米泔水制桔梗优势菌的分离鉴定及纯种发酵桔梗对桔梗皂苷D含量的影响

陈丽艳,贾智超,于鑫鑫,丁纯洁,孙银玲,郑宏宇,赵娢,王伟明*

(黑龙江省中医药科学院,黑龙江 哈尔滨,150036)

摘 要 分离鉴定米泔水制桔梗炮制液中的优势菌,考察各优势菌发酵桔梗对桔梗皂苷D含量的影响。用米泔水炮制桔梗,利用MRS培养基分离纯化炮制液中的优势菌,通过革兰氏染色、过氧化氢酶实验及16S rDNA测序技术鉴定分离的菌株,采用单菌种发酵桔梗,通过HPLC法测定桔梗皂苷D的含量。分离获得3株乳酸菌,分别为食窦魏斯氏菌、肠球菌和假肠膜明串珠菌,3株菌纯种发酵桔梗,桔梗皂苷D的含量均高于未发酵桔梗,其中前两株菌发酵桔梗提取液中桔梗皂苷D含量分别提高了8.19% 和10.72%。米泔水制桔梗炮制液中以乳酸菌为优势菌群,纯种发酵桔梗提高了桔梗皂苷D的含量,推测米泔水制桔梗过程中可能存在微生物转化进而增强其活性。

关键词 桔梗;米泔水;炮制;优势菌;纯种发酵;桔梗皂苷D

桔梗是临床上广泛应用的一味药食同源中药,生活中也常被做成泡菜食用。中国药典收载的桔梗是经净制、切制处理的饮片,而在古代比较常用的桔梗炮制方法还有蜜炙、米泔水制、百合制、醋炙、酒炙和姜炙等,米泔水炮制桔梗最早出现于宋代《小儿卫生总微论方》,载有“去芦,米泔水浸一宿,焙干用”,盛行于元代至明清两代,在《本草蒙筌》、《本草纲目》、《本草备要》等多部古籍中均载有此法[1],而目前鲜见使用此法炮制桔梗。为了探索其炮制目的,课题组前期通过高通量测序结果表明,米泔水炮制桔梗过程中存在微生物组成及丰度的变化,初期以欧文氏菌属、肠杆菌属、泛菌属等有害菌属为主,后期以乳球菌属、魏斯氏菌属、明串珠菌属等乳酸菌类为优势菌属[2],因此推测乳酸菌可能对桔梗中的成分有影响。已有学者利用乳酸菌发酵桔梗,如JUNG等[3]利用干酪乳杆菌(Lactobacillus casei)发酵桔梗,使桔梗总黄酮、总皂苷和桔梗皂苷D(Platycodon grandiflorum saponin D,PD)含量均显著增加,细胞毒性降低,细胞实验结果显示发酵桔梗提取物可通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和核因子κB(nuclear factor kappa-B,NF-κB)信号通路发挥免疫刺激活性。WANG等[4]利用鼠李糖乳杆菌217-1发酵桔梗根,提高了桔梗皂苷 D、类黄酮和多酚的含量,桔梗发酵液抗氧化活性显著增强,并可降低葡聚糖硫酸钠诱导的小鼠溃疡性结肠炎的发生率。PD是桔梗的标志性成分,也是活性成分,具有抗炎、抗病毒、抗氧化、抗肿瘤等多种活性[5],尤其对于呼吸系统疾病方面,可通过抑制脂多糖诱导的炎症反应改善哮喘气道重塑[6]。LEE等[7]采用乳酸菌发酵桔梗,提高了PD的含量并显著减少咳嗽次数。因此,本研究采用MRS(DeMan-Rogosa- Sharpe)培养基分离纯化米泔水制桔梗炮制液中的优势菌,并采用纯种发酵的方法发酵桔梗,考察PD的含量变化,为探索米泔水炮制桔梗的原理提供依据。

1 材料与仪器

1.1 材料

桔梗生品饮片(批号:210501,产地:安徽亳州),北京同仁堂哈尔滨药店,由黑龙江省中医药科学院王伟明研究员鉴定为桔梗科植物桔梗Platycodon grandiflorum(Jacq.)A.DC.的干燥根;糯米,北京华联超市哈尔滨分店;桔梗皂苷D(纯度≥98%,批号:RFS-J01302004027),成都瑞芬思生物科技有限公司;3%过氧化氢酶试剂、革兰氏染色试剂盒、MRS琼脂、肉汤,青岛海博生物技术有限公司;Ezup柱式细菌基因组DNA抽提试剂盒、SanPrep柱式DNA胶回收试剂盒、引物,生工生物工程(上海)股份有限公司。

1.2 主要仪器

DHP9272恒温培养箱,上海一恒科学仪器有限公司;BSA224S电子天平,德国赛多利斯科学仪器有限公司;LC-2030C 3D Plus高效液相色谱仪,日本岛津公司;3730XL测序仪、2720 cycler PCR仪,美国应用生物系统公司;DYY-5电泳仪,北京六一仪器厂;HC-2518R高速冷冻离心机,BBI。

2 实验方法

2.1 米泔水制桔梗炮制液中乳酸菌的分离鉴定

2.1.1 米泔水制桔梗炮制液的制备

取糯米适量,粉碎,过五号筛,每1 g糯米粉加水50 mL,搅拌均匀,得米泔水混悬液[8],每10 g桔梗生品饮片加米泔水混悬液60 mL,于28 ℃浸泡24 h,摇匀,无菌吸取炮制液适量,用无菌生理盐水梯度稀释。

2.1.2 菌株鉴定

2.1.2.1 初步鉴定

挑取MRS固体培养基的单一菌落,采用革兰氏染色试剂盒和过氧化氢酶实验进行初步鉴定。

2.1.2.2 DNA提取、PCR扩增及高通量测序

菌株活化:将筛选得到的菌株接种至MRS液体培养基中于37 ℃振荡培养12 h。

DNA提取:按Ezup柱式细菌基因组DNA抽提试剂盒使用说明提取DNA。测得OD260/OD280的比值为1.82,表明提取的DNA较纯。

PCR扩增:采用细菌特异性引物,引物序列为27F:AGTTTGATCMTGGCTCAG;1492R:GGTTACCTTGTTACGACTT。扩增体系见表1,扩增程序如下:95 ℃预变性5 min,94 ℃变性30 s,57 ℃退火30 s,72 ℃延伸90 s,共进行30个循环,最后于72 ℃延伸10 min。将PCR扩增后产物进行凝胶电泳,电压为150 V,电泳结束后观察条带,切取含目的DNA片段的琼脂糖凝胶块,采用SanPrep柱式DNA胶回收试剂盒进行纯化回收。委托生工生物工程(上海)股份有限公司对筛选得到的菌株进行16S rDNA测序。

表1 PCR反应体系
Table 1 Reaction system of PCR

试剂体积/μL10 X PCR BufferdNTP (各 10 mmol/L)Taq Plus DNA Polymerase(5 U/μL)50 mmol/L MgSO4共12.5引物F (10 μmol/L)1引物R (10 μmol/L)1模板 (DNA)1ddH2O9.5总计25

2.1.2.3 系统发育树的构建

将测序所得16S rDNA序列上传至GenBank数据库进行BLAST分析,选取相似度较高的序列,采用MEGA11软件的Neighbor-Joining法构建系统发育树,bootstrap值设为1 000。

2.2 纯种发酵桔梗对PD含量的影响

2.2.1 发酵桔梗的制备[9]

精密称取桔梗粉末(过二号筛)20 g于锥形瓶中,加入200 mL蒸馏水,于121 ℃灭菌20 min,按2%质量比接入各菌液(菌液浓度为105 CFU/mL),于37 ℃、150 r/min振荡培养48 h,未发酵组加入等量蒸馏水作为空白对照。

2.2.2 PD含量测定[10]

2.2.2.1 对照品溶液制备

精密称取PD对照品适量,加甲醇制成每毫升含0.5 mg的溶液,即得。

2.2.2.2 供试品溶液制备

将2.2.1节制备的样品抽滤,滤液加蒸馏水定容至200 mL,精密量取20 mL,用水饱和正丁醇振摇提取3次,每次20 mL,合并正丁醇液,用氨试液50 mL洗涤,弃去氨液,再用正丁醇饱和的水50 mL洗涤,弃去水液,正丁醇液回收溶剂至干,残渣加甲醇溶解并定容到10 mL量瓶中,摇匀,0.22 μm滤膜过滤,备用。

2.2.2.3 色谱条件与系统适用性试验

采用ZORBAX Eclipse XDB-C18(4.6 mm×150 mm,5 μm)色谱柱,以乙腈-水(28∶72,体积比)为流动相,蒸发光散射检测器检测;理论塔板数数按PD峰计算不低于3 000,进样量10 μL。

分别精密吸取对照品溶液10、20 μL,供试品溶液10 μL,进样测定,以外标两点法对数方程计算。

2.2.3 数据处理

采用SPSS 24.0软件对数据进行统计学分析,用GraphPad Prism 9作图。数据结果以平均值±标准差表示,组间差异比较采用t检验和ANOVA单因素方差分析。P<0.05表示差异有统计学意义,P<0.01表示差异具有显著性。

3 结果与分析

3.1 优势菌株的分离及初步鉴定结果

分离获得3株优势菌株,分别为MZJ01、MZJ02、MZJ03,革兰氏染色均为阳性,过氧化氢酶试验为阴性,初步判定3株细菌均为乳酸菌。各菌株培养菌落的形态学如图1所示。MZJ01:菌落圆形,乳白色,中央凸起湿润,边缘光滑,菌体椭球状,单个或成对排列;MZJ02:菌落圆形,白色,湿润,边缘光滑,菌体椭球状,单个或成对排列;MZJ03:菌落圆形,白色,半透明,干燥,菌体椭球状,成对或链状排列。

图1 不同菌的菌落形态及革兰氏染色图(1 000×)
Fig.1 Photograph of colony morphology and Gram staining of different strains (1 000×)

3.2 乳酸菌16S rDNA序列同源性比对结果

通常情况下,16S rDNA序列同源性超过98.7%的菌株被认为是同一物种[11]。将筛选所得菌株的16S rDNA序列上传至NCBI数据库,进行同源性比对,结果见表2。MZJ01和食窦魏斯氏菌(Weissellacibaria)同源性最高,MZJ02和肠球菌属(Enterococcus)多株细菌同源性均较高,MZJ03和假肠膜明串珠菌(Leuconostoc pseudomesenteroides)同源性最高。所有菌株同源性均大于98.7%,和标准菌株序列覆盖率均达到100%,E值都为0.0。

表2 分离菌株的16S rDNA序列同源性比对结果
Table 2 Results of homology comparison of 16S rDNA sequence of isolated strains

菌株编号同源菌株序列长度/bp同源性/%对照菌株登录号MZJ01Weissella cibaria strain Uga49-11 52699.93DQ294961.1MZJ02Enterococcus sp.Strain S1-O-21 498100OK326352.1Enterococcus faecium strain LMEm 40100MK418593.1Enterococcus lactis strain HBUAS5419099.93MH701979.1MZJ03Leuconostoc pseudomesenteroides strain Marseille-AA001831 49999.87LT223593.1

3.3 系统发育树的构建

以3株乳酸菌测序所得序列,与其高同源性菌株序列以及Coxiella burnetii外群序列为对象,构建系统发育树[12],见图2。系统发育树各分支自展值均高于50,分支结构与同源性比对结果一致。综合所有实验数据,可以判定:MZJ01为食窦魏斯氏菌(Weissella cibaria);MZJ02为肠球菌(Enterococcus);MZJ03为假肠膜明串珠菌(Leuconostoc pseudomesenteroides)。

图2 基于16S rDNA序列的乳酸菌系统发育树
Fig.2 Phylogenetic tree of lactic acid bacteria based on 16S rDNA sequence

3.4 PD含量测定结果

图3为PD对照品、桔梗生品及发酵桔梗的HPLC图。

a-PD;b-桔梗生品;c-发酵桔梗

图3 PD对照品及样品的HPLC图
Fig.3 HPLC diagram of platycodon saponin D reference substance and the samples

各组PD的含量如图4,MZJ01和MZJ02发酵桔梗提取液中PD的含量显著高于未发酵组(P<0.01),PD的含量分别提高8.19%和10.72%,而MZJ03发酵桔梗提取液中PD的含量高于未发酵组,但不显著(P>0.05)。另外,从图3可知,与生品相比,发酵桔梗在保留时间近8.0 min处的峰2的峰面积也明显升高,具体是何成分有待于进一步分析。

图4 不同菌种发酵桔梗样品中PD的含量
Fig.4 Content of PD in PG fermented by different strains

注:与未发酵组相比,**P<0.01,*P<0.05。

4 讨论与结论

在前期高通量测序基础上,本研究采用MRS培养基分离纯化米泔水制桔梗溶液中的优势菌,共分离获得3株菌,经鉴定均为乳酸菌,分别为食窦魏斯氏菌、肠球菌和假肠膜明串珠菌,与高通量测序结果基本一致[2]。3株菌均可用于食品发酵,魏斯氏菌属可通过代谢及转化合成反应生成酮类、醛类、醇类、酯类、萜类等物质而改善食品风味[13-14],该菌能产胞外多糖,具有抑菌及抗氧化活性[15-16];明串珠菌属常和魏斯氏菌共存于发酵食品中[14],在泡菜、芒果汁、黄豆酱和酒中均分离得到假肠膜明串珠菌,也能够产生胞外多糖,具有抑菌活性,有较好的水溶性和持水能力等[17-19];肠球菌可用于奶酪的制作,既能促进奶酪的发酵过程,还能水解蛋白和脂类而产生特殊口感和香味[20],肠球菌也具有一定的益生作用及安全性[21]

本研究利用MZJ01和MZJ02两株乳酸菌发酵桔梗显著提高了PD的含量,同样也有学者利用其他菌发酵桔梗提高了PD的含量,JUNG等[22]利用香菇菌丝对PG提取物进行发酵,PD的含量提高了18.3倍;PARK等[23]利用啤酒酵母菌(Saccharomyces cerevisiae)对PG提取物进行发酵,PD含量提高了4倍。分析PD含量提高的原因,可能与这些菌能够产生较高活性的β-D-葡萄糖苷酶相关。桔梗提取物中含有两种主要的PD前体物质,分别为桔梗皂苷E(PE)和桔梗皂苷D3(PD3),它们可以通过β-D-葡萄糖苷酶水解转化为PD[24]。据报道,桔梗提取物中含有约2%的桔梗皂苷,其中PE、PD3和PD的比例分别约占8.3%、15.4%和20.9%,3种桔梗皂苷的结构区别在于PD的C-3位置的葡萄糖单元,而β-D -葡萄糖苷酶可通过切断PD3和PE的C-3处的1个和2个葡萄糖分子而转化为PD,即PE→PD3→PD[25-26]。本研究中3株乳酸菌发酵桔梗对PD的转化能力不同,可能与其所产生的β-D-葡萄糖苷酶活性相关,MZJ01和MZJ02产β-D-葡萄糖苷酶的能力可能优于MZJ03,后续可进一步通过实验进行验证。另外,还可以PE和PD3为前体物质,通过3株菌在一定条件下发酵,考察PD的含量变化以验证其内在机制。也可通过筛选高产β-D-葡萄糖苷酶的食用菌发酵桔梗以提高PD的含量,从而增强其营养保健和药用价值。

通过以上转化机制可推测米泔水炮制桔梗的机制:米泔水为乳酸菌的生长繁殖提供了充足的碳源,促进了乳酸菌的生长而产生大量的β- D -葡萄糖苷酶,促进了桔梗中PE和PD3向PD的转化,提高了PD的含量,更有利于增强其生物活性。PD是桔梗的重要皂苷,具有抗氧化、抗炎等多种药理作用[27],后续可通过药理学实验进行验证。

本研究结果显示,MZJ02和肠球菌属多种细菌相似度均大于98.7%,这主要是由于已报道的肠球菌属细菌序列具有高度相似性(99%),16S rDNA序列分析技术在种水上平难以准确鉴定,后续可利用MALDI-TOF MS等技术对肠球菌进行种水平鉴定[28-29]

参考文献

[1] 邓亚羚, 任洪民, 叶先文, 等.桔梗的炮制历史沿革、化学成分及药理作用研究进展[J].中国实验方剂学杂志, 2020, 26(2):190-202.DENG Y L, REN H M, YE X W, et al.Progress of historical evolution of processing, chemical composition and pharmacological effect of platycodonis radix[J].Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26(2):190-202.

[2] 于鑫鑫, 丁纯洁, 陈丽艳, 等.米泔水炮制桔梗过程中微生物变化规律研究[J].中国现代中药, 2022, 24(11):2093-2100.YU X X, DING C J, CHEN L Y, et al.Microbial changes in Platycodon grandiflorum processing with rice-washed water[J].Modern Chinese Medicine, 2022, 24(11):2093-2100.

[3] JUNG J I, LEE H S, KIM S M, et al.Immunostimulatory activity of hydrolyzed and fermented Platycodon grandiflorum extract occurs via the MAPK and NF-κB signaling pathway in RAW 264.7 cells[J].Nutrition Research and Practice, 2022, 16(6):685-699.

[4] WANG Z, LI C H, HE X, et al.Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway[J].Food &Function, 2022, 13(7):3946-3956.

[5] XIE L, ZHAO Y X, ZHENG Y, et al.The pharmacology and mechanisms of platycodin D, an active triterpenoid saponin from Platycodon grandiflorus[J].Frontiers in Pharmacology, 2023, 14:1148853.

[6] 赵院院, 赵一颖, 贺红娟, 等.基于网络药理学和实验验证探讨桔梗改善哮喘的机制研究[J].中药药理与临床, 2021, 37(6):82-89.ZHAO Y Y, ZHAO Y Y, HE H J, et al.Mechanism of Jiegeng in improving asthma:An exploration based on network pharmacology and experimental verification[J].Pharmacology and Clinics of Chinese Materia Medica, 2021, 37(6):82-89.

[7] LEE S, HAN E H, LIM M K, et al.Fermented Platycodon grandiflorum extracts relieve airway inflammation and cough reflex sensitivity in vivo[J].Journal of Medicinal Food, 2020, 23(10):1060-1069.

[8] 赵玉霞. 樟帮特色米泔漂苍术工艺及药效学研究[D].南昌:江西中医药大学, 2019.ZHAO Y X.Study on the technology and pharmacodynamics of bleaching Atractylodes lancea with Zhangbang special rice bran[D].Nanchang:Jiangxi University of Traditional Chinese Medicine, 2019.

[9] LEE K S, SEONG B J, KIM S I, et al.Changes in platycoside components and antimicrobial activities of Bronchus disease-inducing bacteria of fermented Platycodon grandiflorum root by lactic acid bacteria[J].Journal of the Korean Society of Food Science and Nutrition, 2016, 45(7):1017-1025.[10] 国家药典委员会. 中华人民共和国药典:一部[M].北京:中国医药科技出版社, 2020:289.Chinese Pharmacopoeia Commission.Pharmacopoeia of the People’s Republic of China:Part One[M].Beijing:China Medical Science and Technology Press, 2020:289.

[11] ERKO S, EBERS J.Taxonomic parameters revisited:Tarnished gold standards[J].Microbiology Today, 2006, 33:152-155.

[12] BEN BRAÏEK O, GHOMRASSI H, CREMONESI P, et al.Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei)[J].Antonie Van Leeuwenhoek, 2017, 110(6):771-786.

[13] 刘长蕾, 文宇萍, 李冠洋, 等.魏斯氏菌的研究进展[J].食品与机械, 2022, 38(9):227-233.LIU C L, WEN Y P, LI G Y, et al.Recent progress of Weissella[J].Food &Machinery, 2022, 38(9):227-233.

[14] 李巧玉, 方芳, 堵国成, 等.魏斯氏菌在发酵食品中的应用[J].食品与发酵工业, 2017, 43(10):241-247.LI Q Y, FANG F, DU G C, et al.The application of Weissella strains in fermented food[J].Food and Fermentation Industries, 2017, 43(10):241-247.

[15] YU H S, JANG H J, LEE N K, et al.Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi[J].LWT, 2019, 112:108229.

[16] KIBAR H, ARSLAN Y E, CEYLAN A, et al.Weissella cibaria EIR/P2-derived exopolysaccharide:A novel alternative to conventional biomaterials targeting periodontal regeneration[J].International Journal of Biological Macromolecules, 2020, 165:2900-2908.

[17] YE G B, LI G L, WANG C L, et al.Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice[J].Carbohydrate Polymers, 2019, 207:218-223.

[18] YANG Y F, FENG F, ZHOU Q Q, et al.Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste[J].International Journal of Biological Macromolecules, 2018, 114:529-535.

[19] ZHOU Q Q, FENG F, YANG Y F, et al.Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine[J].International Journal of Biological Macromolecules, 2018, 107:2234-2241.

[20] MORANDI S, CREMONESI P, POVOLO M, et al.Enterococcus lactis sp.nov., from Italian raw milk cheeses[J].International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_8):1992-1996.

[21] FU X M, LYU L, WANG Y, et al.Safety assessment and probiotic characteristics of Enterococcus lactis JDM1[J].Microbial Pathogenesis, 2022, 163:105380.

[22] JUNG J A, NOH J H, JANG M S, et al.Safety evaluation of fermented Platycodon grandiflorus (Jacq.) A.DC.extract:Genotoxicity, acute toxicity, and 13-week subchronic toxicity study in rats[J].Journal of Ethnopharmacology, 2021, 275:114138.

[23] PARK E J, LEE H J.Immunomodulatory effects of fermented Platycodon grandiflorum extract through NF-κB signaling in RAW 264.7 cells[J].Nutrition Research and Practice, 2020, 14(5):453-462.

[24] AHN H J, YOU H J, PARK M S, et al.Biocatalysis of platycoside E and platycodin D3 using fungal extracellular β-glucosidase responsible for rapid platycodin D production[J].International Journal of Molecular Sciences, 2018, 19(9):2671.

[25] HA I J, HA Y W, KANG M, et al.Enzymatic transformation of platycosides and one-step separation of platycodin D by high-speed countercurrent chromatography[J].Journal of Separation Science, 2010, 33(13):1916-1922.

[26] HA Y W, NA Y C, SEO J J, et al.Qualitative and quantitative determination of ten major saponins in Platycodi Radix by high performance liquid chromatography with evaporative light scattering detection and mass spectrometry[J].Journal of Chromatography A, 2006, 1135(1):27-35.

[27] 李明泽. 桔梗皂苷D的微生物转化和抗氧化性分析[D].延吉:延边大学, 2018.LI M Z.Microbial transformation and antioxidant analysis of Platycodon grandiflorum saponin D[D].Yanji:Yanbian University, 2018.

[28] BELLOSO DAZA M V, CORTIMIGLIA C, BASSI D, et al.Genome-based studies indicate that the Enterococcus faecium Clade B strains belong to Enterococcus lactis species and lack of the hospital infection associated markers[J].International Journal of Systematic and Evolutionary Microbiology, 2021, 71(8):004948.

[29] KIM E, YANG S M, KIM H J, et al.Differentiating between Enterococcus faecium and Enterococcus lactis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J].Foods, 2022, 11(7):1046.

Isolation and identification of strains of Platycodon grandiflorum (PG) solution processed with rice swill and changes of platycodon saponin D content of PG fermented by pure strains

CHEN Liyan, JIA Zhichao, YU Xinxin, DING Chunjie, SUN Yinling, ZHENG Hongyu, ZHAO Han, WANG Weiming*

(Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150036, China)

ABSTRACT The research aimed to identify the dominant bacteria in the preparation liquid of Platycodon grandiflorum (PG) processed with rice swill and explore the impact of PG fermentation by these dominant bacteria on platycodon saponin D content.PG underwent processing with rice swill, and the dominant bacteria in the preparation liquid were isolated and purified using MRS medium.Identification of the isolated strains involved Gram staining, catalase testing, and 16S rDNA sequencing.PG underwent fermentation with these three purified strains, and the platycodon saponin D content was determined using HPLC.Three strains of lactic acid bacteria, namely Weissella cibaria, Enterococcus faecalis, and Lactobacillus casei, were isolated.It was found that the platycodon saponin D content in fermented PG was higher than that in unfermented PG.Notably, the first two strains, Weissella cibaria and Enterococcus faecalis, increased the platycodon saponin D content in the fermented PG extract by 8.19% and 10.72%, respectively.Lactic acid bacteria emerged as the dominant bacterial group in the rice swill-processed PG preparation liquid.Pure strain fermentation of PG led to an increase in the platycodon saponin D content, suggesting microbial transformation during the rice swill processing of PG, thereby enhancing its activity.

Key words Platycodon grandiflorum;rice swill;processing;dominant bacteria;pure fermentation;platycodon saponin D

DOI:10.13995/j.cnki.11-1802/ts.037871

引用格式:陈丽艳,贾智超,于鑫鑫,等.米泔水制桔梗优势菌的分离鉴定及纯种发酵桔梗对桔梗皂苷D含量的影响[J].食品与发酵工业,2024,50(19):81-86.CHEN Liyan, JIA Zhichao, YU Xinxin, et al.Isolation and identification of strains of Platycodon grandiflorum (PG) solution processed with rice swill and changes of platycodon saponin D content of PG fermented by pure strains[J].Food and Fermentation Industries,2024,50(19):81-86.

第一作者:硕士,主任药师(王伟明研究员为通信作者,E-mail:zyyjy@163.com)

基金项目:国家自然科学基金项目(U20A20400);黑龙江省中医药科研项目(ZHY2022-091)

收稿日期:2023-11-06,改回日期:2023-12-13