基于顶空-气相色谱-离子迁移谱分析蒸制过程中草鱼肉挥发性成分的变化

方心如1,肖乃勇1,郭全友2,施文正1,3*

1(上海海洋大学 食品学院,上海,201306)2(中国水产科学研究院东海水产研究所,上海,200090) 3(国家淡水水产品加工技术研发分中心(上海),上海,201306)

摘 要 为提高蒸制草鱼的风味品质,通过顶空-气相色谱-离子迁移谱(headspace-gas chromatography-ion mobility spectroscopy, HS-GC-IMS)结合主成分分析(principal component analysis, PCA)及感官评定研究了草鱼白肉和红肉在蒸制过程中挥发性成分的变化。在鱼肉中共鉴定出40种化合物,其中白肉(34种)和红肉(37种)共有的挥发性化合物有30种,主要是醛类、醇类、酮类和酯类。蒸制处理会促进鱼肉中挥发性化合物(异丁醛、戊醛、己醛、庚醛、2-乙基己醇和2-戊酮)的形成;蒸制后,红肉中挥发性成分的数量和相对含量都高于白肉。PCA结果表明,在蒸制过程中,红肉的风味变化较白肉更为丰富。在蒸制时间到达9 min时,鱼肉整体的风味趋于稳定,鱼肉中的挥发性成分可以代表熟草鱼肉的风味。感官评定的结果也显示,蒸制9 min的草鱼肉具有较好的风味和整体可接受度。综上,HS-GC-IMS和PCA的组合可以较好地描述不同蒸制时间的草鱼白肉和红肉挥发性化合物的变化,并为确定草鱼适宜的蒸制时间提供依据。

关键词 草鱼;蒸制;气相色谱-离子迁移色谱;白肉;红肉;挥发性成分

草鱼(Ctenopharyngodon idellus)是我国传统养殖的“四大家鱼”之一,其养殖总产量居淡水鱼总产量之首。草鱼具有肉质鲜美、细嫩等优点,营养极丰富,富含多种长链多不饱和脂肪酸(polyunsaturated fatty acid,PUFA),但因其土腥味重、易腐败等特点[1],令一些消费者很难接受,不利于草鱼资源的综合利用开发及草鱼产业的发展。作为肉类加工和食用的主要方法,热处理不仅可以使产品具有良好的颜色,而且可以杀死微生物,提高产品质量。蒸制作为一种传统的热加工方式,也被认为是最健康的热加工方式,不仅可以最大限度地保留食品的营养成分和感官特性,也减少了油、盐的摄入,与现代人的健康饮食需求相契合。

风味通常决定了食品整体的感官特征,在评价食品的营养价值和新鲜度方面发挥重要作用。根据以往的研究[2-3],肉类中大部分挥发性成分由脂肪氧化形成,这些物质大多是不稳定的,在加工过程中会发生进一步的反应,形成其他稳定的物质;此外,美拉德反应的发生,及挥发性物质的协同效应都会导致风味的变化。国内外对草鱼挥发性成分的研究很多,但主要集中在冷藏方式[4]、致死方式[5]、贮藏过程[6]、烹饪方式[7]对风味的影响,而热加工对于草鱼风味变化的研究较少,对蒸制过程中草鱼白肉和红肉风味变化的研究还未见报道。

对于淡水鱼风味的分析主要有电子鼻、GC-MS、全二维气相色谱-飞行时间质谱等技术。顶空-气相色谱-离子迁移谱(headspace-gas chromatography-ion mobility spectrometry,GC-IMS)是一种新兴的风味分析技术,基于气相中不同离子在电场中迁移速度的差异来表征化学离子物质[8]。与其他传统分析技术相比,GC-IMS具有高灵敏度、低检测限、不需要对样品进行预处理、二次分离、提高分离效果、形成三维谱图、用插件直观比较谱图等优势。近年来,它已成功用于分析食品的风味,包括德州扒鸡[9]、水蜜桃[10]、培根[11]、酸浆豆腐[12]和鸡蛋[8]

因此,本文采用顶空-气相色谱-离子迁移谱(headspace-gas chromatography-ion mobility spectroscopy, HS-GC-IMS)对草鱼白肉和红肉在蒸制过程中的挥发性成分进行分析,并探讨了较适宜的蒸制处理时间及白肉、红肉在蒸制过程中的风味变化差异,对草鱼的后续加工及菜品的开发提供参考和理论依据。

1 材料与方法

1.1 实验原料

新鲜草鱼[每尾鱼质量为(3 500±200) g],共10条,购于上海市浦东新区古棕路农工商超市。

1.2 仪器与设备

A25 实验室小型均质机,上海福克设备有限公司;FlavourSpec®气相色谱-离子迁移谱联用仪,德国G.A.S公司。

1.3 实验方法

1.3.1 样品前处理

鲜活草鱼采用即杀方式,重击头部致死,去头及内脏,在4 ℃条件下分别取其白肉和红肉。置于100 ℃蒸锅内隔水蒸制3、6、9、12、15 min,分别得到蒸制白肉样品(D3、D6、D9、D12和D15)和蒸制红肉样品(R3、R6、R9、R12和R15)。以未经处理的草鱼白肉(D0)和红肉(R0)为对照组,待测。

1.3.2 样品的GC-IMS分析

参考刘安齐等[13]的方法,略作修改。

自动进样条件:准确称取2.0 g样品置于20 mL顶空瓶中,设置孵育温度为60 ℃,孵化转速为500 r/min,孵育时间为15 min,采用顶空自动进样的方式,进样量为500 μL,进样针温度65 ℃,不分流模式进样。

GC条件:采用强极性色谱柱MXT-WAX(30 m×0.53 mm,1 μm),柱温60 ℃,载气为N2(≥99.999%),运行时间30 min,初始流速为2.0 mL/min,保持2 min;8 min内升至10 mL/min;10 min内升至100 mL/min并保持10 min。离子迁移谱检测温度为45 ℃,漂移气为N2

1.3.3 样品的感官评定

将经过前处理的样品置于盘中,分别从外观、气味、滋味及口感3个维度进行感官评定。感官评定小组由10名(5名女性,5名男性)20~30岁的食品专业人员组成。评定标准如表1[14-15]所示,因白肉和红肉在色泽上存在差异,故针对外观标准略作修改。

1.4 数据分析

利用Excel和SPSS 23对数据进行统计分析,结果用“平均值±标准差”表示。利用软件Origin 2023对分析结果进行绘图。利用GC-IMS仪器自带的Laboratory Analytical Viewer(LAV)分析软件,GC-IMS Library Search软件内置的NIST数据库和IMS数据库对挥发性成分进行定性分析;利用Reporter插件和Gallery Plot插件进行样品间挥发性成分的差异化分析。

表1 蒸制过程中草鱼肉气味感官评定标准
Table 1 Sensory evaluation criteria for grass carp during steaming

感官评定指标评分标准白肉红肉分数外观色泽均匀,肉富有光泽且呈白色色泽均匀,肉富有光泽呈红褐色10~15色泽较均匀,肉有光泽但稍黄色泽较均匀,肉有光泽呈深褐色5~9色泽不均匀,肉无光泽且泛黄色泽不均匀,肉无光泽呈灰褐色0~4气味固有香气浓郁(如愉悦的熟鱼香气…)10~15固有香气淡,有一定不愉快气味(如油脂味,过熟味…)5~9无固有香气,有明显不愉快气味(如鱼腥味,泥土味…)0~4滋味及口感滋味鲜美;口感好,肉质柔嫩16~20滋味较为鲜美;口感较好,肉质较好10~15滋味一般;口感一般,肉质稍干5~9滋味不可接受;口感差,肉质柴0~4

2 结果与分析

2.1 蒸制过程中草鱼肉挥发性成分的谱图分析

利用GC-IMS分别分析蒸制草鱼白肉和红肉中的挥发性成分,得到了挥发性成分的二维谱图(图1)。图1中1.0处红色竖线表示反应离子峰(reaction ion peak,RIP),每个位于RIP两侧的点都代表了样品中的一种挥发性化合物,在漂移时间0.9~1.8 ms和保留时间200~1 200 s内信号较多,说明该区域内有效的挥发性化合物较多。如图1-A所示,选取草鱼白肉生样(D0)的二维谱图作为参比,其余5个样品(D3、D6、D9、D12和D15)为扣除参比谱图,扣除的背景为白色,红色表示挥发性成分含量高于参比,蓝色则表示挥发性化成分含量低于参比。可以看出,D3、D6、D9、D12和D15的样本谱图中出现越来越多的红色斑点,这说明大部分挥发性成分的含量随蒸制时间延长而增加;由图1-B可知,在草鱼红肉中,挥发性成分的变化也呈现相同的趋势。对比图1-A和图1-B发现,在保留时间为300 s附近,白肉样品的谱图中出现更多红色斑点;相反,在400 s和900 s的保留时间附近,红肉样品显示出更多红色斑点。这一现象表明,白肉和红肉在同一蒸制时间点挥发性物质的组成和含量略有差异。这是由于白肉和红肉的营养组成不同,而温度升高会导致脂质氧化及美拉德反应的发生。利用GC-IMS可以将鱼肉样品的熟化程度及风味变化与具体的挥发性成分部分联系起来,为确定草鱼适宜的蒸制时间提供一定的参考。

A-草鱼白肉;B-草鱼红肉
图1 蒸制过程中草鱼肉的二维谱图
Fig.1 2D-topographic plots of grass carp meat during steaming

2.2 蒸制过程中草鱼肉的风味变化

为了进一步比较草鱼白肉和红肉在蒸制过程中挥发性化合物的变化,利用GC×IMS Library Search 软件内置的数据库对草鱼白肉和红肉在蒸制过程中的挥发性成分进行二维定性。在电离区,单个化合物因浓度增大可能会产生一个以上的信号(单体、二聚体甚至三聚体)[9]。表2和表3分别列出了在白肉和红肉中所鉴定的组分,草鱼肉蒸制过程中可明确定性的挥发性化合物有40种,鉴定出的挥发性化合物的碳链普遍集中在C3~C9,其中醛类15种、醇类8种、酮类8种、酯类4种、芳香族2种和杂环类3种;其中草鱼白肉(34种)和红肉(37种)共有挥发性化合物31种。仅在白肉中鉴定出的挥发性成分包括3-甲基丁醛、2-辛醇和异丁酸乙酯;仅在红肉中鉴定出的挥发性成分包括苯甲醛、异戊醇、2-辛酮、乳酸丁酯、2-甲基吡嗪和2-乙基吡嗪。

此外,对不同蒸制时间点的挥发性成分进行比较,并通过图2直观揭示了每种物质的动态变化。颜色明暗反映挥发性成分含量的差异,颜色越亮说明挥发性成分含量越高,反之则越低。如图2-A和图2-B所示,经过蒸制处理后,鱼肉样品中挥发性成分的含量明显高于生样对照组。随蒸制时间延长,鱼肉样品中大部分醛类、醇类和酮类物质的含量及挥发性成分的种类和含量总体呈上升趋势,与李锐等[16]对于汽蒸处理后罗非鱼片挥发性成分的研究结果一致,考虑可能与热处理过程中脂肪的氧化、氨基酸的降解及美拉德反应有关。

2.2.1 醛类化合物

醛类化合物在蒸制过程中的草鱼白肉和红肉中占主导地位。醛类物质是淡水鱼的特征风味物质[17],由于他们显示出较低的气味阈值和独特的气味特征,故对水产品风味形成具有重要贡献[18],一般认为来源于不饱和脂肪,酸在酶和微生物作用下降解。

由图2可知,鱼肉中异丁醛、糠醛、戊醛、己醛、(E)-2-庚烯醛、庚醛、苯乙醛、(E,E)-2,4-辛二烯醛、辛醛、壬醛的相对含量随蒸制时间延长呈不同程度增加。己醛、庚醛、戊醛是不饱和脂肪酸的氧化产物,分别和亚油酸、花生四烯酸、亚麻酸有关[19-20];辛醛和壬醛则来源于油酸的氧化降解[21],具有青草味和油脂味[22]。有报道称,(E)-2-辛烯醛来源于亚油酸的氧化[23],有一定鱼腥味,在蒸制过程中含量呈现先上升后下降的趋势,可以作为草鱼肉蒸制3 min的特征标志物;呈现肉香味的(E)-2-庚烯醛也在蒸制前3 min显著上升并趋于平稳。这些醛类的气味阈值较低,对蒸制后鱼肉风味的形成贡献较大。由表2和表3可知,在白肉(6 min)和红肉(9 min)样品中,异丁醛二聚体、戊醛二聚体、己醛和庚醛的相对含量已经达到生样对照组的20倍以上,并在后续蒸制过程中趋于稳定。在蒸制开始后的各时间点,己醛都是所有醛类化合物中相对含量最高的,同VILAR等[22]的研究一致,其在白肉中的含量高于红肉。此外,糠醛二聚体和苯乙醛的相对含量在红肉样品中显著增加,苯甲醛只在蒸制过程中的红肉中鉴定出。糠醛具有烧烤味和焦糖味,来源于热处理后的美拉德反应。苯甲醛(苦杏仁味)和苯乙醛(花香味)是Strecker醛,来源于氨基酸的Strecker降解[24]。虽然这些醛类化合物的气味阈值较高,但对于对蒸制过程中红肉特殊风味的形成具有一定贡献。

A-草鱼白肉;B-草鱼红肉
图2 不同蒸制时间草鱼肉的Gallery Plot图
Fig.2 Gallery Plot analysis of grass carp meat during steaming

表2 蒸制过程中草鱼白肉挥发性化合物定性分析信息
Table 2 Qualitative information of volatile compounds in white meat of grass carp during streaming

化合物名称分子式保留指数保留时间/s迁移时间/ms峰面积D0D3D6D9D12D15醛类(14)丁醛单体C4H8O598.9309.3881.092 18330.30±55.28252.63±23.89142.27±28.22132.07±21.18132.53±25.72149.83±17.79丁醛二聚体C4H8O603.8312.1531.278 1415.00±1.6179.46±10.69172.43±4.88200.71±17.54223.34±14.37220.83±8.09异丁醛单体C4H8O561.5289.3621.096 6391.28±2.5588.79±6.83100.55±3.4108.25±0.67110.85±2.49112.24±1.56异丁醛二聚体C4H8O552.5284.7341.278 6850.53±2.661 576.04±253.883 055.73±173.43 033.20±241.43 380.19±119.63 403.46±127.25糠醛单体C5H4O2836.7560.8821.108 64177.37±32.09631.78±34.64381.68±19.51440.92±34.93391.02±22.63688.82±50.83糠醛二聚体C5H4O2836.3560.2151.354 3517.99±0.7495.35±15.97115.70±9.91123.31±7.87132.32±9.06162.09±24.26戊醛单体C5H10O692.7367.7061.184 6794.94±8.351 013.98±991 626.63±11.421 631.08±50.011 622.07±13.421 596.55±41.81戊醛二聚体C5H10O684.7360.791.417 9110.27±13.964 390.16±464.87 681.73±131.97 737.42±278.647 931.47±1617 669.04±213.443-甲基丁醛单体C5H10O660.3345.3761.164 66.28±1.1324.35±3.2235.94±1.4533.17±1.9935.19±2.5434.18±7.193-甲基丁醛二聚体C5H10O650.1339.1321.393 16169.28±32.78410.67±52.64432.37±13.34353.33±23.26353.69±21.88333.89±35.67(E)-2-己烯醛单体C6H10O848.3580.1411.182 891 396.13±17.211 537.04±62.74938.33±36.061 053.45±86.99828.08±49.291 180.55±145.32(E)-2-己烯醛二聚体C6H10O847.2578.2141.529 1518.87±3.95121.27±19.1589.55±4.4385.97±5.8272.59±6.2299.87±12.91己醛单体C6H12O797.4500.4061.259 48458.31±38.693 693.9±544.8810 396.55±293.1610 450.69±308.4910 712.90±161.0210 333.02±116.59己醛二聚体C6H12O794495.4551.559 491 139.01±20.1610 007.03±1 100.5726 004.07±1 172.1926 575.98±1 448.1428 344.57±1 232.9327 810.47±1 070.15(E)-2-庚烯醛C7H12O962.5769.81.255 63313.59±40.493 571.22±179.813 501.90±146.973 478.38±153.183 713.36±104.23 693.58±44.52庚醛单体C7H14O893660.1081.334 5346.42±2.49563.46±101.61 216.45±2.771 183.02±8.051 183.64±8.761 189.05±21.83庚醛二聚体C7H14O893.1660.3271.696 9234.54±1.17155.36±64.751 837.12±170.531 812.95±181.072 089.38±140.62 168.45±169.64苯乙醛C8H8O1 029.4900.1021.258 1826.13±6.13146.35±30.76186.21±12.55180.26±12.25198.47±13.19213.58±29.83(E,E)-2,4-二辛烯醛C8H12O1 111.91 103.4231.272 8668.76±5.65102.46±15.52143.06±24.18142.95±3.15154.50±6.61142.82±10.45(E)-2-辛烯醛C8H14O1 065.3983.4111.325 97800.89±64.698 294.17±263.891 699.55±320.131 250.40±42.921 349.20±56.941 343.22±49辛醛单体C8H16O999.5836.0811.406 73151.26±11.1586.13±120.711 806.49±135.831 789.79±125.352 014.36±98.842 056.57±126.24辛醛二聚体C8H16O999.4835.7381.823 1642.05±3.4954.36±6.82337.86±56.1335.15±52.54437.18±52.4475.60±70.63壬醛单体C9H18O1 098.21 066.7271.472 73178.94±20.2798.93±142.431 975.70±168.32 022.91±119.842 229.00±133.252 233.99±131.9壬醛二聚体C9H18O1 098.51 067.3371.942 1384.79±3.3087.22±12.80297.20±55.32321.37±42.7399.36±43.09398.52±62.54醇类(7种)丙二醇单体C3H8O2735.9417.6491.111 21591.53±66.653 767.03±69.121 754.37±65.21 796.66±85.471 902.24±83.021 814.55±45.4丙二醇二聚体C3H8O2734.9416.4361.254 2472.54±10.572 868.83±243.98423.86±44.5460.25±60.21542.76±42.8500.78±18.72,3-丁二醇C4H10O2788.8488.1321.361 86396.62±12.52376.57±34.37388.90±4.31377.56±15.87381.73±16.21379.39±4.43糠醇单体C5H6O2867.1612.61.126 9633.75±1.0683.99±2.8174.34±7.9880.67±3.2980.94±9.0295.76±1.03糠醇二聚体C5H6O2866.9612.3021.383 5125.01±2.16282.72±49.33304.89±27.32322.65±24.59356.80±22.46374.37±13.681-戊醇C5H12O769.1460.581.237 650.68±7.76620.37±63.41697.32±6615.00±40.46580.5±42.92602.54±34.41-辛烯-3-醇单体C8H16O995.3827.5671.158 1522.75±3.9926.80±5.35136.53±12.92152.05±8.22165.42±7.48173.09±8.021-辛烯-3-醇二聚体C8H16O961.5768.1531.600 4347.17±5.64234.68±56.01208.39±21.36203.72±29.91256.24±10260.97±18.842-辛醇C8H18O999.3835.5651.466 3130.92±1.5145.37±9.495.67±5.8105.83±8.91115.57±10.35122.42±1.592-乙基己醇单体C8H18O1 039.2922.0511.421 3959.3±6.361 497.66±189.771 939.72±86.261 973.88±104.712 082.37±98.592 068.76±58.622-乙基己醇二聚体C8H18O1 038.5920.4361.811 5533.5±5.1855.28±4.84104.06±23.12107.41±16.35143.28±19.39133.11±16.74酮类(7种)丙酮C3H6O554.5285.7421.122 7496.90±3.2642.73±18.35560.88±6.87554.61±8.75544.29±11.59555.30±9.42,3-丁二酮C4H6O2597.2308.4561.167 3196.07±14.31501.84±27.75632.49±15.79725.06±11.32777.05±26.48738.83±13.522-丁酮单体C4H8O581.8300.0531.058 98801.29±19.981 187.42±31.671 420.07±8.331 417.36±11.641 450.52±22.961 476.75±45.882-丁酮二聚体C4H8O581.2299.7621.244 94211.66±18.04775.87±68.841 795.65±57.181 792.58±86.742 031.6±33.731 889.85±43.323-羟基-2-丁酮单体C4H8O2724.6404.0551.075 4216.25±1.8490.86±15.43109.17±11.16110.26±1.2102±3.0397.32±22.873-羟基-2-丁酮二聚体C4H8O2723.3402.4741.308 334.87±0.318.19±0.368.38±0.657.7±0.256.78±0.548.38±0.32-戊酮单体C5H10O681.3358.6161.118 4884.11±5.67212.97±8167.64±2.98156.01±9.17149.95±11.28163.55±2.642-戊酮二聚体C5H10O683.2359.7911.372 6437.99±4.39966.14±111.481 273.73±31.251 303.64±7.71 314.99±11.351 417.8±28.752-己酮C6H12O791.1491.3871.169 841 765.77±37.31 174.39±31.94449.42±11.06423.44±29.41380.10±19.03391.28±23.562-庚酮单体C7H14O888.8652.4991.261 3913.51±1.53232.80±21.17351.17±18.31348.99±19.3378.22±17.52374.3±15.192-庚酮二聚体C7H14O892658.5871.627 3539.39±4.584.03±24.44388.67±49.56416.01±60.06513.81±53.58533.53±53.55酯类(3种)甲酸乙酯C3H6O2513.6265.5551.065 97244.42±2.01895.88±113.991 665.23±97.591 725.65±118.711 842.07±61.661 798.43±29.68异丁酸乙酯C6H12O2929.1715.0341.180 69113.31±7.34240.04±32.72268.67±11285.9±16.11305.37±10.92335.58±14.48乙酸异戊酯C7H14O2867.9614.0711.310 4821.47±0.71227.40±37.73214.13±13.02226.76±15.26243.59±9.23246.8±3.56芳香族及其他(3种)苯乙烯C8H8892.9659.9771.406 9413.02±2.7441.86±8.2183.47±2.192.00±2.893.48±3.94102.05±4.3乙基苯C8H10868614.270.939 94510.97±35.883 009.11±153.072 923.82±50.132 959.29±24.212 993.2±30.23 023.79±22.872-乙基呋喃C6H8O711.3388.4081.037 39618.28±29.16524.57±11.76440.17±4.56392.28±3.57407.62±8.47390.61±1.38

表3 蒸制过程中草鱼红肉挥发性化合物定性分析信息
Table 3 Qualitative information of volatile compounds in red meat of grass carp during streaming

化合物名称分子式保留指数保留时间/s迁移时间/ms峰面积R0R3R6R9R12R15醛类(14种)丁醛单体 C4H8O598.3308.9221.091 43501.52±34.23120.92±10.65106.77±14.3291.19±5.0885.28±16.9377.19±20.93丁醛二聚体C4H8O603.1311.4891.282 7559.28±3.11250.01±18.68347.86±18.48425.90±16.91434.50±20.06456.67±16.99异丁醛单体C4H8O559.9289.0641.094 3489.29±8.58149.05±22.14190.86±5.95181.82±25.79146.02±5.01147.77±2.36异丁醛二聚体C4H8O551284.6411.281 2456.22±5.521 809.66±134.43 111.46±113.873 799.5±187.943 903.34±75.544 122.06±42.22糠醛单体C5H4O2836561.0841.106 94338.36±24.051 362.52±37.111 599.99±53.131 902.34±53.681 924.58±30.062 042.54±39.29糠醛二聚体C5H4O2836.1561.1951.360 7274.31±1.34603.18±25.361 116.25±144.21 949.49±156.432 161.03±94.342 643.96±153.06戊醛单体C5H10O696.9370.4151.188 2169.14±22.851 403.94±60.711 939.72±19.042 108.28±58.832 127.65±37.392 176.06±6.85戊醛二聚体C5H10O694.5367.6891.422 23165.88±58.135 941.35±191.48 155.14±103.268 657.31±209.68 645.01±42.38 868.31±4.52(E)-2-己烯醛C6H10O848.1580.8421.183 08628.88±31.39859.32±27.82640.23±2.78700.78±5.75764.42±28.69815.33±7.78己醛单体C6H12O790.4492.481.260 76342.75±60.955 146.15±379.357 885.42±203.198 582.18±273.338 593.66±201.838 754.07±59.15己醛二聚体C6H12O790.6492.7831.562 24573.42±89.7813 850.23±624.5619 319.98±371.5421 719.97±900.5921 799.46±327.3522 354.26±145.15苯甲醛单体C7H6O953.4754.5351.148 7322.06±3.6795.31±7.77189.02±10.45330.19±53.5331.41±18.59339.72±18.31苯甲醛二聚体C7H6O962.5769.8321.483 84101.78±9.541 762.82±69.851 404.22±96.581 731.11±138.571 765.60±97.561 968.79±38.36(E)-2-庚烯醛C7H12O963.3771.0561.255 96439.42±117.193 739.63±87.633 380.92±76.223 696.48±134.653 745.09±50.073 893.26±9.51庚醛单体C7H14O893.8661.3571.331 4124.26±6.341 178.71±58.711 697.19±29.411 948.46±77.11 945.02±14.991 972.29±23.23庚醛二聚体C7H14O892.5659.5111.694 9638.69±3.27255.23±33.47626.23±36.13959.62±145.81977.26±28.951 013.54±70.19苯乙醛C8H8O1 029.5899.1331.257 2360.09±8.72628.55±39.63995.72±32.111 410.78±130.11 502.81±60.471 650.4±76.93(E,E)-2,4-二辛烯醛C8H12O1 113.41 102.1241.267 856.42±6.99101.87±11.45149.11±12.82232.86±39.31239.28±0.49271.63±27.39(E)-2-辛烯醛C8H14O1 064977.5661.329 94754.25±141.346 155.94±112.1825.74±171.05773.63±25.02759.28±37.53766.77±38.11辛醛单体C8H16O1 000.1837.2141.407 8664.39±5.45211.57±5.31309.41±17.33419.79±40.37426.21±17.23430.15±38.61辛醛二聚体C8H16O998.8834.5931.818 7223.10±2.2131.05±1.7233.13±3.5342.34±2.4543.51±8.4939.71±6.01壬醛C9H18O1 100.51 068.0211.475 55142.10±18.26362.47±21.14442.95±34.19588.04±61.98607.66±39.09587.61±67.73醇类(7种)丙二醇C3H8O2735.9417.3631.116 66828.87±136.883 528.41±19.11 551.09±55.551 754.28±46.291 753.28±34.611 866.85±24.122,3-丁二醇C4H10O2788489.0971.362 32334.18±7.08495.57±7.5512.17±4.24474.29±22.77456.32±6.04442.83±10.93糠醇单体C5H6O2866.9613.0421.124 2731.08±3.0758.30±0.9556.32±4.256.00±2.9556.85±4.1356.40±4.95糠醇二聚体C5H6O2867.4613.9131.382 3983.11±12.68848.44±64.97826.34±61.581 213.36±129.421 266.05±76.531 463.81±34.401-戊醇C5H12O769.3462.3041.233 6622.60±1.3990.54±5.98146.93±5.62195.02±15.76201.69±13.43202.39±4.27异戊醇C5H12O735.7417.061.251 56130.43±33.83 649.48±73.86399.26±21.6527.22±34.29518.81±19.56609.80±27.071-辛烯-3-醇C8H16O995.5827.9781.161 63129.67±10.1142.39±6.21136.27±9.68139.82±5.33124.04±6.22116.08±9.312-乙基己醇单体C8H18O1 039.2920.3851.420 18364.19±36.055 208.25±351.526 711.73±218.317 944.19±475.667 946.84±71.577 992.49±162.232-乙基己醇二聚体C8H18O1 038.6919.1221.810 1255.39±8.06213.18±35.35394.67±30.46617.36±110.8599.55±35.15602.97±43.36酮类(8种)丙酮C3H6O549.5283.8721.121 22150.08±38.6994.1±4.26815.57±43.37661.06±31.96628.84±2.18609.15±6.342,3-丁二酮C4H6O2596.9308.1471.170 89451.58±27.24617.79±9.99621.94±21.11654.15±12.88669.95±10.47610.68±4.422-丁酮单体C4H8O581.1299.8331.065 54633.51±22.81652.28±30.35594.58±28.29534.22±24.08523.33±15.14491.39±8.022-丁酮二聚体C4H8O581.1299.8331.249 24408.18±36.171 195.12±41.031 859.73±20.412 189.56±105.52 145.34±61.172 352.20±13.163-羟基-2-丁酮单体C4H8O2724.8403.4021.076 3876.33±7.74574.06±18.53927.08±67.241 168.36±46.971 215.31±36.041 301.15±14.393-羟基-2-丁酮二聚体C4H8O2724.4402.9121.310 4423.47±3150.22±8.7448.63±93.28814.22±91.17901.40±64.11 125.47±8.072-戊酮单体C5H10O688.8361.3541.123 61188.45±15.98105.71±674.75±6.9788.95±5.5497.42±3.12115.64±1.932-戊酮二聚体C5H10O687.8360.6211.374 125.39±6.34606.25±34.39787.4±21.72923.49±18.85929.74±23.7948.13±12.852-己酮C6H12O788.8490.2581.168 961 554.61±17.38834.54±9.4615.94±12.37481.03±38.01453.49±15.94442.56±5.212-庚酮单体C7H14O889.1653.1931.261 2531.59±4.86329.79±18.75457.73±25.46557.04±30.12571.57±12.11594.41±20.152-庚酮二聚体C7H14O891.5657.6771.622 3823.65±1.7164.89±10.97171.71±10.52268.89±43.63260.12±17.13283.84±15.642-辛酮C8H16O995.1827.2461.327 32625.87±56.46708.05±35.15636.59±26.06701.85±26.86616.53±11.06714.05±5.60酯类(3种)甲酸乙酯C3H6O2519269.3051.062 86766.72±9.831 823.66±70.942 636.70±103.313 061.87±113.923 172.07±41.943 433.32±22.37乙酸异戊酯C7H14O2867.2613.5011.307 7637.82±1.85466.84±19.55424.26±22.62537.38±31.27579.54±22.49626.41±3.20乳酸丁酯C7H14O31 010.3858.1821.270 3347.39±4.64242.78±16.01487.66±22.05723.94±54.7753.93±31.69825.54±11.26芳香族及其他(5种)苯乙烯C8H8893.2660.3981.424 4222.42±2.63105.09±3.62135.95±8.65139.94±4.53126.65±7.98117.66±1.2乙基苯C8H10866.8612.840.947 97667.92±110.143 662.06±47.413 567.85±51.753 745.00±43.243 752.66±27.723 798.93±10.82-甲基吡嗪C5H6N2830.2551.8671.068 5147.29±0.6147.85±1.3471.94±7.5294.60±10.08111.62±14.28120.89±5.342-乙基呋喃C6H8O713.3389.4171.041 171 133.52±20.651 031.62±41.07763.17±33.91763.32±40.63782.66±33.38804.80±8.952-乙基吡嗪单体C6H8N2928.1713.4571.179 3123.30±3.33595.89±31.37859.39±37.081 162.18±86.461 219.82±38.371 346.83±62.232-乙基吡嗪二聚体C6H8N2929714.7831.516 5229.58±1.2683.04±5.84180.76±27.53357.26±62.1410.42±33.48521.47±58.01

2.2.2 醇类化合物

醇类物质可以通过脂质氧化产生,还可以由氨基酸或相应醛通过微生物代谢产生[25]。蒸制过程中,糠醇、1-戊醇、2-乙基己醇等醇类物质含量在蒸制前期逐渐增加并在蒸制9 min后趋于稳定。1-戊醇可能来源于亚油酸的脂质氧化,表明热处理时间的延长更利于不饱和脂肪酸的自动氧化,2-乙基己醇二聚体的相对含量在蒸制后达到蒸制前的20倍以上,在红肉中的含量也远高于白肉,与刘夏磊等[26]对鲈鱼干采用热处理产生大量2-乙基己醇的研究结果一致。可能是高温下甘油三酯分解,释放出游离脂肪酸转化成酮类物质,进而氧化生成醇类物质。有研究认为,1-辛烯-3-醇与花生四烯酸、亚油酸的氧化有关[27],随蒸制时间的延长,白肉中1-辛烯-3-醇相对含量的变化趋势与其他醇类相似,但在红肉中呈现先增加后减少的趋势。大部分饱和醇及短链醇的气味阈值较高,如1-戊醇(果香味)、2-乙基己醇(花香味),因此对鱼肉气味贡献较小;不饱和醇如1-辛烯-3-醇(蘑菇味、泥土)阈值相对较低,对鱼肉整体气味贡献相对较大[28]。有研究表明,2,3-丁二醇可能是氨基酸分解代谢产生的化合物[2]。随蒸制时间的延长,白肉中2,3-丁二醇的相对含量基本不变,但在红肉中先增加后减少,这可能是由于草鱼白肉和红肉中氨基酸的含量存在差异及热处理对他们的影响[29]。异戊醇可能来源于脂肪氧化和美拉德反应的相互作用[30],本实验中,异戊醇只在红肉中检测到,其含量在蒸制过程中呈现先上升后下降的趋势。

2.2.3 酮类化合物

张慢[30]研究发现,100 ℃的高温蒸制下,可能会导致脂肪氧化和美拉德反应过度,进而生成一定的酮类物质。本研究中,2,3-丁二酮、2-丁酮、3-羟基-2-丁酮、2-戊酮和2-庚酮在草鱼蒸制过程中含量逐渐增加,在蒸制9 min后变化不大。酮类物质一般由美拉德反应产生,也有研究指出,3-羟基-2-丁酮可能是油酸的氧化产物[31],而2-庚酮可以通过亚油酸氧化生成[2]。2-己酮具有刺激性气味,在未蒸制的样品中含量最高,随蒸制时间的延长含量显著降低,可作为生草鱼肉潜在的特征标志物。2-辛酮只在红肉中检测到,呈现出醇味和腥味[30],其形成机制尚不明确。酮类物质多呈现奶香味、脂肪味,一般阈值较高,对鱼肉整体的风味贡献较小,有研究表明,部分酮类物质可能对产品风味起到一定的修饰作用[32]

2.2.4 酯类及其他化合物

酸类和醇类进行酯化反应生成酯类化合物,是形成风味的重要途径之一[33]。整个蒸制过程中,鱼肉中的酯类化合物含量呈现不断上升的趋势。随蒸制时间的延长,苯乙烯的相对含量不断增加,与冯媛等[34]研究烹制后海鲶鱼汤挥发性成分的变化的结果一致,可能来源于热处理过程中芳香族氨基酸的氧化[35];相反,2-乙基呋喃的相对含量呈下降趋势,有报道称,呋喃类化合物有较强的泥土味[36]。值得注意的是,只在红肉中鉴定出2-甲基吡嗪和2-乙基吡嗪,吡嗪类化合物具有烤肉味,一般由美拉德反应产生[37]。这些化合物由于气味阈值较高且相对含量较醛酮醇类物质较低,对蒸制草鱼风味形成的影响有限。

2.3 蒸制过程中草鱼肉挥发性成分的主成分分析

主成分分析是一种基于多变量统计的检测方法,利用风味物质的信号强度来呈现样本间的差异。图3是草鱼白肉和红肉在不同蒸制时间点挥发性成分的主成分分析结果。如图3-A所示,草鱼白肉PC1的贡献率为78.4%,PC2的贡献率为16.2%,PC1和PC2的累计贡献率达94.6%(>60%),表明这足以反映样品的总体特征。在PC1上,0、3 min的样品与6、9、12、15 min的样品距离较远,在PC2上,3 min的样品也与其他时间点上的样品明显区分。表明0、3、6 min是白肉风味变化的关键时间点,蒸制6 min后风味变化不明显。同理,如图3-B所示,草鱼红肉PC1的贡献率为76.1%,PC2的贡献率为14.3%,PC1和PC2的累计贡献率达90.4%。0、3、6 min的样品与9、12、15 min在第一主成分和第二主成分上有明显差异,表明草鱼红肉在蒸制9 min前与蒸制9 min后气味差异较大。在整个蒸制过程中,红肉的风味变化较白肉更为丰富。考虑到蒸制6 min时鱼肉仍从生鲜向熟制过渡,所以确定蒸制时间为9 min时,草鱼肉中的挥发性成分代表熟鱼肉的风味。

2.4 蒸制时间对草鱼肉感官评分的影响

图4显示了蒸制过程中草鱼感官评分的变化,可以看出白肉和红肉总体的变化趋势一致,但白肉各方面的感官评分总是高于红肉,说明白肉比红肉更容易被接受,这与YANG等[38]的研究结果一致。在外观、滋味及口感方面,蒸制前期草鱼肉的感官评价结果中显示出显著差异,而在蒸制9 min后无明显变化。在气味方面,草鱼白肉和红肉的感官评分都呈现先上升后下降的趋势,在蒸制9 min时最高,而蒸制15 min时显著下降,结合GC-IMS的分析结果可以推测,这是因为随着蒸制时间的延长,脂质氧化加剧,带有氧化味的挥发性化合物持续产生。因此,蒸制9 min的草鱼整体风味最佳。

A-草鱼白肉;B-草鱼红肉
图3 蒸制过程中草鱼肉的主成分分析
Fig.3 Principal component analysis plot of grass carp meat during steaming

A-草鱼白肉;B-草鱼红肉
图4 蒸制过程中草鱼肉的感官评分
Fig.4 Sensory scores of grass carp meat during steaming
注:不同小写字母表示差异显著(P<0.05)。

3 结论

本文通过顶空-气相色谱-离子迁移色谱(HS-GC-IMS)结合主成分分析及感官评定对草鱼白肉和红肉在蒸制过程中挥发性风味的变化进行了分析。HS-GC-IMS分析结果表明,在蒸制草鱼白肉和红肉样品中分别鉴定出34种和37种挥发性成分,其中,它们共有的挥发性成分有31种。白肉和红肉在不同蒸制时间点,挥发性化合物组成和含量存在一定差异。在定性的挥发性成分中,醛类含量最高占主导地位,其次是醇类和醛类。蒸制处理会促进鱼肉中挥发性化合物的形成,特别是异丁醛、戊醛、己醛、庚醛、2-乙基己醇和2-戊酮;具有刺激性气味的2-己酮在蒸制后含量减少;也有个别挥发性化合物如(E)-2-辛烯醛、(E)-2-庚烯醛在蒸制3 min时含量最高。与白肉样品对比,蒸制后的红肉样品中鉴定出更多种挥发性成分;且在各蒸制时间点,红肉中挥发性成分含量总是高于白肉。主成分分析结果表明,草鱼肉在不同蒸制时间挥发性成分有明显差异,分别是白肉(0、3、6 min后)和红肉(0、3、6、9 min后),红肉的风味变化较白肉更为丰富。感官评定结果表明,蒸制9 min后,鱼肉的总感官评分最高,整体风味最佳,可以代表熟草鱼肉的风味。本研究可为草鱼最适蒸制工艺的确定及其不同部位肉(白肉和红肉)蒸制过程中挥发性风味的变化规律解析提供一定的理论基础。然而,由于风味物质形成过程十分复杂,这些风味物质在草鱼蒸制过程中的具体变化机制还需要进一步探讨。

参考文献

[1] 杨晶. 贮藏期间草鱼肌肉降解与风味变化关联研究[D].长沙:长沙理工大学, 2015. YANG J.Association studies between muscle degradation and flavor variation of grass carp during storage[D].Changsha:Changsha University of Science &Technology, 2015.

[2] HAN G, ZHANG L, LI Q X, et al.Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky[J].Meat Science, 2020, 162:108030.

[3] 刘奇. 鲟鱼腥味物质特征及其与脂肪酸氧化的关系研究[D].青岛:中国海洋大学, 2013. LIU Q.Study on the off-flavor compounds character of sturgeon and their relationship with lipid oxidation[D].Qingdao:Ocean University of China, 2013.

[4] 康翠翠, 施文正, 方林, 等.不同冻结方式对草鱼肉挥发性成分的影响[J].食品科学, 2018, 39(14):229-235. KANG C C, SHI W Z, FANG L, et al.Effects of different freezing methods on the volatile components of grass carp meat[J].Food Science, 2018, 39(14):229-235.

[5] 刁玉段, 张晶晶, 史珊珊, 等.致死方式对草鱼肉挥发性成分和脂肪氧合酶活性的影响[J].食品科学, 2016, 37(18):64-70. DIAO Y D, ZHANG J J, SHI S S, et al.Effect of different slaughter methods on volatile compounds and lipoxygenase activity of grass carp meat[J].Food Science, 2016, 37(18):64-70.

[6] WANG H L, CHEN X X, ZHANG J J, et al.Postmortem changes in the freshness and volatile compounds of grass carp (Ctenopharyngodon idella)[J].Journal of Food Measurement and Characterization, 2020, 14(1):584-596.

[7] ZHANG J J, WU D, LIU D H, et al.Effect of cooking styles on the lipid oxidation and fatty acid composition of grass carp (Ctenopharyngodon idella) fillet[J].Journal of Food Biochemistry, 2013, 37(2):212-219.

[8] CAVANNA D, ZANARDI S, DALL′ASTA C, et al.Ion mobility spectrometry coupled to gas chromatography:A rapid tool to assess eggs freshness[J].Food Chemistry, 2019, 271:691-696.

[9] YAO W S, CAI Y X, LIU D Y, et al.Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS)[J].Food Chemistry, 2022, 370:130989. [10] LENG P, HU H W, CUI A H, et al.HS-GC-IMS with PCA to analyze volatile flavor compounds of honey peach packaged with different preservation methods during storage[J].LWT-Food Science & Technology, 2021, 149:111963.

[11] DENG S Y, LIU Y H, HUANG F, et al.Evaluation of volatile flavor compounds in bacon made by different pig breeds during storage time[J].Food Chemistry, 2021, 357:129765.

[12] YANG Y, WANG B, FU Y, et al.HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu[J].Food Chemistry, 2021, 346:128880.

[13] 刘安齐, 郭全友, 杨絮, 等.香糟大黄鱼混菌发酵工艺及物质成分变化研究[J].食品与发酵科技, 2022, 58(4):46-51;79. LIU A Q, GUO Q Y, YANG X, et al.Study on the fermentation process of mixed bacteria and the change of material composition of aromatic lees large yellow croaker[J].Food and Fermentation Science &Technology, 2022, 58(4):46-51;79.

[14] 钟明慧, 徐新星, 刘康, 等.不同蒸制时间下鲟鱼背部肉的滋味特征差异分析[J].食品工业科技, 2021, 42(14):55-60. ZHONG M H, XU X X, LIU K, et al.Difference analysis on the taste characteristics of sturgeon under different steaming time[J].Science and Technology of Food Industry, 2021, 42(14):55-60.

[15] 邵晨. 船上加工处理对南极磷虾保藏的初步研究[D].上海:上海海洋大学, 2022. SHAO C.Preliminary study on preservation of Antarctic krill by shipboard processing[D].Shanghai:Shanghai Ocean University, 2022.

[16] 李锐, 孙祖莉, 李来好, 等.不同热加工方式对罗非鱼片食用品质的影响[J].食品与发酵工业, 2020, 46(14):127-135. LI R, SUN Z L, LI L H, et al.Effects of different thermal processing methods on edible quality of tilapia fillets[J].Food and Fermentation Industries, 2020, 46(14):127-135.

[17] 雷乙, 陈竟豪, 涂金金, 等.鱼肉加工过程特征气味物质变化研究进展[J].食品研究与开发, 2020, 41(15):201-210. LEI Y,CHEN J H,TU J J,et al.Research progress on changes of characteristic odor substances in fish processing[J].Food Research and Development, 2020, 41(15):201-210.

[18] 尹一鸣, 徐永霞, 张朝敏, 等.水产品贮藏期间风味劣变机理的研究进展[J].食品与发酵工业, 2020, 46(14):269-274. YIN Y M, XU Y X, ZHANG C M, et al.The progress on flavor deterioration mechanism of aquatic products during storage[J].Food and Fermentation Industries, 2020, 46(14):269-274.

[19] 刘登勇, 赵志南, 吴金城, 等.基于SPME-GC-MS分析熏制材料对熏鸡腿挥发性风味物质的影响[J].食品科学, 2019, 40(24):220-227. LIU D Y, ZHAO Z N, WU J C, et al.Effects of different smoking materials on volatile avor compounds in smoked chicken thighs[J].Food Science, 2019, 40(24):220-227.

[20] SHA K, LANG Y M, SUN B Z, et al.Changes in lipid oxidation, fatty acid profile and volatile compounds of traditional Kazakh dry-cured beef during processing and storage[J].Journal of Food Processing and Preservation, 2017, 41(4):e13059.

[21] 周蕾. 气相色谱-质谱联用分析冷藏-二次加热过程后猪肉中挥发性物质变化[J].食品科技, 2021, 46(6):256-262. ZHOU L.Changes of volatile compounds in cooked pork during refrigerating and reheating as analyzed by GC-MS[J].Food Science and Technology, 2021, 46(6):256-262.

[22] VILAR E G, O′SULLIVAN M G, KERRY J P, et al.Volatile organic compounds in beef and pork by gas chromatography-mass spectrometry:A review[J].Separation Science Plus, 2022, 5(9):482-512.

[23] ESTÉVEZ M, MORCUENDE D, VENTANAS S, et al.Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS[J].Journal of Agricultural and Food Chemistry, 2003, 51(11):3429-3435.

[24] LIU J B, LIU M Y, HE C C, et al.Effect of thermal treatment on the flavor generation from Maillard reaction of xylose and chicken peptide[J].LWT-Food Science &Technology, 2015, 64(1):316-325.

[25] SHI Y N, LI X, HUANG A X.A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham[J].Meat Science, 2019, 158:107904.

[26] 刘夏磊, 刘芯如, 王雨恬, 等.鲈鱼干加工过程中热处理及内源酶对风味形成的影响[J].食品科学, 2022, 43(8):220-226. LIU X L, LIU X R, WANG Y T, et al.Effects of heat treatment and endogenous enzymes on flavor formation during the processing of dried sea bass[J].Food Science, 2022, 43(8):220-226.

[27] GIRARD B, DURANCE T.Headspace volatiles of sockeye and pink salmon as affected by retort process[J].Journal of Food Science, 2000, 65(1):34-39.

[28] 崔方超, 李婷婷, 杨兵, 等.电子鼻结合GC-MS分析草鱼脱腥前后风味变化[J].食品科学, 2014, 35(20):126-130. CUI F C, LI T T, YANG B, et al.Flavor compounds of fresh and deodorized grass carps as determined by electronic nose combined with GC-MS[J].Food Science, 2014, 35(20):126-130.

[29] 方林. 草鱼滋味物质及品质变化的影响因素研究[D].上海:上海海洋大学, 2018. FANG L.Study on taste components and quality variation of grass carp meat[D].Shanghai:Shanghai Ocean University, 2018.

[30] 张慢. 清炖型肉汤的风味形成机制及电炖锅烹饪程序优化[D].无锡:江南大学, 2019. ZHANG M.Flavor formation mechanism of braised meat soup and optimization of electrical stewpot cooking process[D].Wuxi:Jiangnan University, 2019.

[31] PAVLIDIS D E, MALLOUCHOS A, ERCOLINI D, et al.A volatilomics approach for off-line discrimination of minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis[J].Meat Science, 2019, 151:43-53.

[32] 丁丽丽, 吴燕燕, 李来好, 等.咸带鱼加工过程挥发性风味成分的变化[J].食品科学, 2011, 32(24):208-212. DING L L, WU Y Y, LI L H, et al.Changes of volatile flavor compounds during salted hairtail(Trichiurus haumela) processing[J].Food Science, 2011, 32(24):208-212.

[33] CANO-GARCA L, RIVERA-JIMÉNEZ S, BELLOCH C, et al.Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains[J].Food Chemistry, 2014, 151:364-373.

[34] 冯媛, 赵洪雷, 曲诗瑶, 等.海鲶鱼汤烹制过程中风味特性的变化[J].食品科学, 2020, 41(8):202-207. FENG Y, ZHAO H L, QU S Y, et al.Changes in flavor characteristics of sea catfish broth during cooking process[J].Food Science, 2020, 41(8):202-207.

[35] 钱琴莲, 李晔, 王求娟, 等.基于GC-MS和电子鼻技术的金枪鱼胰脏酶解气味解析[J].食品科学, 2016, 37(8):121-126. QIAN Q L, LI Y, WANG Q J, et al.Analysis of volatile flavor compounds of tuna pancreatic protein hydrolysates produced by different proteases[J].Food Science, 2016, 37(8):121-126.

[36] LPEZ-PÉREZ O, PICON A, NUEZ M.Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds[J].Food Research International, 2017, 99(3):1002-1010.

[37] 李伶俐. 美拉德反应体系中影响烤肉风味形成的因素研究[D].无锡:江南大学, 2011. LI L L.The study on the factors affecting the roast flavor in Maillard reaction system[D].Wuxi:Jiangnan University, 2011.

[38] YANG W X, SHI W Z, ZHOU S N, et al.Research on the changes of water-soluble flavor substances in grass carp during steaming[J].Journal of Food Biochemistry, 2019, 43(11):e12993.

Identification of changes in volatile compounds in grass carp during steaming by headspace-gas chromatography-ion mobility spectrometry

FANG Xinru1, XIAO Naiyong1, GUO Quanyou2, SHI Wenzheng1,3*

1(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China) 2(East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China) 3(National Freshwater Aquatic Products Processing Technology Research and Development Center (Shanghai), Shanghai 201306, China)

ABSTRACT To improve the flavor quality of steamed grass carp, changes of volatile components in white meat and red meat of grass carp during steaming were investigated by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA) and sensory evaluation. A total of 40 compounds were identified, including 34 compounds in white meat and 37 compounds in red meat, and 30 volatile components were identified in white meat and red meat, mainly aldehydes, alcohols, ketones, and esters. Steaming treatment promoted the formation of volatile compounds (2-methylpropanal, pentanal, hexanal, heptanal, 2-ethyl-1-hexanol, and 2-pentanone) in grass carp. The amount and relative content of volatile components were higher in red meat than in white meat after steaming. The PCA results showed that the flavor changes were richer in red meat than in white meat. The overall flavor of grass carp stabilized and the volatile components in the fish could represent the flavor of cooked fish meat when the steaming time reached 9 min. The results of the sensory evaluation also showed that the grass carp meat steamed for 9 min had better flavor and overall acceptability. It was concluded that the combination of HS-GC-IMS and PCA could better describe the changes of volatile compounds in white meat and red meat of grass carp at different steaming times, and provided a basis for determining the appropriate steaming time for grass carp.

Key words grass carp; steaming; gas chromatography-ion mobility spectrometry; white meat; red meat; volatile compounds

DOI:10.13995/j.cnki.11-1802/ts.034713

引用格式:方心如,肖乃勇,郭全友,等.基于顶空-气相色谱-离子迁移谱分析蒸制过程中草鱼肉挥发性成分的变化[J].食品与发酵工业,2023,49(24):241-250.FANG Xinru,XIAO Naiyong,GUO Quanyou, et al.Identification of changes in volatile compounds in grass carp during steaming by headspace-gas chromatography-ion mobility spectrometry[J].Food and Fermentation Industries,2023,49(24):241-250.

第一作者:硕士研究生(施文正教授为通信作者,E-mail:wzshi@shou.edu.cn)

基金项目:国家重点研发计划(2018YFD0901003)

收稿日期:2022-12-26,改回日期:2023-01-16