疫系统,以及抵御病原体定植,被认为是宿主对IBDs易感性的关键因素[38]。普洱茶能重塑肠道菌群,降低抑制肠道氧化应激介导的炎症信号通路,上调肠道紧密连接蛋白,进而改善肠道免疫屏障,且以灌喂普洱茶小鼠的粪便作为供体,通过粪便菌群移植改变了结肠炎小鼠的肠道菌群组成,降低炎症反应和组织损伤水平,进一步证明普洱茶能通过调节肠道菌群来改善结肠炎[39-40]。ZHANG等[41]研究发现普洱茶显著促进肠道双歧杆菌属(Bifidobacterium)和乳酸杆菌属(Lactobacillus)等益生菌增殖,通过增加益生菌的数量来缓解肠道紊乱和损伤。在结肠炎小鼠中肠杆菌科(Enterobacteriaceae),幽门螺杆菌(Helicobacter)和Lachnoclostridium等与胃肠病相关的菌属丰度较高,而乳酸杆菌属、双歧杆菌属、阿克曼氏菌属等有益菌属丰度较低,普洱茶逆转了这种情况,恢复了小鼠肠道菌群应对DSS的弹性[40,42]

1.3 普洱茶通过调节肠道菌群改善糖尿病及其它疾病

关于普洱茶通过抑制α-葡萄糖苷酶和α-淀粉酶降糖的体外研究较多[43],但通过调节肠道菌群降糖的研究较少。DING等[44]发现相较于普洱生茶,普洱熟茶能显著降低糖尿病大鼠的空腹血糖水平,且呈剂量依赖性,进一步研究发现,熟茶可增加拟杆菌门的相对丰度,降低F/B值,促进有益菌属如乳酸杆菌属,拟普雷沃菌属(Alloprevotella)和普雷沃菌属(Prevotella)的富集。YUE等[45-46]研究证明肠道微生物与血清代谢物、肥胖和胰岛素抵抗之间存在较强的相关性,普洱茶主要通过靶向调节肠道微生物繁殖,如富集多形拟杆菌(Bacteroides thetaiotaomicron),鼠乳杆菌(Lactobacillus murinus),狄氏副拟杆菌(Parabacteroides distasonis),产酸拟杆菌(Bacteroides acidifaciens)等与胆汁分泌、甘油磷脂代谢相关的菌株,从而改善大鼠糖脂代谢。

除了改善肥胖、结肠炎、糖尿病以外,近年的研究还发现,普洱茶通过调节肠道菌群可以改善慢性饮酒引起的代谢紊乱、昼夜节律紊乱和延缓衰老,这些疾病通常都伴随着氧化应激、器官炎症、糖脂代谢紊乱以及肠道微生物改变,普洱茶能从不同的途径修复损伤,减少炎症发生,逆转疾病引起的菌群改变,抑制有害菌如幽门螺杆菌的富集[47-49]

2 普洱茶调节肠道菌群可能的功能性成分

普洱茶具有调节肠道菌群改善机体疾病的作用,目前多以普洱茶水提物为研究对象,针对水提物中明确活性成分的研究较少,一定程度上限制了相关功能性产品的开发。关于其他茶类(如绿茶)调节肠道菌群的功能性成分研究主要集中在茶多酚、茶多糖、茶皂素等[50]。由于后发酵这一独特的加工方式,使普洱茶具有不同于其他茶的风味口感,也使其所含的化学物质有所改变,包括儿茶素类成分和氨基酸的减少,茶多糖、没食子酸和咖啡因的明显增加,一些新物质(如普洱茶素puerins)的形成[4,22]。这些化学物质的改变为其功能提供了物质基础。结合现有文献分析,普洱茶中发挥调节肠道菌群的功能物质可能为茶褐素、茶多酚、茶多糖。

2.1 茶褐素

茶褐素是普洱茶中一类水溶性酚性色素,在发酵过程中,其显著增加,被认为是普洱茶的特征成分[51-52]。研究表明茶褐素能降低产胆盐水解酶的肠道细菌丰度和胆盐水解酶活性,起到降胆固醇和降脂作用,同时可通过改变肠道菌群,尤其是增加7-去羟基化菌群如嗜黏蛋白阿克曼氏菌、梭状芽胞杆菌(Clostridium scindens)和狄氏副拟杆菌(Parabacteroides disasonis),使胆汁酸的生物合成从经典途径转移到替代途径,从而改善白色和棕色脂肪组织的能量代谢,起到改善肥胖作用[25,31]。此外茶褐素通过调节肠道菌群可改善糖尿病、代谢综合征和衰老[45-46,49],详见表1。相对于其他功能物质,茶褐素调节肠道菌群的研究较多,但茶褐素是一种较为复杂的大分子聚合物,由多糖、酚类物质、蛋白质、氨基酸等聚合形成,其形成过程复杂,较难分离纯化,确切的组成和结构特征尚不清楚,检测方法并不成熟,这可能导致不同研究中的茶褐素性质不尽相同[53-54]

2.2 茶多酚

茶多酚一直被认为是茶叶中的主要功能成分,有较强的抗氧化活性,研究发现约80%以上的茶多酚无法被胃肠道直接吸收,而是到达结肠与肠道菌群相互作用[55]。而多酚的结构多样性,会影响生物利用度、代谢和生物活性,个体差异对多酚的代谢能力也不同[56]。在普洱熟茶中茶多酚含量相较于生茶有所下降,但其构成发生了改变,主要涉及到儿茶素的氧化、大量没食子酸和短链脂肪酸的形成[4],这可能使普洱熟茶有更好的健康作用。GAO等[29]认为氧化茶多酚可能是普洱茶的功能成分,氧化的茶多酚能恢复高脂诱导的小鼠肠道微生物群落结构,显著降低萨特菌(Sutterella spp.)、脱硫弧菌属(Desulfovibrio spp.)等有害菌,增加嗜黏蛋白阿克曼氏菌和双歧杆菌(Bifidobacterium spp.)等有益菌,此外氧化的茶多酚能不同程度上恢复肠道屏障完整性基因Muc2,OccludinZO-1的表达水平,修复肠道屏障功能。XIA等[28]对肥胖大鼠盲肠微生物群落进行宏基因组和元蛋白质组的比较研究显示,普洱茶茶多酚及其肠道菌群代谢物通过刺激II型和III型分泌系统蛋白、延伸因子Tu和甘油醛-3-磷酸脱氢酶,促进了嗜黏蛋白阿克曼氏菌的生长。而普洱茶多酚是一种复杂的多酚组合,目前对于复杂的多酚组合对肠道菌群组成和功能的影响研究较少,机制尚不清楚[57]

2.3 茶多糖

茶多糖在茶叶加工过程中常与多酚和蛋白质结合形成多糖缀合物,普洱茶陈化时间的差异和发酵工艺不同会导致茶多糖的化学成分和蛋白质结合的变化,从而影响其生物活性,与其他茶类多糖相比,普洱茶多糖抗氧化和抗糖尿病的活性最好[58-59]。研究证实同为后发酵茶的茯砖茶多糖能不被分解地通过消化系统,安全到达大肠,被肠道菌群分解利用,通过降低F/B值,增加普雷沃氏菌(Prevotella)和拟杆菌属(Bacteroides)的相对丰度,促进短链脂肪酸(short-chain fatty acids,SCFAs)的产生来起到改善代谢综合征的作用[60-62]。茶多糖也能通过调节肠道微生物色氨酸代谢,促进肠上皮细胞再生来改善结肠炎[63]。目前,普洱茶多糖调节肠道微生物的研究报道较少。

2.4 其他

普洱茶中含有一定量的咖啡因[3]。咖啡因易在上消化道直接被吸收,只有极少部分进入结肠,对其作用于肠道微生物的研究较少[64]。但体外实验表明咖啡因可抑制非益生菌的生长[65],GAO等[29]实验也证明咖啡因可引起小鼠肠道菌群改变,说明即使少量咖啡因也有可能影响肠道菌群,但仍需要更多的研究证实。

3 讨论与展望

肠道菌群与人类疾病息息相关。普洱茶作为一种独特的茶制品,促健康功效已被大众所熟知,促健康功能也得到了广泛的研究。普洱茶可通过调节肠道菌群改善疾病症状,发挥健康功效,但普洱茶成分复杂,目前研究多以水提取物为对象,其功能成分和机制尚不清楚。且普洱茶品质受发酵工艺的影响[66],这限制了普洱茶可作为益生元被进一步开发利用。

因此,开展普洱茶中何种功能成分及其对肠道菌群影响的研究是亟待解决的问题。如对普洱茶茶褐素进行更深入的研究,明确其结构和定量方法是非常必要的。普洱茶多酚和多糖均为复杂的天然成分,可作为益生元被进一步研究和开发。普洱茶素是后发酵茶中存在的特殊物质,其功能研究较少,在调节肠道菌群方面的研究还是空白,值得进一步研究。此外,随着微生物检测技术、代谢组学检测技术、宏基因组的发展,通过多组学的应用使探索普洱茶中功能成分与肠道菌群的相互作用成为可能,这将为普洱茶功能性产品的开发奠定基础。

参考文献

[1] 杨崇仁, 陈可可, 张颖君.茶叶的分类与普洱茶的定义[J].茶叶科学技术, 2006, 47(2):37-38.

YANG C R, CHEN K K, ZHANG Y J.Classification of tea and definition of Pu ’er tea[J].Tea Science and Technology, 2006, 47(2):37-38.

[2] 朱宏涛, 杨崇仁, 李元, 等.普洱茶后发酵过程中微生物的研究进展[J].云南植物研究, 2008, 30(6):718-724.

ZHU H T, YANG C R, LI Y, et al.Advances on the research of microbes during the post-fermentative process of Pu-er tea[J].Acta Botanica Yunnanica, 2008, 30(6):718-724.

[3] ZHANG L, LI N, MA Z Z, et al.Comparison of the chemical constituents of aged Pu-erh tea, ripened Pu-erh tea, and other teas using HPLC-DAD-ESI-MSn[J].Journal of Agricultural and Food Chemistry, 2011, 59(16):8754-8760.

[4] LYU H P, ZHANG Y J, LIN Z, et al.Processing and chemical constituents of Pu-erh tea:A review[J].Food Research International, 2013, 53(2):608-618.

[5] ZHANG L, HO C T, ZHOU J, et al.Chemistry and biological activities of processed Camellia sinensis teas:A comprehensive review[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5):1474-1495.

[6] LEE L K, FOO K Y.Recent advances on the beneficial use and health implications of Pu-erh tea[J].Food Research International, 2013, 53(2):619-628.

[7] WANG S N, QIU Y, GAN R Y, et al.Chemical constituents and biological properties of Pu-erh tea[J].Food Research International, 2022, 154:110899.

[8] LIU J Y, HE D, XING Y F, et al.Effects of bioactive components of Pu-erh tea on gut microbiomes and health:A review[J].Food Chemistry, 2021, 353:129439.

[9] ZHU B L, WANG X, LI L J.Human gut microbiome:The second genome of human body[J].Protein &Cell, 2010, 1(8):718-725.

[10] FAN Y, PEDERSEN O.Gut microbiota in human metabolic health and disease[J].Nature Reviews Microbiology, 2021, 19(1):55-71.

[11] VIJAY A, VALDES A M.Role of the gut microbiome in chronic diseases:A narrative review[J].European Journal of Clinical Nutrition, 2022, 76(4):489-501.

[12] GUPTA A, SAHA S, KHANNA S.Therapies to modulate gut microbiota:Past, present and future[J].World Journal of Gastroenterology, 2020, 26(8):777-788.

[13] CAO S Y, ZHAO C N, XU X Y, et al.Dietary plants, gut microbiota, and obesity:Effects and mechanisms[J].Trends in Food Science &Technology, 2019, 92:194-204.

[14] SUDHEER S, GANGWAR P, USMANI Z, et al.Shaping the gut microbiota by bioactive phytochemicals:An emerging approach for the prevention and treatment of human diseases[J].Biochimie, 2022, 193:38-63.

[15] PAN X F, WANG L M, PAN A.Epidemiology and determinants of obesity in China[J].The Lancet Diabetes &Endocrinology, 2021, 9(6):373-392.

[16] BLÜHER M.Obesity:Global epidemiology and pathogenesis[J].Nature Reviews Endocrinology, 2019, 15(5):288-298.

[17] PALMAS V, PISANU S, MADAU V, et al.Gut microbiota markers associated with obesity and overweight in Italian adults[J].Scientific Reports, 2021, 11:5532.

[18] CROVESY L, MASTERSON D, ROSADO E L.Profile of the gut microbiota of adults with obesity:A systematic review[J].European Journal of Clinical Nutrition, 2020, 74(9):1251-1262.

[19] AMABEBE E, ROBERT F O, AGBALALAH T, et al.Microbial dysbiosis-induced obesity:Role of gut microbiota in homoeostasis of energy metabolism[J].The British Journal of Nutrition, 2020, 123(10):1127-1137.

[20] LU X J, LIU J X, ZHANG N S, et al.Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition[J].Journal of Agricultural and Food Chemistry, 2019, 67(25):6978-6994.

[21] 路晓杰. 基于肠道菌群研究普洱熟茶提取物对肥胖小鼠脂代谢及炎症影响[D].长春:吉林大学, 2018.

LU X J.The effect of PTE on lipid metabolism and inflammation of obese mice studying based on gut microbiota[D].Changchun:Jilin University, 2018.

[22] 路晓杰, 刘久茜, 曹永国, 等.普洱熟茶提取物对实验性非酒精性脂肪肝鼠脂代谢指标及肠道菌群的调节作用[J].中国兽医学报, 2018, 38(4):751-758.

LU X J, LIU J X, CAO Y G, et al.Pu-er tea extract modulating lipid metabolism and gut microbiota in nonalcoholic fatty liver disease mice[J].Chinese Journal of Veterinary Science, 2018, 38(4):751-758.

[23] YE J, ZHAO Y, CHEN X M, et al.Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice[J].Food Research International, 2021, 144:110360.

[24] 赵岩. 基于肠道菌群探讨普洱茶预防和改善肥胖的相关机制[D].泉州:华侨大学, 2020.

ZHAO Y.Gut microbiota-mediated Pu’er tea in preventing and improving obese mice[D].Quanzhou:Huaqiao University, 2020.

[25] KUANG J L, ZHENG X J, HUANG F J, et al.Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling[J].Metabolites, 2020, 10(11):475.

[26] 蒋慧颖, 马玉仙, 曾文治, 等.茶黄素、茶红素与茶褐素对高脂饮食大鼠肠道菌群的影响[J].食品工业科技, 2018, 39(20):274-279;351.

JIANG H Y, MA Y X, ZENG W Z, et al.Effects of theaflavins, thearubigins and theabrownine on intestinal flora in rats fed with high-fat diet[J].Science and Technology of Food Industry, 2018, 39(20):274-279;351.

[27] YUE S J, PENG C X, ZHAO D, et al.Theabrownin isolated from Pu-erh tea regulates Bacteroidetes to improve metabolic syndrome of rats induced by high-fat, high-sugar and high-salt diet[J].Journal of the Science of Food and Agriculture, 2022, 102(10):4250-4265.

[28] XIA Y, TAN D H, AKBARY R, et al.Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats[J].Applied Microbiology and Biotechnology, 2019, 103(4):1823-1835.

[29] GAO X Y, XIE Q H, KONG P, et al.Polyphenol-and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J].Infection and Immunity, 2017, 86(1):e00601-e00617.

[30] 高晓余. 肠道菌群介导的后发酵普洱茶改善饮食诱导的代谢综合征[D].长春:吉林大学, 2017.

GAO X Y.Gut microbiota mediates the protective effects of post fermented Pu-er tea against diet-induced metabolic syndrome[D].Changchun:Jilin University, 2017.

[31] HUANG F J, ZHENG X J, MA X H, et al.Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism[J].Nature Communications, 2019, 10:4971.

[32] XU Y, WANG N, TAN H Y, et al.Function of Akkermansia muciniphila in obesity:Interactions with lipid metabolism, immune response and gut systems[J].Frontiers in Microbiology, 2020, 11:219.

[33] DEPOMMIER C, EVERARD A, DRUART C, et al.Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:A proof-of-concept exploratory study[J].Nature Medicine, 2019, 25(7):1096-1103.

[34] SEYEDIAN S S, NOKHOSTIN F, MALAMIR M D.A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease[J].Journal of Medicine and Life, 2019, 12(2):113-122.

[35] HUANG Y N, XING K Y, QIU L, et al.Therapeutic implications of functional tea ingredients for ameliorating inflammatory bowel disease:A focused review[J].Critical Reviews in Food Science and Nutrition, 2022, 62(19):5307-5321.

[36] LIU Y, WANG X H, CHEN Q B, et al.Camellia sinensis and Litsea coreana ameliorate intestinal inflammation and modulate gut microbiota in dextran sulfate sodium-induced colitis mice[J].Molecular Nutrition &Food Research, 2020, 64(6):e1900943.

[37] HUANG Y N, QIU L, MI X, et al.Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-κB and HIF-1α signaling pathways in mice[J].Food &Function, 2020, 11(4):3459-3470.

[38] GLASSNER K L, ABRAHAM B P, QUIGLEY E M M.The microbiome and inflammatory bowel disease[J].Journal of Allergy and Clinical Immunology, 2020, 145(1):16-27.

[39] HU S S, LI S, LIU Y, et al.Aged ripe Pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J].Journal of Agricultural and Food Chemistry, 2021, 69(36):10592-10605.

[40] LIU Y, LUO L Y, LUO Y K, et al.Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice:A fecal microbiota transplantation study[J].Journal of Agricultural and Food Chemistry, 2020, 68(23):6368-6380.

[41] ZHANG Z F, HE F, YANG W X, et al.Pu-erh tea extraction alleviates intestinal inflammation in mice with flora disorder by regulating gut microbiota[J].Food Science &Nutrition, 2021, 9(9):4883-4892.

[42] HUANG Y N, YANG Q, MI X, et al.Ripened Pu-erh tea extract promotes gut microbiota resilience against dextran sulfate sodium induced colitis[J].Journal of Agricultural and Food Chemistry, 2021, 69(7):2190-2203.

[43] YANG C Y, YEN Y Y, HUNG K C, et al.Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase:A systemic review[J].Nutrition &Diabetes, 2019, 9(1):23.

[44] DING Q Z, ZHENG W, ZHANG B W, et al.Comparison of hypoglycemic effects of ripened pu-erh tea and raw pu-erh tea in streptozotocin-induced diabetic rats[J].RSC Advances, 2019, 9(6):2967-2977.

[45] YUE S J, ZHAO D, PENG C X, et al.Effects of theabrownin on serum metabolites and gut microbiome in rats with a high-sugar diet[J].Food &Function, 2019, 10(11):7063-7080.

[46] YUE S J, SHAN B, PENG C X, et al.Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats[J].Food &Function, 2022, 13(4):1921-1940.

[47] LIU Y, LUO Y K, WANG X H, et al.Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption[J].Journal of Agricultural and Food Chemistry, 2020, 68(24):6615-6627.

[48] HU S S, CHEN Y, ZHAO S B, et al.Ripened Pu-erh tea improved the enterohepatic circulation in a circadian rhythm disorder mice model[J].Journal of Agricultural and Food Chemistry, 2021, 69(45):13533-13545.

[49] LEI S W, ZHANG Z F, XIE G H, et al.Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose[J].Journal of Functional Foods, 2022, 89:104941.

[50] LIU Y C, LI X Y, SHEN L.Modulation effect of tea consumption on gut microbiota[J].Applied Microbiology and Biotechnology, 2020, 104(3):981-987.

[51] 龚加顺, 周红杰, 张新富, 等.云南晒青绿毛茶的微生物固态发酵及成分变化研究[J].茶叶科学, 2005, 25(4):300-306.

GONG J S, ZHOU H J, ZHANG X F, et al.Changes of chemical components in Pu’er tea produced by solid state fermentation of sundried green tea[J].Journal of Tea Science, 2005, 25(4):300-306.

[52] 刘忠英, 潘科, 沈强, 等.茶褐素的组成结构与功能活性研究进展[J].食品工业科技, 2017, 38(5):396-400.

LIU Z Y, PAN K, SHEN Q, et al.Research progress in composition structure and functional activity of Theabrownin[J].Science and Technology of Food Industry, 2017, 38(5):396-400.

[53] 谭超, 彭春秀, 高斌, 等.普洱茶茶褐素类主要组分特征及光谱学性质研究[J].光谱学与光谱分析, 2012, 32(4):1051-1056.

TAN C, PENG C X, GAO B, et al.Spectroscopic and structural characteristics of the main components of theabrownin in Pu-erh tea[J].Spectroscopy and Spectral Analysis, 2012, 32(4):1051-1056.

[54] 王天禄, 杜丽平, 刘艳, 等.普洱茶茶褐素的分离研究[J].食品工业科技, 2016, 37(16):136-140;145.

WANG T L, DU L P, LIU Y, et al.Study on fractionation of theabrownins in puerh tea[J].Science and Technology of Food Industry, 2016, 37(16):136-140;145.

[55] CHEN T T, YANG C S.Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract:Implications on health effects[J].Critical Reviews in Food Science and Nutrition, 2020, 60(16):2691-2709.

[56] DUARTE L, GASALY N, POBLETE-ARO C, et al.Polyphenols and their anti-obesity role mediated by the gut microbiota:A comprehensive review[J].Reviews in Endocrine and Metabolic Disorders, 2021, 22(2):367-388.

[57] VALDÉS L, CUERVO A, SALAZAR N, et al.The relationship between phenolic compounds from diet and microbiota:Impact on human health[J].Food &Function, 2015, 6(8):2424-2439.

[58] XU P, WU J, ZHANG Y, et al.Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α-glycosidase inhibition[J].Journal of Functional Foods, 2014, 6:545-554.

[59] GUO H, FU M X, WU D T, et al.Structural characteristics of crude polysaccharides from 12 selected Chinese teas, and their antioxidant and anti-diabetic activities[J].Antioxidants, 2021, 10(10):1562.

[60] CHEN G J, XIE M H, WAN P, et al.Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea[J].Food Chemistry, 2018, 244:331-339.

[61] LI H S, FANG Q Y, NIE Q X, et al.Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration[J].Journal of Agricultural and Food Chemistry, 2020, 68(37):10015-10028.

[62] CHEN G J, XIE M H, WAN P, et al.Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota[J].Journal of Agricultural and Food Chemistry, 2018, 66(11):2783-2795.

[63] YANG W Q, REN D Y, ZHAO Y, et al.Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism[J].Journal of Agricultural and Food Chemistry, 2021, 69(30):8448-8459.

[64] ALSABRI S G, MARI W O, YOUNES S, et al.Kinetic and dynamic description of caffeine[J].Journal of Caffeine and Adenosine Research, 2018, 8(1):3-9.

[65] SALES A L, DEPAULA J, SILVA C M, et al.Effects of regular and decaffeinated roasted coffee (Coffea Arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth[J].Food &Function, 2020, 11(2):1410-1424.

[66] WANG B.Study on the correlation between microorganism and quality formation of Pu’ er tea during fermentation[J].IOP Conference Series:Earth and Environmental Science, 2019, 332(3):032055.

Advances on the role of Pu-erh tea by regulating gut microbiota

YANG Zhi1,2, JIANG Jielin2,3, GUAN Xingli1,2*, ZOU Xiaolin1,2, FU Zonglin1,2, LUO Sai1,2,DAI Lifeng1,2

1(Yunnan TAETEA Microbial Technology Co.Ltd., Kunming 650217, China)2(Fermentation Engineering Research Center for Yunnan Pu-erh Tea, Kunming 650217, China)3(Menghai Tea Industry Co.Ltd., Menghai 666200, China)

ABSTRACT As a post-fermented tea with unique flavor, Pu-erh tea is widely praised for its health benefits. Alteration in gut microbiota is often associated with human diseases, intervention of gut microbiota is gradually becoming a new target for the treatment of these diseases. Pu-erh tea alleviate obesity, colitis, diabetes, and other diseases by regulating gut microbiota. Due to the high complexity of compound composition in Pu-erh tea, the influence of important functional components on gut microbiota is poorly understood, this hinders the further development and utilization of Pu-erh tea. We review the benefit role of Pu-erh tea in diseases which associated with altered gut microbiota. Meanwhile, the possible functional components in Pu-erh tea are also discussed. These may provide some insights into the mechanism research and healthy product development of Pu-erh tea.

Key words Pu-erh tea; gut microbiota; functional components; health benefits

DOI:10.13995/j.cnki.11-1802/ts.033277

引用格式:杨智,蒋洁琳,官兴丽,等.普洱茶调节肠道菌群作用的研究进展[J].食品与发酵工业,2023,49(21):303-312.YANG Zhi, JIANG Jielin, GUAN Xingli, et al.Advances on the role of Pu-erh tea by regulating gut microbiota[J].Food and Fermentation Industries,2023,49(21):303-312.

第一作者:硕士,工程师(官兴丽高级工程师为通信作者,E-mail:guanxingli1986@126.com)

基金项目:云南省科学技术厅重大科技专项(202002AE320001)

收稿日期:2022-08-11,改回日期:2022-12-26