大曲是白酒酿造中必不可少的发酵剂、粗酶制剂和原料之一,其发酵过程定向地调控功能菌群及代谢组分[1]。工艺特点包括生料制曲、自然接种和发酵,小生境的温度、湿度和微生物群落的多样性显著地影响大曲品温和水分,从而影响大曲的质量及后续基酒的产率和品质[2-4]。从理化参数、群落结构多样性等多维度地评估大曲质量与特点是揭示大曲特征、优化培养过程的重要基础。吴秋霞等[5]探讨了曲房平面位置间大曲理化性质的差异。类似地,中高温大曲堆积层数亦显著影响大曲的质量[6]。JIN等[7]探讨了曲房使用周期、生产设施的时空性特征与高温大曲品质的相关性。但这些结果仍然难以揭示曲房的结构及时空性特征对大曲群落结构及品质影响的规律。
本研究以泸州老窖使用周期和机械化程度不同场地生产的大曲为对象,研究生产环境的异质性对大曲微生物群落和理化性质的影响规律,解析群落中优势种属与理化性质的相关性,旨在为大曲生产引入智能化技术及工艺的优化奠定理论基础。
大曲:样品分别取自泸州某酒厂的老厂(使用25年)和新厂(使用1年),其中新、老厂的生产工艺类似,老厂采用半机械化模式,新厂采用全机械化模式。分别从曲房(图1)不同位置的多层曲架的上、中、下层各取1块发酵12 d的曲块,粉碎混合均匀后,5点取样300 g,分为2份,其中一份置于4 ℃用于理化检测,另一份则置于-80 ℃用于微生物组成检验。取样信息及简写如表1所示。
表1 取样点信息及简写
Table 1 Sampling point information and abbreviations
生产场地曲层位置曲房门墙窗上XMSXQSXCS新厂中XMZXQZXCZ下XMXXQXXCX上LMSLQSLCS老厂中LMZLQZLCZ下LMXLQXLCX
图1 取样点示意图
Fig.1 Schematic diagram of sampling points
2×Taq PCR Master Mix、ITS1/ITS4引物、DNase/RNase-free Deionized Water、真菌基因组DNA抽提试剂盒,上海生工生物有限公司;其他化学试剂(AR)均购自成都金山化学试剂有限公司。
TGL-16M高速冷冻离心机,湘麓离心机仪器公司;S100 TM Thermal Cycler PCR仪、Gel Doc TM XR凝胶成像仪,美国Bio-Rad公司;TU-1901紫外分光光度计,北京普析通用仪器有限责任公司;SW-CJ-2FD型超净工作台,苏州净化设备有限公司;CX31生物显微镜,日本Olympus公司;85-2型数显恒温磁力搅拌器,上海双捷实验设备有限公司。
1.3.1 微生物群落的检测
总DNA提取:使用Fast DNA SPIN kit,按照供应商提供操作程序提取后,分别经1%琼脂糖凝胶电泳和Nano Drop ND-1000分光光度计检测其纯度和含量。分别使用引物338F/806R和ITS5/ITS1 PCR扩增细菌的16S rRNA V3~V4区和真菌的ITS1区域。扩增体系(25 μL):5×reaction buffer和5×GC buffer各5 μL,0.25 μL DNA聚合酶(5 U/μL,Q5 High-Fidelity),2 μL dNTPs(2.5 mmol/L),正反引物各1 μL(10 μmol/L),2 μL DNA模板,8.75 μL ddH2O。细菌扩增程序为98 ℃预热2 min,98 ℃变性15 s,55 ℃退火30 s,72 ℃延伸30 s,经过25个循环,最后72 ℃保持5 min。真菌扩增程序:95 ℃预热3 min,95 ℃变性30 s,61 ℃退火30 s,72 ℃延伸45 s,经32个循环,最后72 ℃保持10 min。PCR产物琼脂糖凝胶电泳进行目的片段纯化回收。纯化样品后委托派森诺生物科技有限公司在Illumina Novase平台完成DNA片段进行双端(Paired-end,2×300)测序。
DADA2序列去噪:首先调用QIIME切除序列的引物片段,弃去未匹配引物的序列;然后调用DADA2进行质控、去噪、拼接、去嵌合体获得ASV。接着通过Greengenes数据库,将ASV特征序列与数据库中的参考序列相比对,获取每个ASV所对应的分类学信息,去噪后,合并ASVs特征序列和ASV表格,并去除singletons ASVs。
1.3.2 理化性质的检测
参照QB/T 4257—2011所述的方法和步骤测定水分、酸度、液化力(liquefaction activity, LA)、糖化力(saccharification activity, SA)、发酵力(fermentation activity, FA)和酯化力(esterification activity, EA)。
应用派森诺基因云(https://www.genescloud.cn/home)平台进行主坐标分析(principal co-ordinates analysis,PCoA)、置换多元方差分析(PERMANOVA)、线性判别分析(linear discriminant analysis effect size,LEfSe)以及冗余分析(redundancy analysis, RDA)。使用OriginPro 2022作图。
如图2所示,架曲生产过程中,因发酵热逐层向上,导致上、中、下层曲坯的品温差异显著,水分含量则是下高上低。同样地,墙位点因通风调湿的能力较门、窗位点的弱,大曲的水分略高。新厂曲层数高于老厂,故上层曲的水分略高于老厂。老厂的门和窗位点的大曲酸度显著高于新厂相同位点,且在老厂靠近门、新厂靠近窗这2个位点下层大曲的酸度最高。酸度与微生物生长与代谢降解碳水化合物生酸有关[8],高酸度可能会抑制部分真菌的繁殖[9-10]。
a-水分含量;b-酸度;
图2 不同位点大曲水分含量、酸度
Fig.2 Moisture and acidity of Daqu at different sites
18个样品间的酶活力差异显著(图3)。液化力、糖化力和酯化力分别为0.15~1.19 g/(g·h)、262.10~1 099.80 mg/(g·h)和677.84~1 304.68 mg/(50 g·7 d),LMX的活力最高。发酵力为0.12~1.34 g/(0.5 g·72 h),LCX最高,但在层次上的酶活力则分布较随机。LMX同时具有较高的水分和酸度可能意味着其仍处于主发酵期[11]。研究表明,可通过控制大曲发酵环境的温、湿度而间接控制大曲水分的散失和酸度变化[12],这有利于延长大曲的主发酵时间,从而增加大曲中酶的积累。另外,2个场地相同平面位置大曲的液化力、糖化力、酯化力均为老场地的显著高于新场地,且门位点大曲的液化力和糖化力高于其余位点,下层大曲显著高于上、中层大曲。老场地的门位点和新场地的窗位点大曲的酯化力分别在对应场地中最高。这种差异可能同时与大曲发酵微环境的理化和微生物群落结构的差异相关。
图3 不同场地间大曲理化参数的差异
Fig.3 Differences in physical and chemical parameters of Daqu between production areas
各样品的细菌和真菌有效序列分别是77 380~121 025和80 757~105 384,高质量序列和比例分别是67 293~107 629,85.78%~90.07%和68 564~94 676,81.38%~91.42%。稀疏曲线的变化趋势也表明测序深度足以涵盖样品的群落的组成。类似曾报道的结果[13],微生物群落由Firmicutes、Actinobacteria、Ascomycota和Mucoromycota 4个门构成,Weissella、Lactobacillus、Thermoactinomyces、Bacillus等13个属是优势细菌(图4-a),Thermoascus、Thermomyces、Pichia等7个属是优势真菌(图4-b)。
a-细菌;b-真菌
图4 大曲的微生物群落组成
Fig.4 The composition of microbial community in Daqu
注:相对丰度>1%的菌属为优势菌群,其他菌属均归为“others”
Weissella和Lactobacillus是所有大曲中的优势细菌,前者的相对丰度更高,且老场地高于新场地。2个场地的3个不同位点的下层曲中Lactobacillus相对丰度最高,新场地的3个位点的中层大曲中最低。类似刘英杰等[14]的报道,Leuconostoc在2个场地的大曲中也是优势细菌之一,新场地的相对丰度更高。Leuconostoc产酸能力强,对多数细菌具有抑制作用[15-16]。Pediococcus在新场地的大曲中相对丰度较高,但在老场地的LMS、LQS、LQZ等大曲中相对丰度较低。Thermoactinomyces在新场地大曲中是绝对的优势菌,而老场地中仅在小部分曲样中是优势菌,可能是架曲层数和曲房规格不同,小生境的温、湿度的变化规律不同所致[13]。老场地曲中Staphylococcus和Bacillus的丰度高于新场地,而新场地大曲中则Kroppenstedtia、Pseudonocardiaceae和Inhella的丰度较高。Pantoea、Streptomyces和Inhella分别仅在LMX、LCX和XQS中是优势菌。
除LMZ和LMX外,Thermoascus和Thermomyces几乎在所有样品中都是优势真菌,前者的相对丰度更高,特别是在新场地的曲样中。同时,除了老场地门和窗位点外,Thermoascus在所有方位的下层大曲中占比最高。Pichia在LQX和XQS中相对丰度较低,新场地门位点曲样中的Pichia和Hyphopichia高于墙和窗位点大曲。新场地曲样中Aspergillus的相对丰度高,而老场地曲样中Rhizopus和Rhizomucor的相对丰度高,尤其Rhizopus在老厂全部大曲中都高,但Rhizopus和Rhizomucor在新厂中仅在3个方位的下层大曲中占略微优势。
2.3.1 细菌群落差异性
基于Bray-Curtis距离的PCoA表明2个场地大曲的细菌群落结构差异显著(图5-a)。α多样性中Chao1和Shannon指数几乎类似(图5-b)。PERMANOVA检验结果表明,群落β多样性差异显著(P<0.001),尤其是细菌群落。通过LEfSe(阈值=4,P<0.05)识别场地间大曲细菌的差异的结果如图5-c所示,在11个差异类群包括老厂的3个,新厂的8个。老场地主要是Weissella和Staphylococcus,新场地主要是Saccharopolyspora、Kroppenstedtia和Thermoactinomyces。在中高温大曲中,Saccharopolyspora和Kroppenstedtia作为优势菌鲜有报道,而Thermoactinomyces则是丰度较低[13]。事实上,大曲中功能菌群与环境微生物结构密切相关[17]。小生境的微生物通过浓度梯度扩散至空气中而定殖于大曲,从而导致新老场地大曲微生物群落的差异性。如Weissella可产有机酸等代谢产物以抑制多种微生物的生长繁殖[18-19],Weissella可能在老场地环境中丰度更高,所以老场地大曲中Weissella的相对丰度高于新场地。新场地则因Weissella等的丰度较低,对Saccharopolyspora、Kroppenstedtia和Thermoactinomyces的定殖影响小,所以这些种属的相对丰度高于老场地。
a-新、老厂大曲细菌群落基于Bray-Curtis距离的PCoA;b-新、老厂大曲细菌群落α多样性;c-新、老厂大曲细菌群落LEfSe
图5 两个生产场地大曲细菌群落差异
Fig.5 Differences in bacterial communities in Daqu between the two production sites
2.3.2 真菌群落的差异
真菌群落的PCoA结果表明,大曲真菌群落同样是以场地聚集(图6-a),且Chao1和Shannon指数大致相同(图6-b)。PERMANOVA检验分析结果则表明β多样性差异显著(P=0.039)。虽然真菌群落的丰富度与多样性相似,但菌群结构组成差异显著。LEfSe(阈值=4,P<0.05)识别场地间大曲真菌微生物群的生物标志物发现,对群落差异性贡献显著的是Rhizomucor、Rhizopus和Thermomyces,前两者在老产地的大曲中显著富集,而Thermomyces在新场地的大曲中相对丰度更高。Rhizomucor和Rhizopus能分泌淀粉酶并产生风味组分,是重要的功能微生物[20-21]。Thermomyces可分泌高温淀粉酶,其丰度与大曲淀粉含量密切相关[22]。可能老场地小生境的空气中Rhizomucor和Rhizopus丰度高,更易被富集定殖于曲坯中,故相应大曲中的相对丰度也高;类似的原因致使新场地中Thermomyces占有更大的生态位,而被富集在大曲中。非优势真菌属Monascus与Kazachstania分别在老厂和新厂中富集,这可能与大曲发酵的环境微生物区系差异有关,具体原因待探讨。
a-新、老厂大曲真菌群落基于Bray-Curtis距离的PCoA;b-新、老厂大曲真菌群落α多样性;c-新、老厂大曲真菌群落LEfSe
图6 两个生产场地大曲真菌群落差异
Fig.6 Differences in Daqu fungal community between the two production sites
2.3.3 平面和空间异质性对微生物群落结构影响
由于生产过程中开关门和窗是调控微生态环境的主要措施[4-5,23],故对2 个生产场地曲房的门(M)、墙(Q)、窗(C)3个方位及同方位上(S)、中(Z)、下(X)位点的大曲按方位和层次方面进行分析。属水平的PCoA结果如图7所示。不同场地曲房窗方位大曲的群落受层次位点影响较小,老场地的门位点和新场地的墙位点的层次位点显著影响细菌群落的结构。同时,2个场地曲房的门和墙位点不同层次大曲的真菌群落结构差异显著。因曲房的结构和使用曲架层次的不同,上、中、下位点的温、湿度呈现差异,门、墙位点的通风略有不畅,导致菌群结构差异,窗作为大曲发酵房的主要排潮点,在主发酵期中、后期常开,层次间湿度和温度差异较小,群落结构差异较小。
a-大曲细菌群落的PCoA;b-大曲真菌群落的PCoA
图7 两个生产场地大曲微生物群落的PCoA
Fig.7 PCoA of Daqu microbial communities in two production sites
如图8所示,所有大曲的酸度都与Aspergillus和Thermoactinomyces呈正相关。Aspergillus和Thermoactinomyces都是大曲中常见的真菌,前者产淀粉酶和蛋白酶能力强,后者不仅耐高温且生长快,产蛋白酶能力也强,还产纤维素酶,且具有代谢有机酸的能力[24-25]。在大曲发酵过程中,有机酸也是这些真菌重要的代谢物之一,高淀粉水解物浓度促进产酸微生物生长代谢,如Lactobacillus、Staphylococcus、Leuconostoc等,导致酸度显著增高[23]。因这3个菌属主要在发酵前期占优势,随着发酵过程的进行,优势菌逐渐演变为Bacillus等,有机酸也是其代谢产物之一[26],所以可视为间接与酸度相关。
a-老厂细菌群落与理化的RDA;b-新厂细菌群落与理化的RDA;c-老厂真菌群落与理化的RDA;d-新厂真菌群落与理化的RDA
图8 基于微生物群落与理化的冗余分析
Fig.8 Redundancy analysis based on microbial community and physicochemical
液化力和糖化力与真菌Rhizopus和Rhizomucor及细菌Lactobacillus、Bacillus和Saccharopolyspora的丰度正相关。Bacillus产芽孢耐热性强,是后期的优势细菌,且产淀粉酶、糖化酶等多种水解酶能力强[27]。Saccharopolyspora不仅能分泌多种水解酶、维生素及纤维素降解促进因子等,也是浓香型大曲的优势菌[28]。门位点及下层大曲中Rhizopus、Rhizomucor等丰度较高与其淀粉水解能力强的结果一致,老场地大曲整体糖化力和液化力高于新场地的,与前者Bacillus、Rhizopus、Rhizomucor的高丰度密切相关[23]。Thermomyces产半纤维素酶,将半纤维素降解为可发酵的寡糖[20],Thermoascus则降解碳水化合物[29],但RDA的结果表明两者与老场地的大曲淀粉水解能力呈负相关,而与新场地的大曲呈正相关。相反,Hyphopichia则与老场地的大曲呈强正相关,而与新场地大曲呈弱负相关。
2个场地大曲的酯化力与Rhizopus、Pichia、Lactobacillus和Leuconostoc的丰度呈正相关,新厂大曲的酯化力还与Kroppenstedtia呈弱相关,酯化力的主要贡献者是霉菌和酵母[30-31],尤其是Pichia[32-33]。Kroppenstedtia在高温芝麻香大曲中是优势菌,且产纤维素酶能力强[34-35],但Kroppenstedtia仅与新场地大曲的酯化力呈弱正相关,可能与其丰度偏低有关。发酵力与Pichia、Pediococcus、Weissella和Rhizomucor呈不同程度的正相关,而Hyphopichia、Thermoactinomyces、Thermoascus与发酵力在新、老场地大曲的相关性却相反,具体原因有待后续研究。
同时,水分与酶活力间的正相关关系也证实了下层大曲较高的水分含量伴随更高的酶活力的结论。此外,这些结果也表明,可通过减缓大曲水分散失,延长其主发酵期,从而提高大曲的酶活力。
以泸州某酒厂2个不同生产场地的曲房中不同平面和空间位点的大曲为对象,探讨了这些样品的主要理化参数及酶活力的差异。结果表明,下层曲水分含量高于上、中层曲,新场地同平面的大曲水分含量略高于老场地,老场地门位点和新场地墙位点下层大曲的酸度最高。另外,老场地大曲的酶活特性优于新场地,下层大曲的酶活力高于上、中层,其中老场地门位点下层大曲的糖化力、液化力、酯化力均最高。2个场地的大曲优势菌包括13个细菌属和7个真菌属,但在场地间相对丰度差异显著。老场地大曲样中Weissella、Staphylococcus、Rhizopus、Rhizomucor和Monascus等的相对丰度高于新场地大曲,而新场地的曲样中Saccharopolyspora,Kroppenstedtia、Thermoactinomyces、Thermomyces和Kazachstania的相对丰度更高。位点和层次均显著影响大曲的群落结构。酸度与Aspergillus和Thermoactinomyces的丰度正相关,Bacillus、Rhizopus和Rhizomucor的丰度与淀粉水解能力正相关。Rhizopus、Pichia、Lactobacillus和Leuconostoc的丰度则与酯化力正相关。这些结果表明场地异质性对大曲的群落结构和酶活性均有显著影响,可调控门和窗开度范围来调节曲房通风,减缓大曲水分散失,从而延长主发酵期,提高大曲的糖化力、液化力以及酯化力。这为大曲的智能化生产提供了科学依据。
[1] GOU M, WANG H Z, YUAN H W, et al.Characterization of the microbial community in three types of fermentation starters used for Chinese liquor production[J].Journal of the Institute of Brewing, 2015, 121(4):620-627.
[2] 敖宗华, 陕小虎, 沈才洪, 等.我国浓香型大曲产业发展概况[J].酿酒科技, 2011(1):78-81.
AO Z H, SHAN X H, SHEN C H, et al.Review of industrial development of Luzhou-flavor Daqu in China[J].Liquor-Making Science &Technology, 2011(1):78-81.
[3] 万自然. 大曲培养过程中微生物及酶的变化[J].酿酒科技, 2004(4):25-26.
WAN Z R.Changes of microbes and enzymes during Daqu culture process[J].Liquor-Making Science &Technology, 2004(4):25-26.
[4] LI P, LIN W F, LIU X, et al.Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter[J].Frontiers in Microbiology, 2016, 7:1237.
[5] 吴秋霞, 黄钧, 吴重德, 等.季节和制曲位置变化对大曲生产影响的研究[J].中国调味品, 2017, 42(4):42-46.
WU Q X, HUANG J, WU C D, et al.Study on the effect of season and koji-making location on Daqu production[J].China Condiment, 2017, 42(4):42-46.
[6] 彭璐, 明红梅, 董异, 等.不同曲层中高温大曲质量差异性研究[J].食品与发酵工业, 2020, 46(3):58-64.
PENG L, MING H M, DONG Y, et al.Study on the quality of medium-high temperature Daqu in different curved layers[J].Food and Fermentation Industries, 2020, 46(3):58-64.
[7] JIN Y, LI D Y, AI M, et al.Correlation between volatile profiles and microbial communities:A metabonomic approach to study Jiang-flavor liquor Daqu[J].Food Research International, 2019, 121:422-432.
[8] RABBANI N, BAJWA R, JAVAID A.Influence of culturing conditions on growth and sporulation of Drechslera hawaiiensis, the foliar blight pathogen of Marsilea minuta L[J].African Journal of Biotechnology, 2011, 10(10):1 863-1 872.
[9] WANG P, WU Q, JIANG X, et al.Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making[J].International Journal of Food Microbiology, 2017, 250:59-67.
[10] FU G M, DENG M F, CHEN Y, et al.Analysis of microbial community, physiochemical indices and volatile compounds of Chinese te-flavour baijiu Daqu produced in different seasons[J].Journal of the Science of Food and Agriculture, 2021, 101(15):6 525-6 532.
[11] ZHU M, ZHENG J, XIE J, et al.Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing[J].Food Research International, 2022, 153:110955.
[12] BAN S B, CHEN L N, FU S X, et al.Modelling and predicting population of core fungi through processing parameters in spontaneous starter (Daqu) fermentation[J].International Journal of Food Microbiology, 2022, 363:109493.
[13] 吴树坤, 谢军, 卫春会, 等.四川不同地区浓香型大曲微生物群落结构比较[J].食品科学, 2019, 40(14):144-152.
WU S K, XIE J, WEI C H, et al.Comparison of microbial community structure of starter cultures (Daqu) for Luzhou-flavor liquor in different regions of Sichuan[J].Food Science, 2019, 40(14):144-152.
[14] 刘英杰, 黄钧, 秦辉, 等. 浓香型大曲与生产环境微生物群落间的溯源性分析[J]. 食品科学, 2022, 43(22):207-214.
LIU Y J, HUANG J, QIN H, et al. Traceability analysis between strong-flavor Daqu, a traditional Chinese fermentation starter for nongxiangxing Baijiu, and microbial communities in the production environment[J]. Food Science, 2022, 43(22):207-214.
[15] 韦艳君, 陈山, 秦嘉耘, 等.明串珠菌在食品行业的研究进展[J].广西轻工业, 2011, 27(4):57-59.
WEI Y J, CHEN S, QIN J Y, et al.Research progress of Leuconostoc in food industry[J].Guangxi Journal of Light Industry, 2011, 27(4):57-59.
[16] JUNG J Y, LEE S H, LEE H J, et al.Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation[J].International Journal of Food Microbiology, 2012, 153(3):378-387.
[17] DU H, WANG X S, ZHANG Y H, et al.Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter[J].International Journal of Food Microbiology, 2019, 297:32-40.
[18] 刘境, 李福君.魏斯氏菌在发酵食品中的应用研究[J].食品安全导刊, 2020(33):181.
LIU J, LI F J.Application of Weisseria in fermented food[J].China Food Safety Magazine, 2020(33):181.
[19] TAKEBE Y, TAKIZAKI M, TANAKA H, et al.Evaluation of the biogenic amine-production ability of lactic acid bacteria isolated from tofu-misozuke[J].Food Science and Technology Research, 2016, 22(5):673-678.
[20] 周鹏. 米黑根毛霉β-葡聚糖酶、β-甘露糖苷酶结构与功能和基因组的研究[D].北京:中国农业大学, 2014.
ZHOU P.Structure and functions of β-1, 3-glucanase and β-mannosidase from Rhizomucor miehei and its genome sequence analysis[D].Beijing:China Agricultural University, 2014.
[21] 龙可, 赵中开, 马莹莹, 等.酿酒根霉菌研究进展[J].现代食品科技, 2013, 29(2):443-447.
LONG K, ZHAO Z K, MA Y Y, et al.Progresses of researches on Rhizopus for liquor-making[J].Modern Food Science and Technology, 2013, 29(2):443-447.
[22] SINGH S, MADLALA A M, PRIOR B A.Thermomyces lanuginosus:Properties of strains and their hemicellulases[J].FEMS Microbiology Reviews, 2003, 27(1):3-16.
[23] HE G Q, DONG Y, HUANG J, et al.Alteration of microbial community for improving flavor character of Daqu by inoculation with Bacillus velezensis and Bacillus subtilis[J].LWT, 2019, 111:1-8.
[24] FAN G S, FU Z L, TENG C, et al.Comprehensive analysis of different grades of roasted-sesame-like flavored Daqu[J].International Journal of Food Properties, 2019, 22(1):1 205-1 222.
[25] 程古月. 高温放线菌CDF芽胞表面蛋白酶及胞外丝氨酸蛋白酶的性质和功能研究[D].武汉:武汉大学, 2010.
CHENG G Y.Characterization of a spore-associated protease and an extracellular serine protease from Thermoactinomyces sp.CDF[D].Wuhan:Wuhan University, 2010.
[26] DENG Y K, HUANG D, HAN B L, et al.Correlation:Between autochthonous microbial diversity and volatile metabolites during the fermentation of Nongxiang Daqu[J].Frontiers in Microbiology, 2021, 12:688981.
[27] LI Z M, CHEN L, BAI Z H, et al.Cultivable bacterial diversity and amylase production in two typical light-flavor Daqus of Chinese spirits[J].Frontiers in Life Science, 2015, 8(3):264-270.
[28] 职晓阳, 蔡曼, 杨玲玲, 等.建立放线菌门的证据[J].微生物学通报, 2006, 33(3):181-183.
ZHI X Y, CAI M, YANG L L, et al.Evidence for the establishment of Actinomycetes[J].Microbiology, 2006, 33(3):181-183.
[29] MCCLENDON S D, BATTH T, PETZOLD C J, et al.Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J].Biotechnology for Biofuels, 2012, 5(1):54.
[30] 何培新, 胡晓龙, 郑燕, 等.中国浓香型白酒“增己降乳”研究与应用进展[J].轻工学报, 2018,33(4):1-12.
HE P X, HU X L, ZHENG Y, et al.Research and application progress of “Ethyl Caproate-increasing and Ethyl Lactate-decreasing” in brewing of Chinese Luzhou-flavor liquor[J].Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2018, 33(4):1-12.
[31] 郭通航, 王沙莉, 夏海锋, 等.伯克霍尔德氏菌胞外酯酶催化己酸乙酯合成的研究[J].酿酒科技, 2015(7):51-55.
GUO T H, WANG S L, XIA H F, et al.The synthesis of ethyl caproate by extracellular esterifying enzyme of Burkholderia sp[J].Liquor-Making Science &Technology, 2015(7):51-55.
[32] FAN G S, SUN B G, FU Z L, et al.Analysis of physicochemical indices, volatile flavor components, and microbial community of a light-flavor Daqu[J].Journal of the American Society of Brewing Chemists, 2018, 76(3):209-218.
[33] ZHANG Q, HUO N R, WANG Y H, et al.Aroma-enhancing role of Pichia manshurica isolated from Daqu in the brewing of Shanxi Aged Vinegar[J].International Journal of Food Properties, 2017, 20(9):2 169-2 179.
[34] FAN G S, DU Y H, FU Z L, et al.Characterisation of physicochemical properties, flavour components and microbial community in Chinese Guojing roasted sesame-like flavour Daqu[J].Journal of the Institute of Brewing, 2019, 126(1):105-115.
[35] 魏金旺. 清香型白酒酿造过程中可培养高温放线菌的分离与鉴定[J].酿酒科技, 2019(1):56-59;64.
WEI J W.Isolation &identification of cultivable Thermoactinomycetaceae in the production of Qingxiang Baijiu[J].Liquor-Making Science &Technology, 2019(1):56-59;64.