超高效液相色谱-三重四级杆质谱多反应监测模式测定葡萄酒中41种农药和7种真菌毒素残留

周春红1,彭文静2*

1(甘肃省产品质量监督检验研究院,甘肃 兰州,730000)2(兰州市农业科技研究推广中心,甘肃 兰州,730000)

摘 要 建立了超高效液相色谱-质谱/质谱联用法(ultra-performance liquid chromatography-mass spectrometry/mass spectrometry,UPLC-MS/MS)同时分析葡萄酒中41种农药和7种真菌毒素残留的方法。样品经QuEChERS净化,UPLC-MS/MS测定,外标法定量。结果表明,48种待测物质在各自线性范围内呈现良好的线性关系,相关系数均大于0.999,检出限为0.01~5 μg/kg,定量限为0.05~17 μg/kg;在25、50、80 μg/kg加标水平下平均回收率为79.6%~122.5%,相对标准偏差(relative standard deviation,RSD,n=6)为0.21%~6.39%。该方法前处理简单、稳定性好,可以广泛应用于葡萄酒中农药和真菌毒素残留的快速筛查和定量检测。

关键词 超高效液相色谱-质谱/质谱联用法(UPLC-MS/MS);葡萄酒;农药残留;真菌毒素残留;多反应监测

葡萄酒酒精度较低,口感醇厚愉悦,香气优雅和谐,含有多种营养成分,随着经济的快速增长,受到越来越多消费者的喜欢。

农药可以对真菌、虫草等有害生物进行防治,部分农药可以有效的控制植物生长,广泛应用于农业生产。规范合理的施用农药,可以使农产品高产、高质量,然而不合理的施用易导致食品中残留农药。少量农药在人体内残留不会立即产生危害,但是化学性质比较稳定的农药在人体内长时间蓄积会对人体造成伤害[1]。同时,农药通过影响葡萄酒中的酚类物质,影响酒的色泽、香气等[2]。为保证葡萄的质量和产量,葡萄在栽培过程中易使用防病虫害的农药,这些农药可残留在葡萄表皮并伴随着发酵过程转移到葡萄酒中[3-6]。因此,葡萄酒中的农药残留问题已引起生产者和消费者的广泛关注[7]

QuEChERS法[8]可同时分析农残、真菌毒素等多种化合物,主要包括萃取、盐析、净化3部分。与传统前处理方法相比,具有快速、试剂耗材损耗少、可同时提取多种组分等优点,广泛用于复杂基质样品中的多种组分的同时提取、净化[9-10]。葡萄酒中农药残留和真菌毒素残留检测需要较高的灵敏度,目前蔬菜、水果等不同基质中农药残留和真菌毒素常用的方法有LC-MS/MS[11-14]、GC-MS[15]、GC[16]等。LC-MS/MS法可测定不易挥发或高温易分解的化合物,适用于分析复杂基质样品,具有高灵敏度、耗时短、同时检测多种组分等优点,可应用于葡萄酒中农残和真菌毒素污染分析。目前,针对葡萄酒中农药残留和真菌毒素的检测方法及限量还没有相关标准进行规范,关于利用超高效液相色谱-三重四极杆串联质谱法检测葡萄酒中农药和真菌毒素残留也鲜见报道。因此,对葡萄酒中多种有毒有害物质残留量进行有效监控,建立一种简单、高效的高通量筛查方法是十分迫切的。

本文选择了52种较常见的农药和8种易污染的真菌毒素作为研究对象,以葡萄酒为研究基质,运用QuEChERS结合超高效液相色谱-质谱/质谱联用法(ultra-performance liquid chromatography-mass spectrometry/mass spectrometry,UPLC-MS/MS)建立快速测定葡萄酒中多种农药残留和真菌毒素残留的检测方法,提高检测效率,以期为建立系统的检测分析葡萄酒中多种农药残留和真菌毒素残留相关标准提供数据支持,为葡萄酒安全和提高葡萄酒产品品质提供科学依据,为市场监管葡萄酒品质的风险评估提供技术支持。

1 材料与方法

1.1 材料与试剂

葡萄酒样品购于超市。

标准物质:60种待测物质标准品信息详见附表1(https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPFX2022061400D),天津阿尔塔公司;甲醇、乙腈(均为色谱纯),德国Meker公司;乙酸铵、甲酸(色谱纯),天津科密欧化学试剂有限公司;QuEChERs盐包、净化粉,上海安谱实验科技股份有限公司。

1.2 仪器与设备

QTRAP 4500 UPLC-MS/MS,美国SCIEX公司;VXR涡旋振荡器,德国IKA公司;KH30R-Ⅱ高速冷冻离心机,湖南凯达科学仪器有限公司;KQ-600DE超声波清洗器,东莞市科桥超声波设备有限公司;十万分之一天平(精密度为0.01 mg),Sartorius公司;Milli-Q Gradient纯水仪,美国Millipore公司;TLE204E分析天平(精密度为0.000 1 g),梅特勒公司。

1.3 实验方法

1.3.1 色谱条件

Waters Acquity UPLC T3色谱柱(100 mm×2.1 mm,1.7 μm);流速0.2 mL/min;柱温40 ℃;进样量 5 μL;流动相:A为乙腈水溶液(含5 mmol/L乙酸铵),B为乙腈;流动相梯度洗脱程序:0~3.0 min,5%~30% B;3.0~4.0 min,30%~40% B;4.0~6.0 min,40%~95% B;6.0~8.0 min,95% B;8.0~8.2 min,95%~5% B;8.2~12 min,5% B。

1.3.2 质谱条件

电喷雾电离源:ESI;检测方式:MRM模式;气帘气0.24 MPa;碰撞气:medium;离子化电压5 500 V;离子源温度550 ℃;喷雾气0.38 MPa;辅助加热器0.41 MPa。60种目标化合物在MRM模式下的质谱条件具体见附表1。

1.3.3 标准溶液的配制

农残混合标准储备液的配制(10 μg/mL):分别准确称取各对照品10 mg于10 mL棕色容量瓶中,用乙腈溶解并定容至刻度,配制成母液(附表1)。分别移取母液各100 μL于10 mL棕色容量瓶中,用乙腈定容,配制成质量浓度为10 μg/mL的混合标准储备液,于-18 ℃下密封保存。

真菌毒素混合标准储备液的配制(1 μg/mL):分别准确移取4种黄曲霉毒素混合标准溶液(黄曲霉毒素B1、黄曲霉毒素B2、黄曲霉毒素G1、黄曲霉毒素G2)500 μL、玉米赤霉烯酮标准溶液100 μL、脱氧雪腐镰刀菌烯醇标准溶液50 μL、赭曲霉毒素A标准溶液50 μL于5 mL容量瓶中,用乙腈定容,配制成1 μg/mL的混合标准工作溶液,于-18 ℃下密封保存。

溶剂标准工作液:准确移取适量的农残混合标准储备液和真菌毒素混合标准储备液,用20%(体积分数)乙腈水溶液配制成系列标准溶液,现用现配。

空白葡萄酒基质溶液:称取阴性葡萄酒样品经1.3.4提取、净化处理后于4 ℃下条件下贮存备用。

基质标准工作液:准确移取适量的农残混合标准储备液和真菌毒素混合标准储备液,用空白葡萄酒基质溶液配制成系列标准溶液,现用现配。

1.3.4 样品前处理

准确称取10 g(精确到0.1 mg)葡萄酒样品于50 mL离心管中,加入10 mL乙腈,涡旋混匀1 min,加入QuEChERs盐包(4 g MgSO4,1 g NaC1,0.5 g柠檬酸氢二钠,1 g柠檬酸钠),加入1颗陶瓷均质子,剧烈振荡1 min 后4 000 r/min离心5 min;移取7 mL上清液至净化管中(150 mg MgSO4, 50 mg C18, 50 mg乙二胺-N-丙基硅烷),涡旋混匀1 min,4 000 r/min离心5 min,吸取上清液过0.22 μm滤膜后,待UPLC-MS/MS分析。

1.3.5 方法学考察

1.3.5.1 基质效应、线性关系、相关系数及检出限

1.3.3中配制好的溶剂标准工作液、基质标准工作液按照1.3.1 和1.3.2色谱及质谱条件直接进样测定,以对照品浓度为横坐标(x),峰面积为纵坐标(y)做标准曲线,得到48种待测物质的线性方程、相关系数,通过基质标准曲线与溶剂标准曲线的斜率之比来考察48种待测物质的基质效应。采用阴性葡萄酒样品加标方式考察48种待测物质的检出限(S/N=3)和定量限(S/N=10)。

1.3.5.2 精密度和加标回收试验

在阴性葡萄酒样品中添加25、50、80 μg/kg 3个水平的混合标准溶液,每个加标水平做6次平行实验,采用优化后的实验条件进行测定,计算低、中、高3个添加水平的加标回收率和相对标准偏差(relative standard deviation,RSD)。

2 结果与分析

2.1 MRM模式下农药残留和真菌毒素残留检测方法的建立

2.1.1 质谱条件的优化

运用质谱进行分析时,化合物的母离子、子离子、去簇电压、碰撞能量需要优化。本研究在国家标准及文献报道[7-14]的基础上,采用Scan模式扫描确定母离子、子离子,在MRM模式下找出48种目标化合物的特征子离子碎片,并优化DP和碰撞能量使各离子碎片的响应值达到最优,优化后的质谱条件如附表1所示。

2.1.2 色谱条件的优化

不同类型药物的极性差异较大,流动相的组成不仅影响目标化合物的峰形,还影响目标化合物的离子化效应。本研究考察了乙腈+水、0.1%甲酸乙腈+0.1%甲酸水溶液、乙腈+水溶液(含5 mmol/L乙酸铵)、0.1%甲酸乙腈-0.1%甲酸水溶液(含5 mmol/L乙酸铵)4种流动相体系的分离效果。结果显示0.1%甲酸乙腈-0.1%甲酸水溶液(含5 mmol/L乙酸铵)作为流动相时各化合物的峰型较好,60种待测物质的MRM总离子流图如附图1(https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPFX2022061400D)所示,因此选择0.1%甲酸乙腈-0.1%甲酸水溶液(含5 mmol/L乙酸铵)为流动相进行后续试验。

2.2 方法学考察

2.2.1 基质效应

基质效应(matrix effects,ME)是指葡萄酒中脂肪酸、糖、醇等在质谱离子化的过程中增强或减弱待测物质的响应[15]。若ME<1时,表示存在基质抑制效应;ME=1时,表示不存在基质抑制效应;ME>1时,表示存在基质增强效应。结果表明,10%药物的ME<0.8%,呈现为基质抑制作用;47.5%药物的ME为0.8%~1.2%,基质效应相对不明显;42.5%药物的ME>1.2%,呈现为基质增强作用。因此,本实验采用空白葡萄酒基质配制标准曲线,降低待测物质的基质效应影响。

2.2.2 线性关系、相关系数及检出限

由附表2(https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ & dbname=CAPJLAST & filename=SPFX2022061400D)可知,41种农药和7种真菌毒素在相应的浓度范围内具有良好的线性关系,相关系数(r)≥0.999 01。采用阴性葡萄酒样品加标方式考察48种待测药物的检出限(S/N=3)和定量限(S/N=10),检出限为0.01~5 μg/kg,定量限为0.05~17 μg/kg。

2.2.3 回收率和精密度

在阴性葡萄酒样品中添加低、中、高3个水平的混合标准溶液,每个加标水平测定6次,加标回收率及精密度结果如附表3(https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPFX2022061400D)所示。其中48种待测物质的加标回收率为79.6%~122.5%,RSD为0.21%~6.39%。

2.2.4 实际样品的测定

采用建立的方法测定了15批次市售葡萄酒样品中41种农药和7种真菌毒素残留,其中15批次样品均未检出真菌毒素残留,2批次样品中未检出农药残留,其他13批次样品单批样本中检出药物种类2~6种,共检出药物9种(表1),分别为烯酰吗啉、多菌灵、噻虫嗪、戊唑醇、嘧菌酯、霜霉威、甲霜灵、腈菌唑、甲萘威。所有样品中检出烯酰吗啉的含量为1.0~57.1 μg/kg,多菌灵的含量为10.6~62.4 μg/kg、噻虫嗪的含量为0.5~2.1 μg/kg、戊唑醇的含量为4.6~39.4 μg/kg、嘧菌酯的含量为2.2~3.7 μg/kg、霜霉威的含量为0.3~37.8 μg/kg、甲霜灵的含量为0.9~32.7 μg/kg、腈菌唑的含量为1.4~6.8 μg/kg,样品中均未检出克百威。其中多菌灵、甲霜灵及克百威结果符合NY/T 274—2014的标准要求。

表1 葡萄酒样品中药物的含量 单位:μg/kg

Table 1 Contents of drug residues in wine samples

注:“-”表示未检出

样品烯酰吗啉多菌灵噻虫嗪戊唑醇嘧菌酯霜霉威甲霜灵腈菌唑甲萘威11.9-0.5------257.112.1-4.62.28.5-1.6-3---------43.3-2.1--36.70.9--5-----0.315.5--62.121.0-39.42.2--2.60.6726.218.5-8.93.7----825.012.10.8---23.84.1-931.710.60.7--32.76.8-1035.6--8.8-33.032.01.4-1145.762.4----2.4--12-----2.3--133.0----0.32.4--141.0-2.1--37.8---15---------

在检测的15批次样品中,烯酰吗啉、甲霜灵、多菌灵、霜霉威检出率较高。相关研究表明,葡萄种植过程中霜霉病在葡萄生长后期易发病且周期较长,烯酰吗啉、霜霉威可较好的抑制霜霉病菌的孢子囊萌发,可以有效防治葡萄的霜霉病[16-17];甲霜灵、多菌灵、嘧菌酯等易检出农药可有效防治轴枯病、灰霉病、炭疽病等常见的病虫害[18-20]。由此可知,葡萄的种植过程中农药使用情况普遍存在且检出率较高,建议在葡萄的种植过程中规范栽培管理,重视农药的剂量使用。

3 结论

本文利用液相色谱-三重四级杆串联质谱MRM模式,建立了葡萄酒中41种农药残留和7种真菌毒素残留的高通量检测方法。48种待测物质中线性良好,检出限为0.01~5 μg/kg,定量限为0.05~17 μg/kg,加标回收率为79.6%~122.5%,RSD为0.21%~6.39%。该方法操作简便、快速简单,可同时分析葡萄酒中48种化合物,满足葡萄酒中农药和真菌毒素残留的快速筛查和定量检测,为今后制定相关检测标准提供方法依据。

参考文献

[1] VIAS P, AGUINAGA N, CAMPILLO N, et al.Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices[J].Journal of Chromatography A, 2008, 1 194(2):178-183.

[2] HAN F L, YANG P, WANG H, et al.Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract[J].Trends in Food Science & Technology, 2019, 83:211-224.

[3] , et al.Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines[J].Food Chemistry, 2018, 246:394-403.

[4] QIN G F, CHEN Y, HE F R, et al.Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China[J].Journal of Food Composition and Analysis, 2021, 95:103663.

[5] HE Z Y, XU Y P, WANG L, et al.Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry[J].Food Chemistry, 2016, 196:1 248-1 255.

[6] GUO T Y, FANG P P, JIANG J J, et al.Rapid screening and quantification of residual pesticides and illegal adulterants in red wine by direct analysis in real time mass spectrometry[J].Journal of Chromatography A, 2016, 1 471:27-33.

[7] ECONOMOU A, BOTITSI H, ANTONIOU S, et al. Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1 216(31):5 856-5 867.

[8] ZHANG B, CHEN X, HAN S Y, et al.Simultaneous analysis of 20 mycotoxins in grapes and wines from Hexi Corridor region (China):Based on a QuEChERS-UHPLC-MS/MS method[J].Molecules(Basel, Switzerland), 2018, 23(8):1 926.

[9] LI Y B, TANG H X, BLACK K C, et al.Determination of fluazinam in vegetables and fruits using a modified QuEChERS method and liquid chromatography-tandem mass spectrometry[J].Food Analytical Methods, 2017, 10(6):1 881-1 887.

[10] WANG S Y, ZHANG Q T, YU Y R, et al.Residues, dissipation kinetics, and dietary intake risk assessment of two fungicides in grape and soil[J].Regulatory Toxicology and Pharmacology, 2018, 100:72-79.

[11] BERSET J D, MERMER S, ROBEL A E, et al.Direct residue analysis of systemic insecticides and some of their relevant metabolites in wines by liquid chromatography-mass spectrometry[J].Journal of Chromatography A, 2017,1 506:45-54.

[12] 张建莹, 邓慧芬, 李月梅, 等.QuEChERS/超高效液相色谱-串联质谱法测定果蔬中122种香港规例农药残留[J].分析测试学报, 2017, 36(7):849-857.

ZHANG J Y, DENG H F, LI Y M, et al.Determination of 122 pesticide residues in fruits and vegetables from regulation of pesticides in Hong Kong by QuEChERS combined with ultra performance liquid chromatography-tandem mass spectrometry[J].Journal of Instrumental Analysis, 2017, 36(7):849-857.

[13] 何佳. QuEChERS提取法结合UHPLC-MS/MS检测葡萄酒中多种农药残留及真菌毒素方法研究[D].兰州:甘肃农业大学, 2019.

HE J.Study on detection of multi-pesticide residues and mycotoxins in wine by UHPLC-MS/MS and based on QuEChERS extraction[D].Lanzhou:Gansu Agricultural University, 2019.

[14] 杜雨婷. 酿酒葡萄与葡萄酒中农药残留的关键控制点研究[D].杨凌:西北农林科技大学, 2021.

DU Y T.Study on key control points of pesticide residues in wine grapes and wine[D].Yangling:Northwest A&F university, 2021.

[15] , et al.Novel multiresidue method for determination of pesticides in red wine using gas chromatography-mass spectrometry and solid phase extraction[J].Food Chemistry, 2016, 200:98-106.

[16] 李记明, 司合芸, 于英, 等.葡萄农药残留及其对葡萄酒酿造的影响[J].中国农业科学, 2012, 45(4):743-751.

LI J M, SI H Y, YU Y, et al.Effects of the residues of agricultural chemicals in grapes on winemaking[J].Scientia Agricultura Sinica, 2012, 45(4):743-751.

[17] 轩燕. 葡萄中烯酰吗啉的降解规律及去除方法的研究[D].阿拉尔:塔里木大学, 2018.

XUAN Y.Study on the degradation and removal of dimethomorph in grape[D].Alaer:Tarim university, 2018.

[18] 周连柱. 我国主要葡萄产区霜霉病菌对五种主要杀菌剂的抗药性检测[D].北京:中国农业科学院, 2019.

ZHOU L Z.Detection of five major fungicides resistant of Plasmopara viticola from main grapevine areas in China[D].Beijing:Chinese Academy of Agricultural Sciences, 2019.

[19] 高琪, 李兴红, 刘梅.我国葡萄园病害发生危害及防治用药情况调查[J].中国果树, 2021(9):97-102.

GAO Q, LI X H, LIU M.Investigation on occurrence and damage of vineyard diseases and control pesticides in China[J].China Fruits, 2021(9):97-102.

[20] 程玉龙, 柳采秀, 黄雅俊, 等.6种杀虫剂对葡萄蓟马的田间防治效果[J].浙江农业科学, 2021, 62(6):1 166-1 167;1 196.

CHENG Y L, LIU C X, HUANG Y J, et al.Control efficacy of six insecticides on grape thrips[J].Journal of Zhejiang Agricultural Sciences, 2021, 62(6):1 166-1 167;1 196.

附表1 41种农药及7种毒素的保留时间与质谱参数

Table S1 Retention times and MS parameters for the 41 pesticides and 7 mycotoxins in MRM mode

注:“*”表示定量离子对。

序号待测物质英文名CAS号分子式母离子(m/z)子离子(m/z)去簇电压/V碰撞能量/eV保留时间/min母液浓度/(μg·mL-1)1辛硫磷Phoxim14816-18-3C12H15N2O3PS29997*/128.852/5228/166.881 0052烯酰吗啉Dimethomorph110488-70-5C21H22ClNO4388.1301.1*/165.1100/10028/395.681 0113多菌灵Carbendazim10605-21-7C9H9N3O2192160*/132.270/7027/423.741 0134氯唑磷Isazofos42509-80-8C9H17ClN3O3PS314162.1*/12072/7220/316.539975噻虫嗪Thiamethoxam153719-23-4C8H10ClN5O3S292211.1*/18150/5015/303.669956甲氨基阿维菌素苯甲酸盐Emamectin Benzoate137512-74-4C49H77NO13886.5158.1*/126.1100/10040/816.521 0137灭蝇胺Cyromazine66215-27-8C6H10N6167.1125.2*/108.170/7024/281.301 0088丙环唑Propiconazole60207-90-1C15H17Cl2N3O2342.1159*/205.185/8536/256.451 0209哒螨灵Pyridaben96489-71-3C19H25ClN2OS365.1309*/147.2100/10018/308.061 00910戊唑醇Tebuconazole80443-41-0C16H22ClN3O308.170*/12586/8660/616.161 00111联苯三唑醇Bitertanol55179-31-2C20H23N3O2338.3269.2*/9935/3512/196.241 00612腈苯唑Fenbuconazole114369-43-6C19H17ClN4337.1125*/7080/8031/4814.661 00513嘧菌酯Azoxystrobin143390-89-0C18H19NO4372.1344.1*/172125/12528/605.9299814敌百虫Trichlorphon52-68-6C4H8Cl3O4P256.9109.1*/127.260/6022/193.8099415霜霉威Propamocarb24579-73-5C9H20N2O2189102*/14460/6023/172.471 00616甲霜灵Metalaxyl57837-19-1C15H21NO4280.3220.4*/192.260/6019/235.321 00217硫线磷Cadusafos95465-99-9C10H23O2PS2271.2159.1*/96.955/5519/453.881 00718唑虫酰胺Tolfenpyrad129558-76-5C21H22ClN3O2384196.9*/145.2115/11531/357.171 00319吡蚜酮Pymetrozine123312-89-0C10H11N5O218105*/7871/7127/472.9499220硫双威Thiodicarb59669-26-0C10H18N4O4S3355.188.1*/4952/3131/119.291 01421螺螨酯Spirodiclofen148477-71-8C21H24Cl2O4411.171*/313.140/4030/258.1199922腈菌唑Myclobutanil88671-89-0C15H17ClN428970*/12551/5133/415.961 02123克百威Carbofuran1563-66-2C12H15NO3222.2165.2*/122.960/6015/255.09997243-羟基克百威3-Hydroxycarbofuran16655-82-6C12H15NO4238.1163*/22054/5419/83.9598925甲萘威Carbaryl362049-56-7C12H4D7NO2202.1145*/12740/4011/365.2099726异丙威Isoprocarb2631-40-5C11H15NO2194.295.1*/137.251/5120/135.4898227残杀威Propoxur114-26-1C11H18N4O2210.1111*/168.141/41445195.0598428灭多威Thiodicarb59669-26-0C10H18N4O4S3354.987.9*/10821/2125/219.2999629灭虫威/甲硫威Methiocarb2032-65-7C11H15NO2S226.1169.2*/121.141/4113/235.811 01330倍硫磷Fenthion55-38-9C10H15O3PS2279.2169.1*/10555/5521/3416.141 00231倍硫磷砜Fenthion Sulfone3761-42-0C10H15O5PS2311.1125*/127.190/9026/286.531 00732倍硫磷亚砜Fenthion Sulfoxide3761-41-9C10H15O4PS2295280*/127.195/9525/346.1099933氯吡脲Forchlorfenuron68157-60-8C12H10ClN3O248129.1*/93.152/5225/485.1499634氟虫腈Fipronil120068-37-3C12H4Cl2F6N4OS434.8329.8*/249.6-79/-79-21/-343.0199835氟甲腈Fipronil-desulfinyl205650-65-3C12H4Cl2F6N4386.8350.7*/281.8-79/-79-16/-423.281 01936氟虫腈砜Fipronil-sulfone120068-36-2C12H4Cl2F6N4O2S450.7281.7*/243.6-110/-110-34/-613.711 01037氟虫腈亚砜Fipronil-sulfide120067-83-6C12H4Cl2F6N4S418.8382.9*/261.7-77/-77-17/-383.751 008386-苄基腺嘌呤6-Benzylaminopurine1214-39-7C15H20ClN3O223.9133*/106.1-86/-77-27/-410.871 01639噻苯隆Thidiazuron51707-55-2C15H20ClN3O220.7101.9*/148.9-56/-95-17/-421.0599040赤霉素Gibberellic acid77-06-5C19H22O6344.8238.7*/270.9-90/-90-17/-280.871 01241异戊烯基腺嘌呤N6-(delta 2-Isopentenyl)-adenine2365-40-4C10H13N5202134*/107.1-85/-85-22/-370.8598442黄曲霉毒素B1Aflatoxin B11162-65-8C17H12O6312.95241*/28580/8050/313.731043黄曲霉毒素B2Aflatoxin B27220-81-7C17H14O6314.95259*/28780/8040/353.611044黄曲霉毒素G1Aflatoxin G11165-39-5C17H12O7328.95243*/31180/8036/303.621045黄曲霉毒素G2Aflatoxin G27241-98-7C17H14O7330.95245*/31380/8041/343.491046赭曲霉毒素AOchratoxin A303-47-9C20H18ClNO6404239*/35885/8532/203.4410047脱氧雪腐镰刀菌烯醇Deoxynivalenol51481-10-8C15H20O635559*/295-45/-45-40/-144.3010048玉米赤霉烯酮Zearaleone17924-92-4C18H22O5317.1131*/175-95/-95-40/-343.5250

附表2 48种待测物质的线性关系考察

Table S2 Investigation of liner relationship of the 48 analytes

待测物质线性范围/(ng·mL-1)线性方程rLOD/(μg·kg-1)LOQ/(μg·kg-1)辛硫磷5^100y=8 536.851 18x-2 551.519 700.999 754.0813.61 烯酰吗啉5^100y=74 357.8x-49 745.20.999 160.040.12 多菌灵5^100y=300 459x+35 897.10.999 790.030.10 氯唑磷5^100y=94 226.1 x+21 794.434 920.999 030.010.05 噻虫嗪5^100y=43 024.7 x+10 184.044 230.999 140.030.11 甲氨基阿维菌素苯甲酸盐5^100y=6 378.963 71 x-20 556.117 760.999 010.411.36 灭蝇胺5^100y=25 323.881 85 x+2 982.038 830.999 651.625.39 丙环唑5^100y=21 831.926 27 x+722.759 610.999 420.100.34 哒螨灵5^100y=7 244.409 91 x+5 181.894 460.999 720.130.43 戊唑醇5^100y=20 772.291 83-1 569.398 380.999 820.190.63 联苯三唑醇5^100y=17 252.289 93 x-3 415.914 460.999 03517 腈苯唑5^100y=7 417.755 58 x-5 397.400 170.999 420.200.65 嘧菌酯5^100y=50 909.8 x-7 161.287 130.999 560.060.20 敌百虫5^100y=1 378.397 41 x-3 278.727 950.999 050.190.63霜霉威5^100y=505 790 x+74 460.10.999 420.040.14 甲霜灵5^100y=248 584 x-219 4360.999 290.020.08 硫线磷5^100y=947.962 39 x+318.951 520.999 510.220.73

续附表2

待测物质线性范围/(ng·mL-1)线性方程rLOD/(μg·kg-1)LOQ/(μg·kg-1)唑虫酰胺5^100y=25 054.924 62 x-28 356.073 950.999 060.070.22 吡蚜酮5^100y=833 610 x-58 754.60.999 200.060.19 硫双威5^100y=152 294 x-830 6910.999 620.993.23 螺螨酯5^100y=17 396.178 61 x-23 385.996 590.999 500.160.53 腈菌唑5^100y=26 581.828 59 x-13 104.986 810.999 280.120.39 克百威5^100y=180 889 x+96 786.90.999 440.030.10 3-羟基克百威5^100y=46 518.3 x+22 920.526 910.999 220.070.23 甲萘威5^100y=197 207 x-88 347.30.999 020.100.33 异丙威5^100y=134 194 x-89 266.80.999 340.090.29 残杀威5^100y=156 449 x-8 433.2630.999 090.090.31 灭多威5^100y=134 861 x-109 7980.999 320.100.33 灭虫威/甲硫威5^100y=140 429 x-144 8660.999 600.010.05 倍硫磷5^100y=29 246.685 75 x+5 698.799 050.999 422.107.00 倍硫磷砜5^100y=49 872 x+57 705.90.999 162.107.00 倍硫磷亚砜5^100y=20 604.140 41 x+7 921.331 890.999 272.107.00 氯吡脲5^100y=76 426.4 x-40 314.70.999 030.080.26 氟虫腈2^100y=111 419 x+96 578.20.999 380.020.06 氟甲腈2^100y=803563 x+63756.70.999 400.030.09 氟虫腈砜2^100y=34074.5 x+391500.999 790.060.18 氟虫腈亚砜2^100y=126 121 x+43 899.80.999 500.160.53 6-苄基腺嘌呤2^100y=36 602.3 x+1 042.898 420.999 530.060.19 噻苯隆2^100y=3 662.384 42 x+11 244.174 730.999 710.351.17 赤霉素2^100y=1 326.916 49 x+8 484.134 890.999 680.722.40 异戊烯基腺嘌呤0.2^10y=20 711.433 x+3 110.303 640.999 190.210.70 黄曲霉毒素B10.2^10y=81 891.3 x-3 312.366 150.999 580.030.22黄曲霉毒素B20.2^10y=28 052.781 6 x+441.945 550.999 930.140.45黄曲霉毒素G10.2^10y=46 011.1 x+993.762 350.999 380.120.39黄曲霉毒素G20.2^10y=20 503.901 21 x+445.152 850.999 160.100.35赭曲霉毒素A0.2^10y=41 819.9 x - 754.222 440.999 700.311.02脱氧雪腐镰刀菌烯醇0.2^10y=39 914.8 x - 916.265 80.999 580.351.17玉米赤霉烯酮0.2^10y=20 602.652 36 x-1 855.573 650.999 780.100.33

附表3 葡萄酒中48种待测物质的加标回收率和相对标准偏差(n=6)

Table S3 The spiked recoveries and RSDs of the 48 analytes in wine (n=6)

待测物质25 μg·kg-150 μg·kg-180 μg·kg-1回收率/%RSD/%回收率/%RSD/%回收率/%RSD/%辛硫磷119.90.83100.83.07119.81.20 烯酰吗啉118.91.0991.82.71112.74.98 多菌灵102.80.7181.23.1182.52.02 氯唑磷115.40.61100.61.56120.30.59 噻虫嗪82.00.4969.40.6692.52.77 甲氨基阿维菌素苯甲酸盐101.21.2594.93.28118.91.75 灭蝇胺79.70.8499.03.76117.11.11 丙环唑109.30.7596.72.46119.42.35 哒螨灵73.51.3884.72.0693.93.76 戊唑醇112.71.7492.71.75119.51.19 联苯三唑醇110.81.7497.12.01118.72.19 腈苯唑70.12.0392.51.85119.02.96 嘧菌酯111.00.8987.32.60111.92.81 敌百虫87.02.4785.32.27108.43.77 霜霉威116.10.56112.94.00120.11.76 甲霜灵114.60.95117.03.25119.12.06 硫线磷85.21.0281.82.46107.84.75 唑虫酰胺82.00.7483.31.82104.82.06

续附表3

待测物质25 μg·kg-150 μg·kg-180 μg·kg-1回收率/%RSD/%回收率/%RSD/%回收率/%RSD/%吡蚜酮93.50.21104.34.56119.01.48 硫双威114.20.69112.41.49119.11.49 螺螨酯83.91.1488.62.44109.44.40 腈菌唑118.80.62104.42.59115.32.40 克百威114.71.0194.61.50116.02.40 3-羟基克百威102.02.8185.04.45117.65.79 甲萘威119.20.95101.72.44111.33.36 异丙威111.40.6392.81.21117.43.89 残杀威103.80.8499.41.79106.82.90 灭多威105.10.9493.90.96107.92.86 灭虫威/甲硫威89.42.22100.74.0482.23.06 倍硫磷120.01.34104.12.0490.65.38 倍硫磷砜98.81.0591.71.12119.61.23 倍硫磷亚砜82.80.6096.61.04120.11.56 氯吡脲94.61.4783.41.35101.26.03 氟虫腈108.30.73111.82.00120.63.40 氟甲腈109.60.4896.00.5997.73.07 氟虫腈砜116.70.49100.21.39121.22.26 氟虫腈亚砜111.40.2996.41.47120.82.20 6-苄基腺嘌呤112.30.38101.05.40122.54.56 噻苯隆88.91.0383.13.32114.35.57 赤霉素100.21.4579.62.1786.84.81 异戊烯基腺嘌呤102.80.3690.21.77119.23.69 黄曲霉毒素B180.51.3583.33.0879.81.77 黄曲霉毒素B284.52.7981.91.5579.63.11 黄曲霉毒素G194.61.2885.81.6581.23.26 黄曲霉毒素G296.62.3492.53.43115.41.21 赭曲霉毒素A112.71.8890.52.73116.92.45 脱氧雪腐镰刀菌烯醇99.91.5186.73.13111.34.61 玉米赤霉烯酮79.91.9780.70.5482.12.34

Determination of 41 pesticides and 7 mycotoxins in wine by ultra-performance liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode

ZHOU Chunhong1,PENG Wenjing2*

1(GanSu Province Product Quality Supervision and Inspection Research Institute, Lanzhou 730000, China)2(Technology Research Extension Center of Lanzhou, Lanzhou 730000, China)

ABSTRACT A ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was established for the simultaneous analysis of 41 pesticides and seven mycotoxins in wine. The samples were purified with QuEChERS, and detected by UPLC-MS/MS. Some compounds were quantified by external standard method. All 48 substances showed good linearity in their linear range, the correlation coefficients were greater than 0.999, The limits of detection ranged from 0.01 μg/kg to 5 μg/kg, and the limits of quantification ranged from 0.05 μg/kg to 17 μg/kg. The average recoveries at three spiked levels of 25, 50 and 80 μg/kg were 79.6%-122.5%, with relative standard deviations(RSD) of 0.21%-6.39% (n=6). Thus, the optimized method has simple, high efficiency, good stability, and it can be widely used in the rapid screening and quantitative detection of multiple drug residues in wine.

Key words ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS); wine; pesticides residues; mycotoxins residues; multiple reaction monitoring mode

DOI:10.13995/j.cnki.11-1802/ts.030609

引用格式:周春红,彭文静.超高效液相色谱-三重四级杆质谱多反应监测模式测定葡萄酒中41种农药和7种真菌毒素残留[J].食品与发酵工业,2023,49(4):264-267.ZHOU Chunhong,PENG Wenjing.Determination of 41 pesticides and 7 mycotoxins in wine by ultra-performance liquid chromatography tandem mass spectrometry in multiple reaction monitoring mode[J].Food and Fermentation Industries,2023,49(4):264-267.

第一作者:硕士,正高级工程师(彭文静农艺师为通信作者,E-mail:2964643202@qq.com)

基金项目:甘肃省知识产权计划资助项目(河西走廊葡萄酒地理标志保护产品运用促进项目)

收稿日期:2022-01-14,改回日期:2022-04-28

A-SEI+模式下;B-SEI-模式下

附图1 41种农药残留和7种真菌毒素残留的MRM总离子流色谱图

Fig.S1 Total ion current chromatograms of the 41 pesticides and 7 mycotoxins by MRM