微生物固态发酵麦麸的营养品质及其资源化利用的研究进展

张凯歌1,2,江迪1,2*,万小乐3,关二旗2,李萌萌2,陈蒙慧2,唐浩洁2,卞科2*

1(河南工业大学,国家粮食和物资储备局粮油食品工程技术研究中心/河南省重点实验室,河南 郑州,450001) 2(河南工业大学 粮油食品学院,河南 郑州,450001)3(大连市检验检测认证技术服务中心,辽宁 大连,116021)

摘 要 麦麸作为小麦加工的主要副产物,年产量超2 000万t,其营养丰富,具有很高的应用潜力。但麦麸中存在植酸等抗营养素以及含量较高的不溶性膳食纤维,影响了麦麸生物活性物质的释放,导致其资源化综合利用受到一定限制。因此麦麸的改性处理成为研究热点,其中微生物发酵由于其高效、低成本、无污染等特点受到较高的关注。微生物固态发酵能够通过改善麦麸膳食纤维结构、降低抗营养因子水平、促进生物活性物质的释放、提高抗氧化能力来提高麦麸的营养品质和应用价值。该文综述了微生物发酵对麦麸生物活性物质释放、营养品质改善以及在全麦食品品质改善和饲料加工中动物生长性能、肠道健康、免疫调节等方面资源化利用的研究进展,以期为提高麦麸的综合利用率及附加值提供参考。

关键词 微生物;固态发酵;麦麸;营养品质;资源化利用

我国是小麦种植、消费大国。麦麸作为小麦加工的主要副产物之一,每年产量大约3 000万t。麦麸具有较高的营养价值,除了含有丰富的膳食纤维、蛋白质、维生素、矿物质等营养成分外,还含有阿魏酸、酚酸、阿拉伯木聚糖等具有抗氧化特性的生物活性物质,可以改善新陈代谢、增强免疫力、保护正常细胞免受氧化损伤,并有助于抵抗衰老和细胞癌[1]。麦麸多用于饲料和酿造工业,在食品加工中的应用较少。然而,麦麸中多数生物活性化合物以不同形式被困在含有木质素、纤维素和半纤维素的复杂结构中,因此在自然状态下其利用程度较低[2-3],麦麸的潜在价值并未得到充分开发与利用。此外,麦麸膳食纤维多为不溶性膳食纤维(insoluble dietary fiber,IDF),且由于非淀粉多糖、植酸等抗营养因子的存在,直接添加麦麸不仅会导致其营养素利用效率较低,而且对产品的品质和营养价值会产生不利影响[1]

为了提高麦麸产品的质量,通常采用物理法、化学法和生物法对麦麸进行改性处理。有研究发现,微波、蒸汽、挤压、过热蒸汽均提高了麦麸总酚、阿魏酸和叶酸的含量,其中挤压增加了麦麸的膨胀力,对营养和加工质量改善最大,对酚类含量和抗氧化能力提升也最为显著,然而这些方法成本较高、局限性较大[4]。化学法常通过添加化学试剂或改良剂对麦麸进行处理,有研究通过羧甲基化法处理麦麸,发现麦麸IDF的结构和质量都得到了明显的改善[5]。但这类方法可能会产生难以消除的污染,导致其应用受到一定限制。生物法利用微生物的发酵作用和酶制剂对麦麸进行处理,具有安全、高效且环保的优点,是一种极具潜力的麦麸改性方法[1]。其中微生物发酵因其菌种选择多样、处理周期短、操作简单,在麦麸改性处理上具有极大优势。该方法对设备和加工工艺的要求较低,通过微生物发酵能够在不同分子之间形成新的相互作用,改变麦麸的微观结构,提高麦麸的加工性能[6]。同时,微生物在发酵过程产生的酶对麦麸的结构、生物活性和生物利用度有很大影响[7],能够将麦麸中生物活性物质释放出来(图1),在改变麦麸IDF结构、理化性质、功能性质和抗氧化活性等方面具有很高的应用前景[8]。尽管微生物发酵过程会消耗麦麸中的营养物质,但也可以将麦麸中难分解、利用率低的成分转化成小分子物质,促进麦麸生物活性物质的释放,同时,也可将可溶性糖等营养成分转化成有机酸等其他营养素,带来独特风味的同时增加其营养品质[9]。因此,本文综述了微生物固态发酵对麦麸营养品质和功能特性的改善作用及其资源化利用的研究进展,并对其应用前景进行展望,以期提高麦麸的综合利用效率及附加价值。

图1 微生物处理释放麦麸中的生物活性物质

Fig.1 The bioactive substances released by microbial treatment of wheat bran

1 发酵麦麸的功能特性

麦麸中营养物质含量丰富,是生产许多化合物的优良基质[10-14],如表1所示。有研究表明,采用黑曲霉发酵麦麸可生产β-葡聚糖酶,作为一种有益的饲料添加剂,在一些β-葡聚糖含量较高的谷物饲料中使用尤其广泛[10,15]。以费氏丙酸杆菌发酵麦麸还可用来生产高生物可及性的维生素B12[13,16]。研究发现,发酵产生的一些挥发性物质可给麦麸带来特殊的风味,以冠突散囊菌发酵麦麸可显著增加主要风味物质苯乙醇的含量[17],米根霉发酵麦麸则可以增加醇、脂等各种芳香成分的相对含量,改善风味物质组成[18]。此外,由瑞士乳杆菌发酵的麦麸提取物具有极好降解黄曲霉毒素B1的能力[19],而黑曲霉FS-UV-21发酵麦麸不仅可以降低其中赭曲霉毒素A的含量,还能提升麦麸的风味,区别于传统麦麸挥发性风味物质,壬醇、香兰素等含量增加明显,提高了麦麸的利用价值[20]。不仅如此,牛类芽孢杆菌发酵麦麸的上清液对唾液链球菌和变形链球菌有明显的抑制作用,而对口腔中常见的有益菌(植物乳杆菌和干酪乳杆菌)无抑制活性,且目标抑菌物质具有良好的热稳定性和pH稳定性[21]。可见麦麸不仅可作为底物生产酶、维生素、乙醇、乙酸等化合物,发酵过程中产生的风味物质还能较好的改善麦麸的风味特性。此外,发酵麦麸还在降解毒素、抑菌等方面也表现出很好的效果。

表1 微生物发酵麦麸生产有机化合物
Table 1 The organic compounds produced by microbial fermentation of wheat bran

发酵菌种发酵方式发酵产物黑曲霉CCUG33991[10]锥形烧瓶固态发酵β-葡聚糖酶泡盛曲霉[11]生物反应器固态发酵阿魏酸酯酶、木聚糖酶芽孢杆菌PM06[12]深层发酵α-淀粉酶、纤维素酶、乙醇、乙酸费氏丙酸杆菌;短乳杆菌[13]混菌固态发酵维生素B12酵母菌[14]两段式发酵乳酸

2 不同菌种发酵对麦麸营养品质的影响

常用于麦麸发酵的微生物主要有霉菌、酵母菌、乳酸菌、芽孢杆菌等。霉菌是丝状真菌的统称,以孢子形式进行无性或有性繁殖。而酵母菌是一类以芽殖为主的兼性厌氧型单细胞真菌,酵母菌常与芽孢杆菌、乳酸菌等菌类一起混合发酵麦麸。麦麸吸水性强,易霉变,易被呕吐毒素污染[22]。当发酵条件不当时,可能会造成杂菌污染、营养成分损失,带来令人不悦的风味等负面效果。因此,合适的发酵参数是保障麦麸发酵效果的重要条件。影响麦麸发酵的主要因素包括发酵温度、时间、接种量以及含水量等。不同微生物生长所需适宜温度、湿度不尽相同,而且对接种量有要求。所以无论是使用真菌、细菌发酵,亦或是采用复合发酵方式来改善麦麸营养品质,都需要找到适宜的发酵条件。

2.1 真菌发酵

2.1.1 霉菌发酵

黑曲霉、米曲霉和泡盛曲霉等霉菌通常被认为是食品级微生物,普遍应用于发酵食品生产。霉菌可以分泌纤维素酶、木聚糖酶等多种酶,能较好地降解麦麸木质纤维素,释放阿魏酸,提高麦麸抗氧化活性,增加营养价值[23]。研究发现,以好食脉孢霉固态发酵麦麸制备可溶性膳食纤维(soluble dietary fiber,SDF),最佳发酵条件下发酵83.5 h时SDF得率可达13.14%,发酵过程中纤维素酶和木聚糖酶活性均与SDF得率呈正相关[24]。在最佳发酵条件下,采用泡盛曲霉发酵麦麸,7 d后麦麸中游离阿魏酸含量可达164.3 μg/g,发酵麦麸多酚提取物也有较强的抗氧化活性[25]。研究表明,黑曲霉、米曲霉、里氏木霉等发酵麦麸能显著增加麦麸中总游离酚、阿魏酸的含量及抗氧化活性[26],其中黑曲霉释放结合阿魏酸的能力很强,米曲霉和泡盛曲霉具有释放更多绿原酸和丁香酸的能力[23]。此外,黑曲霉在释放麦麸中结合阿魏酸时,产生了一种新形式阿魏酸,其抗氧化和抗炎活性要优于游离阿魏酸[27]。LU等[17]首次将冠突散囊菌与麦麸一起发酵,发现发酵麦麸中SDF含量显着增加,持水持油能力提高,发酵显着增加了总多酚、花青素的含量,其中阿魏酸含量大约是未发酵麦麸的12.06倍,发酵也增强了麦麸的抗氧化和抗肥胖活性。赵云蛟等[28]采用米根霉固态发酵麦麸,发现发酵使麦麸中的蛋白质含量增加85.44%,SDF含量增加2.71倍。

2.1.2 酵母菌发酵

酵母菌作为发酵处理的常用菌种,可以产生多种分解细胞壁的解聚酶,从而破坏酚酸与阿拉伯木聚糖相结合的酯键,将结合态酚酸和阿拉伯木聚糖从细胞壁中释放出来,并降低麦麸中植酸的含量,同时具有杀灭有害菌种的作用以避免污染[29]。有研究表明,酿酒酵母固态发酵麦麸可显著增加麦麸中总酚和水溶性阿拉伯木聚糖(water extractable arabinoxylan,WEAX)的含量,使IDF转化为SDF[30],还可有效提高麦麸酚类物质的含量以及DPPH自由基清除活性,同时发现抗氧化活性与总酚的含量显著相关[31]。刘豪等[32]采用酵母菌发酵麦麸优化麦麸膳食纤维的组成,发酵后麦麸IDF含量显著降低,而SDF含量提升至20.21%,同时麦麸中蛋白质和灰分含量上升,持水性和溶胀性均显著提高。杨克胜等[33]用14株酵母菌固态发酵麦麸,发现扣囊复膜酵母Y11可以显著提高麦麸的抗氧化能力及其理化特性,发酵后的麦麸结构疏松,总酚、SDF、多肽及游离酚酸等与麦麸抗氧化能力呈正相关的活性物质含量显著上升。

2.1.3 白腐菌发酵

白腐菌是目前发现的最有效、最主要的木质素降解微生物,可将木质素彻底降解为H2O和CO2[34]。白腐菌可以降解复杂的有机物,改善木质纤维素结构,提高酶解效率。部分白腐菌还能够产生具有营养、药用和保健价值的子实体,在工业、食品、医药等重要领域有极高的应用价值。LI等[35]采用蝉花、蛹虫草、桦褐孔菌3种药用真菌对麦麸进行固态发酵,发现这些真菌均改善了麦麸的营养特性,包括SDF的提取率、总酚与总黄酮含量,以及膨胀能力、吸油能力和抗氧化活性,还发现不同真菌发酵的麦麸具有不同的挥发性特征。TU等[36]使用松生拟层孔菌发酵麦麸,结果表明,发酵提高了麦麸的生物活性和烘烤性能,改善了麦麸的吸水指数、水溶性指数和膨胀能力等物理性质,增加了麦麸中总酚、烷基间苯二酚等生物活性物质的含量,并提高了总抗氧化活性。有研究发现,以香菇发酵麦麸,当发酵组合水料比为7∶1(mL∶g),装料厚度为8 cm,发酵时间为10 d时,麦麸中的SDF平均可达到208.45 mg/g[37]。而在杏鲍菇固态发酵麦麸的实验中,发现漆酶和锰过氧化物酶活性显著增加,总槲皮素、酚类物质和粗多糖的浓度是未发酵麦麸的2倍[38]

2.2 细菌发酵

2.2.1 乳酸菌发酵

乳酸菌在食品发酵工业中应用非常广泛,在发酵过程中产生的乳酸有降低基质pH,抑制杂菌生长的作用,在麦麸发酵中常以乳杆菌属的乳酸菌作为发酵菌种。SPAGGIARI等[39]采用鼠李糖乳杆菌固态发酵麦麸,结果发现发酵后麦麸中植酸含量减少了3倍,WEAX的浓度增加了3倍,除总酚略有下降外,发酵后游离酚酸的含量显著增加,抗氧化活性提高。WANG等[40]发现用植物乳杆菌423发酵麦麸可以在不改变麦麸品质的条件下增加其风味特性,并且麦麸发酵液具有良好的羟自由基清除活性和氧自由基清除活性。GHAMRY等[41]从蜜蜂肠道中分离到一株新型乳杆菌(Lactobacillus apis),可通过改变麦麸中的酚类等代谢物质,显著提高麦麸中有机酸和水溶性维生素的含量以及抗氧化活性,并使麦麸中挥发性成分和游离氨基酸含量发生显著变化。此外,有研究从乳酸菌中筛选出一株粪肠球菌M2,固态发酵麦麸后,麦麸中SDF含量几乎是原料的4倍,酚类、黄酮类、烷基间苯二酚的总比例以及抗氧化能力和自由基清除率均显著提高,特别是阿魏酸含量提高了5.5倍,随着麦麸蛋白的降解,游离氨基酸含量增加,而植酸的水平降低[2]。团队前期使用植物乳杆菌、鼠李糖乳杆菌、戊糖片球菌和布氏乳杆菌固态发酵麦麸发现,经乳酸菌发酵后麦麸SDF含量显著提高,抗氧化活性和多酚含量显著增加而植酸含量降低,其中布氏乳杆菌发酵48 h后SDF含量由4.72%增加至6.58%,植物乳杆菌发酵麦麸多酚含量由1.34 mg/g增加至3.86 mg/g,在提高麦麸的营养特性方面具有较好的效果。

2.2.2 芽孢杆菌发酵

芽孢杆菌在工业和农业生产中发挥着重要作用,在发酵过程中可产生各种各样的活性酶,改善麦麸中的纤维素,破坏抗营养因子。[7]采用芽孢杆菌属TMF-2固态发酵麦麸,结果发现麦麸中可溶性酚含量几乎是未发酵麦麸的3倍,多酚的总比例以及抗氧化能力和自由基清除率均显著提高,尤其是还原Fe3+的能力提高了10倍,而且在发酵过程中淀粉酶、纤维素酶、蛋白酶、植酸酶等水解酶的活性增加。RODRIGUES等[42]发现,芽孢杆菌TC-DT13可利用麦麸作为碳源,发酵过程能产生大量木聚糖酶,料液比1∶4(g∶mL),发酵时间144 h时可产生2 943 U/g木聚糖酶,该工艺降低了发酵的成本,在大规模生产中具有较高的应用潜力。

2.3 复合发酵

在微生物发酵麦麸的研究中,目前多采用单一菌种发酵,这一方法在改善麦麸营养品质,提高麦麸应用价值方面发挥出了良好的效果,但是单一菌种发酵存在发酵效率较低的缺陷。而采用复合发酵,菌种间可通过分工来缓解代谢负担,有效转化复杂的底物,菌种间代谢协同效应有助于提高固态发酵的效果。甄莉娜等[43]在开展益生菌固态发酵麦麸研究中,以芽孢杆菌、乳酸菌、酵母菌和霉菌按5∶1∶1∶1混合发酵麦麸,能够显著提高发酵麦麸中还原糖和蛋白质的含量,改善了麦麸的营养品质。同时,有研究发现,混合菌种发酵麦麸可以利用不同菌种间互补性和协同性获得比单一菌种更高产量的阿魏酸糖酯[44]。团队前期在优化布氏乳杆菌与米曲霉复合发酵麦麸工艺中发现,当复配比例2∶3、发酵时间3 d、发酵温度31 ℃时,麦麸SDF和多酚含量最高,纤维素酶、木聚糖酶及阿魏酸酯酶活力最大,3种酶协同作用于麦麸促进纤维素成分的降解及多酚类物质的游离,发酵后麦麸粉碎效率也由24.23%增加至28.93%。

2.3.1 酵母菌和乳酸菌发酵

酵母菌和乳酸菌是特征良好的发酵剂,能够有效降低植酸含量,增加SDF、WEAX和多酚的含量。ZHAO等[45]使用酵母和乳酸菌固态发酵麦麸,发酵后WEAX含量提高3~4倍,总膳食纤维和SDF含量增加,烷基间苯二酚含量显著增加,并有超过20%的植酸被降解。王赛民等[30]采用酵母菌和乳酸菌发酵麦麸,发酵后麦麸中SDF含量显著增加,IDF含量则显著降低,各发酵组中WEAX含量提高了207%~310%,多酚含量提高了49%~94%。ZHANG等[46]研究了酵母和乳酸菌发酵麦麸对面筋聚合的影响,发现发酵可增加麦麸中多酚化合物和WEAX的含量,与未发酵麦麸相比,改性麦麸显著增加了面筋蛋白中二硫键含量,有效减少了麦麸对面筋网络的破坏。此外,以酿酒酵母和植物乳杆菌发酵麦麸可显著改善麦麸理化性能,发酵后SDF含量增加,IDF含量下降,总氨基酸含量增加7%~27%,麦麸总抗氧化活性也得到提高[47]。而采用植物乳杆菌LB-1和酿酒酵母对麦麸进行固态发酵,在协同发酵36 h后,麦麸中总游离氨基酸、可溶性蛋白、可溶性多酚以及WEAX含量上升,发酵麦麸的总还原力、DPPH自由基清除率以及超氧阴离子自由基清除率均得到提高[48]

2.3.2 酵母菌和芽孢杆菌发酵

酵母菌常与枯草芽孢杆菌共发酵麦麸,可以改变麦麸多糖、多酚组成比例,提高麦麸抗氧化能力。CHEN等[49]发现酿酒酵母和枯草芽孢杆菌发酵麦麸可以改变麦麸多糖的结构特征,发酵后麦麸中总多糖含量上升,鼠李糖、木糖和阿拉伯糖的比例上升,使岩藻糖的比例提高到可检测的水平,发酵提高了麦麸多糖的还原能力以及DPPH自由基和羟自由基的清除活性。此外,枯草芽孢杆菌和酿酒酵母混合发酵还可以提高麦麸中水溶性多酚含量,在最佳发酵条件下,水溶性多酚含量较发酵前提高了近3倍,发酵还改变了水溶性多酚的组成比例,发酵后麦麸多酚的还原力和DPPH自由基清除率也得到提高[50]。陈秋燕等[44]以枯草芽孢杆菌、地衣芽孢杆菌和酿酒酵母按1∶1∶1发酵麦麸,获得了产量较高且具有体外抗氧化和益生活性的阿魏酸糖酯,能够有效促进嗜热链球菌和植物乳杆菌的增殖。发酵提高了麦麸的附加值,为提高麦麸的综合利用率提供了有效的途径。

3 微生物固态发酵麦麸的资源化利用

微生物发酵在改善麦麸膳食纤维结构、促进酚类物质释放、降低抗营养因子水平、提高麦麸抗氧化能力等方面具有非常优异的表现。发酵麦麸的生物活性、理化性质、功能性质得到提高,营养品质得到极大改善,在食品加工、功能性食品开发以及饲料加工等领域具有广泛的应用前景。

3.1 在全麦食品中的应用

全谷物对人类健康的益处已经得到证实,研究证明,食用全谷物食品可有效降低糖尿病、肥胖症、心血管疾病和某些癌症的风险[51]。然而全谷物食品的品质往往带有缺陷,包括体积小、缺乏弹性、带有苦味以及质地粗糙等,这与添加麦麸导致面筋网络结构减弱,面团持气能力降低有关[52]。麦麸膳食纤维与面筋之间的相互作用,也会对面团特性带来负面影响[53]。而通过微生物发酵对麦麸进行改性,可有效改善麦麸营养价值、物理和风味特性,缓解添加麦麸对面制品带来的不利影响[30,45]

3.1.1 发酵食品

通过发酵改善麦麸是改善高纤面粉质量的有效方法。毛木耳发酵麦麸可以有效降解麦麸纤维并产生多种芳香化合物,添加发酵后的麦麸纤维产品可以提高面团的弹性[34],防止面筋网络结构的部分损伤[54]。研究表明,添加适量的发酵麦麸可以改善面团的特性和馒头的品质,有效降低添加麦麸对混合面粉粉质和伸长特性的负面影响,对面团的黏弹性和馒头的比容产生了积极地影响[55]。LI等[56]采用酵母菌Wickerhamomyces anomalus P4作为发酵剂制作全麦馒头,在发酵12 h后,超45%的植酸被降解,与商业酿酒酵母相比,使用该发酵剂改善了面团的微观结构,提高了矿物质的溶解性,发酵馒头还具有较高的亮度和高径比。此外,许多研究表明,发酵麦麸制得的全麦面包其比容、质地得到改善,拥有更加适口的口感,尤其是风味特性得到加强,增加了许多挥发性化合物[36,47-48]。而使用酿酒酵母发酵麦麸,发现当麦麸粒径为200~300 μm时适合生产高纤面包,当添加量为15%时,面包的新鲜度更高,可有效延长面包的保质期,增加了消费者的可接受程度[57]。BARTKIENE等[58]指出麦麸经挤压发酵后制作面包可以降低储藏期间的硬度,延长货架期,并形成独特的挥发性化合物,提高了面包的整体可接受性。发酵有效减少了麦麸对面包体积的副作用,积极影响了面包最终的整体特性。

3.1.2 非发酵食品

发酵提高了麦麸的营养价值,显著增加了SDF的含量,在制作全麦面条时,添加米根霉固态发酵的麦麸可提高小麦粉的糊化特性和熟面条的质构特性,面条的淀粉水解指数和血糖生成指数显著低于普通小麦粉面条[28]。而采用酵母菌和乳酸菌发酵麦麸制作全麦面条,相比于未发酵麦麸组,发酵麦麸组面团峰值黏度、谷值黏度、黏弹性和结构强度增加,水分分布得到改善,减弱了麦麸对面筋蛋白的解聚作用,发酵还显著降低了全麦面条的蒸煮损失,淀粉的抗消化性得到加强,有利于降低血糖生成指数[30]。此外,采用酵母和酒曲发酵麦麸制作的全麦半干面内部结构疏松,蛋白均匀且连续分布,提高了全麦半干面的适口性和爽滑性,全麦半干面中植酸含量显著降低,多酚含量显著上升,其营养价值也得到提高[59]。同样的,XU等[60]采用酒曲和酵母发酵麦麸制作全麦半干面条,发酵提高了面条的硬度,明显改变了面条横截面的外观和微观结构,全麦半干面条的最佳蒸煮时间和蒸煮损失显著降低,有效延长了面条货架期。团队前期通过布氏乳杆菌与米曲霉发酵麦麸制作全麦面条,发现发酵组的吸水率和蒸煮损失显著降低,面条的硬度、黏附性、胶黏性、咀嚼性降低,弹性及回复性有增加趋势,在相同添加比例下,发酵组面条的拉断力及拉伸距离显著高于未发酵组,且经发酵后面条中多酚的生物可利用率也由19.69%提高到21.43%。由此可见,发酵麦麸对全麦面条的蒸煮品质和质构特性具有积极的影响。

3.2 在动物饲料中的应用

麦麸作为食品加工的副产品,有丰富的营养成分和生物活性化合物,是传统的饲料原料。在动物的日粮中添加适当比例的麦麸可促进肠道功能发育和生长,但半纤维素木聚糖和其他非淀粉多糖对麦麸营养素的截留阻碍了动物的消化和吸收。此外,麦麸中的抗营养因子(如粗纤维)含量比较高,在日粮中添加麦麸会影响动物的生长发育和健康,过量添加还会因其高木质纤维素含量、非淀粉多糖、植酸以及霉菌毒素风险等造成负面影响[61]。而采用发酵麦麸代替基础日粮可有效调节动物肠道菌群结构,促进肠道发育来提高生长性能,还能降低瘤胃氨氮浓度,改变瘤胃细菌群落,促进瘤胃发育来改善生长性能。另一方面,发酵麦麸可以增强机体抗氧化与抗炎能力,激活先天性免疫和适应性免疫,提高机体的免疫应答能力,从而增强机体的免疫功能。

3.2.1 改善动物生长性能,调节肠道菌群环境

麦麸经发酵后营养价值得以提升,可部分代替家禽和家畜的基础日粮,实现更高的价值。LIN等[62]研究发现添加5%硫磺菌发酵的麦麸能改善肉鸡的生长性能,提高乳杆菌科细菌的数量,抑制变形杆菌的数量,改善肠道环境。添加10%拟康氏木霉发酵的麦麸不仅提高肉鸡的生长性能,还可以提供最佳的肠道形态[63]。而添加10%解淀粉芽孢杆菌发酵的麦麸显著提高了35日龄肉鸡回肠中乳酸菌数量,在提高肉鸡生长性能和饲料转化率的同时还有降低肉鸡血清胆固醇的趋势[64]。此外,添加棘突坎宁汉霉发酵的麦麸和0.2%仙鹤草提取物能够提高鸡肉的质量,使鸡肉中γ-亚麻酸含量显著增加[65]

另一方面,添加5%芽孢杆菌和乳酸菌发酵的麦麸使得生长肥育猪肠道菌群多样性增加,肠道菌群组成和稳定性得到改善,对肠道发育产生了积极的影响,表现出了优异的生长性能和饲料增重比[66]。而采用枯草芽孢杆菌和产朊假丝酵母发酵的麦麸代替断奶仔猪10%的基础日粮可以减少肠道致病菌的定殖,提高粪便中螺菌属、克雷白杆菌属和镰刀菌属的相对丰度,有效调节断奶仔猪肠道菌群结构,促进肠道健康[67]。有研究表明,发酵麦麸多糖可正向调节斑马鱼肠道抗氧化相关基因的表达和肠道微生物群,显著提高斑马鱼的比生长率,显示出作为生长促进剂的优越潜力[68]。在代乳粉中添加枯草芽孢杆菌和酿酒酵母发酵制备的发酵麦麸多糖,可改善羔羊瘤胃液中氨氮的浓度以及异丁酸和异戊酸的比例,改变瘤胃细菌群落,促进瘤胃发育,同时降低饲料增重比,提高羔羊生长性能[69]。此外,将枯草芽孢杆菌和酿酒酵母发酵麦麸制备的阿魏酰低聚糖添加进羔羊饲料中,也能降低羔羊瘤胃氨氮浓度,改善羔羊平均日增重和饲料转化率[70]

3.2.2 提高机体抗氧化能力,调节免疫功能

氧化应激已被证明是家禽生产和繁殖性能受损以及由此造成经济损失的主要原因,这些应激能够加速脂质过氧化和炎症反应的恶化,这可能归因于自由基的产生,这意味着氧化、炎症以及脂质代谢在动物体内相互交织[71]。WANG等[72]采用白腐菌发酵麦麸,发现发酵不仅增加了DPPH自由基清除作用、Trolox等价抗氧化能力、亚铁螯合能力,而且在体外,它可以调节鸡外周血单个核细胞中抗氧化分子靶点的表达。采用酿酒酵母和植酸酶发酵的麦麸可以促进肉鸡紧密连接蛋白基因的表达,提高肉鸡的抗氧化能力以及降低炎症[73]。有研究表明,发酵麦麸多糖可降低斑马鱼体内活性氧产生率、脂质过氧化率和细胞死亡率,提高斑马鱼胚胎抗氧化酶活性[74],尤其是发酵麦麸中阿魏酰低聚糖效果更好,对斑马鱼的氧化应激具有保护作用[75]

此外,LUO等[76]发现采用混合真菌发酵麦麸,在改善断奶仔猪空肠黏膜杯状细胞数量、黏蛋白1和抗炎细胞因子的表达以及血液中CD4+T淋巴细胞亚群的比例方面具有很大优势。在基础日粮中添加发酵麦麸不仅对断奶仔猪和生长肥育猪的机体免疫功能有着显著提高[66-67],还可以提高肉鸡血清免疫功能,有效缓解脂多糖对肉鸡的攻击损伤,发挥免疫调节功能以抑制潜在的环境诱导的炎症[77]。同时,发酵麦麸对蛋鸡免疫性能和炎症反应有积极影响,可改善蛋鸡的蛋品质,提高蛋鸡血清生化指标、生殖激素、免疫球蛋白和抗炎因子水平[78]。研究表明,经枯草芽孢杆菌和酿酒酵母发酵的麦麸多糖可通过提高血浆免疫球蛋白G、免疫球蛋白M和白细胞介素-10浓度以及过氧化氢酶活性来改善羔羊的健康状况[79],也可作为鲤鱼饲料添加剂刺激鲤鱼黏膜免疫反应,提高血清非特异性免疫参数,增强肝脏抗氧化反应和调节免疫相关基因的表达[80]

4 总结与展望

麦麸中营养物质丰富,许多研究证明,发酵是提高麦麸生物活性物质,改善麦麸物理、营养和功能特性的有效方法。发酵麦麸可以改善全麦食品的营养与品质,也可部分代替动物饲料来提高动物生长性能,改善肠道环境,提高机体的抗氧化和免疫功能。在降低加工成本、改善产品质量、提高麦麸的综合利用率及附加值等方面具有显著的优越性。然而发酵麦麸在技术上仍然存在一些不足,复合发酵虽可通过菌种间代谢协同效应提高发酵品质,但在具体机理方面研究较少,菌种间分泌相关酶的相互作用机制尚不完全清楚,在选择菌种以及菌种间相互配合和分工转化复杂底物的具体机制等方面仍需进一步研究,以便获得更加高效菌种组合来改性麦麸,提高麦麸的营养价值。此外,我国在全麦食品方面研究较晚,全麦食品的综合品质不能得到全面改善,采用发酵菌种也相对单一,以酵母菌为主,可考虑其他菌种发酵麦麸对全麦食品品质的影响,深入探究发酵麦麸组分与全麦食品品质之间的关联。

参考文献

[1] 陈蒙慧, 刘远晓, 关二旗, 等.生物处理对麦麸品质及全麦制品品质改善的研究进展[J].食品与发酵工业, 2023, 49(7):324-329.
CHEN M H, LIU Y X, GUAN E Q, et al.Research progress of biological treatment on the quality improvement of wheat bran and whole-wheat products[J].Food and Fermentation Industries, 2023, 49(7):324-329.

[2] MAO M L, WANG P, SHI K X, et al.Effect of solid state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran[J].Journal of Cereal Science, 2020, 94:102997.

[3] VU V, FARKAS C, RIYAD O, et al.Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium[J].Bioresource Technology, 2022, 343:126092.

[4] YE G D, WU Y N, WANG L P, et al.Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran[J].LWT, 2021, 149:111996.

[5] ZHANG M Y, LIAO A M, THAKUR K, et al.Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution[J].Food Chemistry, 2019, 297:124983

[6] ARTE E, RIZZELLO C G, VERNI M, et al.Impact of enzymatic and microbial bioprocessing on protein modification and nutritional properties of wheat bran[J].Journal of Agricultural and Food Chemistry, 2015, 63(39):8 685-8 693.

[7] S J, EKULJICA N, J, et al.Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation:A way to valorize wheat bran for nutrition[J].Journal of Cereal Science, 2021, 99:103159.

[8] LIAO A M, ZHANG J E, YANG Z L, et al.Structural, physicochemical, and functional properties of wheat bran insoluble dietary fiber modified with probiotic fermentation[J].Frontiers in Nutrition, 2022, 9:803440.

[9] 闫星月, 王艳, 王悦, 等.微生物发酵农副产物特性及其应用研究[J].农产品加工, 2022(2):62-67.
YAN X Y, WANG Y, WANG Y, et al.Characteristics and application of agricultural by-products by microbial fermentation[J].Farm Products Processing, 2022(2):62-67.

[10] VINCHE M H, KHANAHMADI M, AHMAD ATAEI S, et al.Optimization of process variables for production of beta-glucanase by Aspergillus niger CCUG33991 in solid-state fermentation using wheat bran[J].Waste and Biomass Valorization, 2021, 12(6):3233-3243.

[11] DOS SANTOS COSTA R, DE ALMEIDA S S, CAVALCANTI E D C, et al.Enzymes produced by solid state fermentation of agro-industrial by-products release ferulic acid in bioprocessed whole-wheat breads[J].Food Research International, 2021, 140:109843.

[12] RAJESH R, GUMMADI S N.Production of multienzymes, bioethanol, and acetic acid by novel Bacillus sp.PM06 from various lignocellulosic biomass[J].Biomass Conversion and Biorefinery, 2023, 13(15):13949-13961.

[13] XIE C, CODA R, CHAMLAGAIN B, et al.Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in wheat bran for in situ production of vitamin B12[J].Frontiers in microbiology, 2019, 10:1541.

[14] 卢艳丽, 赵一川, 高悦, 等.两段式发酵麦麸生产乳酸的工艺研究[J].粮食与油脂, 2020, 33(11):98-101.
LU Y L, ZHAO Y C, GAO Y, et al.Study on the process of preparation of lactic acid from wheat bran by two-phase fermentation[J].Cereals &Oils, 2020, 33(11):98-101.

[15] VINCHE M H, KHANAHMADI M, ATAEI S A, et al.Investigation of the effects of fermented wheat bran extract containing beta-glucanase on beta-glucan of cereals used in animal feed[J].Cereal Chemistry, 2021, 98(3):651-659.

[16] CHAMLAGAIN B, PELTONEN L, EDELMANN M, et al.Bioaccessibility of vitamin B12 synthesized by Propionibacterium freudenreichii and from products made with fermented wheat bran extract[J].Current research in food science, 2021, 4:499-502.

[17] LU X J, JING Y Y, LI Y, et al.Eurotium cristatum produced β-hydroxy acid metabolite of monacolin K and improved bioactive compound contents as well as functional properties in fermented wheat bran[J].Lwt-Food Science and Technology, 2022, 158:113088.

[18] WU J F, REN L X, ZHAO N, et al.Solid-state fermentation by Rhizopus oryzae improves flavor of wheat bran for application in food[J].Journal of Cereal Science, 2022, 107:103536.

[19] ZHANG Y C, WANG P, KONG Q, et al.Biotransformation of aflatoxin B1 by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation[J].Food Chemistry, 2021, 341:128180.

[20] 邹东, 杨阳, 黄鹤阳, 等.生物发酵麦麸脱除赭曲霉毒素A的条件优化及发酵前后挥发性风味物质的评价[J].食品工业科技, 2022, 43(21):144-151.
ZOU D, YANG Y, HUANG H Y, et al.Optimization of conditions for removing ochratoxin A from wheat bran by biological fermentation and evaluation of volatile flavor substances before and after fermentation[J].Science and Technology of Food Industry, 2022, 43(21):144-151.

[21] 冯华峰, 韩瑨, 王晓花, 等.牛类芽孢杆菌BD3526发酵麦麸抑制变形链球菌的特性[J].食品与发酵工业, 2021, 47(5):17-21.
FENG H F, HAN J, WANG X H, et al.Inhibition effect of extract from fermented wheat bran by Paenibacillus bovis BD3526 on Streptococcus mutans[J].Food and Fermentation Industries, 2021, 47(5):17-21.

[22] 李浩, 宋泽和, 范志勇.麦麸的主要营养特性及其在畜禽饲料中的应用[J].中国饲料, 2018(3):66-69.
LI H, SONG Z H, FAN Z Y.The main nutritional characteristic of wheat bran and its application in animal feed[J].China Feed, 2018(3):66-69.

[23] YIN Z N, WU W J, SUN C Z, et al.Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species[J].International Journal of Food Science &Technology, 2018, 53(5):1120-1130.

[24] 许锡凯, 辛嘉英, 任佳欣, 等.好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质[J].食品工业科技, 2021, 42(2):170-176;191.
XU X K, XIN J Y, REN J X, et al.Preparation and physicochemical properties of soluble dietary fiber (SDF) from wheat bran fermented by Neurospora sitophila[J].Science and Technology of Food Industry, 2021, 42(2):170-176;191.

[25] 曹畅达, 方一铭, 黄兴, 等.麦麸发酵条件的优化及其多酚提取物的抗氧化活性研究[J].工业微生物, 2022, 52(2):25-29.
CAO C D, FANG Y M, HUANG X, et al.Optimization of fermentation conditions for wheat bran and its antioxidant activity of polyphenol extracts[J].Industrial Microbiology, 2022, 52(2):25-29.

[26] 凌阿静, 李小平, 刘柳, 等.真菌发酵对麦麸酚酸及其抗氧化活性的影响[J].食品与生物技术学报, 2019, 38(4):136-142.
LING A J, LI X P, LIU L, et al.Effect of fungal fermentation on wheat bran phenolic acids contents and antioxidant activity[J].Journal of Food Science and Biotechnology, 2019, 38(4):136-142.

[27] YIN Z N, WU W J, SUN C Z, et al.Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger[J].Biomedical and Environmental Sciences, 2019, 32(1):11-21.

[28] 赵云蛟, 张巍毅, 李乐铖, 等.固体发酵麦麸对小麦粉和面条品质的影响[J].食品科学, 2021, 42(22):45-52.
ZHAO Y J, ZHANG W Y, LI L C, et al.Effect of solid-state fermented wheat bran on the quality of wheat flour and noodles[J].Food Science, 2021, 42(22):45-52.

[29] 崔晨晓, 朱科学, 郭晓娜, 等.酵母菌发酵对小麦麸皮成分的影响研究[J].中国粮油学报, 2016, 31(7):25-29.
CUI C X, ZHU K X, GUO X N, et al.Study on effect of yeast fermentation on the components of wheat bran[J].Journal of the Chinese Cereals and Oils Association, 2016, 31(7):25-29.

[30] 王赛民, 于洋, 刘金光, 等.固态发酵麦麸对面团及面条品质的影响[J].食品工业科技, 2023, 44(2):107-114.
WANG S M, YU Y, LIU J G, et al.Effects of solid frmented bran on the quality of dough and noodles[J].Science and Technology of Food Industry, 2023, 44(2):107-114.

[31] CLINOIU L F, CTOI A F, VODNAR D C.Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants[J].Antioxidants, 2019, 8(9):372.

[32] 刘豪, 王岸娜, 吴立根.发酵改性对麸皮中可溶性膳食纤维含量的影响[J].食品研究与开发, 2019, 40(23):21-27.
LIU H, WANG A N, WU L G.Effect of fermentation modification on the soluble dietary fiber content in bran[J].Food Research and Development, 2019, 40(23):21-27.

[33] 杨克胜, 王沛, 董华, 等.扣囊复膜酵母Y11固态发酵对麦麸理化特性的影响[J].南京农业大学学报, 2023, 46(2):377-386.
YANG K S, WANG P, DONG H, et al. Effects of solid-state fermentation with Saccharomycopsis fibuligera Y11 on physicochemical properties of wheat bran[J]. Journal of Nanjing Agricultural University, 2023, 46(2):377-386.

[34] JIANG S Y, LI L, LI L M, et al.The products from fermentation of wheat bran fiber by Auricularia polytricha strain and the effects of the products on rheological properties of dough sheet[J].Food Science &Nutrition, 2020, 8(3):1345-1354.

[35] LI N J, WANG S J, WANG T L, et al.Valorization of wheat bran by three fungi solid-state fermentation:Physicochemical properties, antioxidant activity and flavor characteristics[J].Foods, 2022, 11(12):1722.

[36] TU J, ZHAO J, LIU G H, et al.Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products[J].Food Chemistry, 2020, 328(1):127046.

[37] 武忠伟, 张朝辉, 张广, 等.香菇发酵麦麸产可溶性膳食纤维发酵条件研究[J].河南科技学院学报(自然科学版), 2020, 48(5):10-14.
WU Z W, ZHANG Z H, ZHANG G, et al.The optimization of fermentation condition of wheat bran for soluble dietary fiber by Lentinus edodes[J].Journal of Henan Institute of Science and Technology (Natural Science Edition), 2020, 48(5):10-14.

[38] WANG C C, LIN L J, CHAO Y P, et al.Antioxidant molecular targets of wheat bran fermented by white rot fungi and its potential modulation of antioxidative status in broiler chickens[J].British Poultry Science, 2017, 58(3):262-271.

[39] SPAGGIARI M, RICCI A, CALANI L, et al.Solid state lactic acid fermentation:A strategy to improve wheat bran functionality[J].LWT, 2020, 118:108668.

[40] WANG M, LEI M, SAMINA N, et al.Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran[J].Food Chemistry, 2020, 330:127156.

[41] GHAMRY M, ZHAO W, LI L.Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum[J].Food Research International, 2023, 163:112142.

[42] RODRIGUES I D S V, BARRETO J T, MOUTINHO B L, et al.Production of xylanases by Bacillus sp.TC-DT13 in solid state fermentation using bran wheat[J].Preparative Biochemistry &Biotechnology, 2020, 50(1):91-97.

[43] 甄莉娜, 柴旭旭, 李侠, 等.益生菌固态发酵对麦麸营养品质的影响[J].中国饲料, 2020(5):79-82+86.
ZHEN L N, CHAI X X, LI X, et al.Effect of probiotics on nutritional quality of solid-state wheat bran fermentation[J].China Feed, 2020(5):79-82;86.

[44] 陈秋燕, 郝希然, 王园, 等.麦麸阿魏酸糖酯微生物发酵工艺优化及体外抗氧化和益生活性评价[J].食品工业科技, 2021, 42(2):138-145;160.
CHEN Q Y, HAO X R,WANG Y, et al.Optimization of fermentation process for feruloylated glycosides from wheat bran and evaluation of its antioxidant and probiotic activities in vitro[J].Science and Technology of Food Industry, 2021, 42(2):138-145;160.

[45] ZHAO H M, GUO X N, ZHU K X.Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran[J].Food Chemistry, 2017, 217:28-36.

[46] ZHANG H J, ZHANG X S, CAO X R, et al.Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization[J].LWT, 2018, 98:306-313.

[47] ZHANG D Q, TAN B.Effects of different solid-state fermentation ratios of S.cerevisiae and L.plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread[J].Journal of the Science of Food and Agriculture, 2021, 101(11):4551-4560.

[48] 裴斐, 杜逸飞, 孙磊, 等.固态发酵对麸皮抗氧化特性及全麦面包感官品质的提升作用[J].食品科学, 2022, 43(6):212-220.
PEI F, DU Y F, SUN L, et al.Effect of solid-state fermentation on antioxidant properties of wheat bran and sensory quality of whole wheat bread[J].Food Science, 2022, 43(6):212-220.

[49] CHEN Q Y, WANG R F, WANG Y, et al.Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation[J].Journal of Cereal Science, 2021, 97:103157.

[50] 任雪荣, 齐景伟, 刘娜, 等.微生物发酵对麦麸水溶性多酚含量、组成及抗氧化活性的影响研究[J].食品工业科技, 2020, 41(3):104-109.
REN X R, QI J W, LIU N, et al.Effect of microbial fermentation on content, composition and antioxidant activity of wheat-soluble polyphenols in wheat bran[J].Science and Technology of Food Industry, 2020, 41(3):104-109.

[51] YE E Q, CHACKO S A, CHOU E L, et al.Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain[J].The Journal of Nutrition, 2012, 142(7):1304-1313.

[52] MA S, WANG Z, LIU N, et al.Effect of wheat bran dietary fibre on the rheological properties of dough during fermentation and Chinese steamed bread quality[J].International Journal of Food Science &Technology, 2021, 56(4):1623-1630.

[53] LIU N, MA S, WANG Z, et al.Influence of wheat bran dietary fiber on gluten protein structure during dough fermentation[J].Journal of Food Processing and Preservation, 2021, 45(1):e15035.

[54] FAN L, LI L, XU A M, et al.Impact of fermented wheat bran dietary fiber addition on dough rheological properties and noodle quality[J].Frontiers in Nutrition, 2022, 9:952525.

[55] LI L, WANG Z, LI L M, et al.Effects of fermented wheat bran on flour, dough, and steamed bread characteristics[J].Journal of Chemistry, 2018, 2018:1-7.

[56] LI Z J, ZHOU M M, CUI M Y, et al.Improvement of whole wheat dough fermentation for steamed bread making using selected phytate-degrading Wickerhamomyces anomalus P4[J].Journal of Cereal Science, 2021, 100:103261.

[57] REZAEI S, ALI NAJAFI M, HADDADI T.Effect of fermentation process, wheat bran size and replacement level on some characteristics of wheat bran, dough, and high-fiber Tafton bread[J].Journal of Cereal Science, 2019, 85:56-61.

[58] BARTKIENE E, JOMANTAITE I, MOCKUS E, et al.The contribution of extruded and fermented wheat bran to the quality parameters of wheat bread, including the profile of volatile compounds and their relationship with emotions induced for consumers[J].Foods, 2021, 10(10):2501.

[59] 徐晨雅, 郭晓娜, 朱科学.麸皮发酵对全麦面团及半干面品质的影响[J].中国食品学报, 2022, 22(9):145-152.
XU C Y, GUO X N, ZHU K X.Effect of bran pre-fermentation on qualities of whole wheat dough and whole wheat semi-dried noodles[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(9):145-152.

[60] XU C Y, GUO X N, ZHU K X.Effect of pre-treated wheat bran on semi-dried whole wheat noodles for extending shelf-life and improving quality characteristics[J].LWT, 2021, 146:111503.

[61] FENG Y, WANG L, KHAN A, et al.Fermented wheat bran by xylanase-producing Bacillus cereus boosts the intestinal microflora of broiler chickens[J].Poultry Science, 2020, 99(1):263-271.

[62] LIN W C, LEE T T.Effects of Laetiporus sulphureus-fermented wheat bran on growth performance, intestinal microbiota and digesta characteristics in broiler chickens[J].Animals, 2020, 10(9):1457.

[63] CHU Y T, LO C T, CHANG S C, et al.Effects of Trichoderma fermented wheat bran on growth performance, intestinal morphology and histological findings in broiler chickens[J].Italian Journal of Animal Science, 2017, 16(1):82-92.

[64] TENG P Y, CHANG C L, HUANG C M, et al.Effects of solid-state fermented wheat bran by Bacillus amyloliquefaciens and Saccharomyces cerevisiae on growth performance and intestinal microbiota in broiler chickens[J].Italian Journal of Animal Science, 2017, 16(4):552-562.

[65] SEMJON B, D, et al.Effect of solid-state fermented wheat bran supplemented with agrimony extract on growth performance, fatty acid profile, and meat quality of broiler chickens[J].Animals, 2020, 10(6):942.

[66] HE W, GAO Y N, GUO Z Q, et al.Effects of fermented wheat bran and yeast culture on growth performance, immunity, and intestinal microflora in growing-finishing pigs[J].Journal of Animal Science, 2021, 99(11):skab308.

[67] 方静, 石宝明, 何威, 等.发酵小麦麸对断奶仔猪生长性能、养分表观消化率、免疫功能及粪便菌群的影响[J].动物营养学报, 2022, 34(1):150-158.
FANG J, SHI B M, HE W, et al.Effects of fermented wheat bran on growth performance, nutrient apparent digestibility, immune function and fecal microbiota of weaned piglets[J].Chinese Journal of Animal Nutrition, 2022, 34(1):150-158.

[68] CHEN Q Y, WANG Y, YIN N, et al.Polysaccharides from fermented wheat bran enhanced the growth performance of zebrafish (Danio rerio) through improving gut microflora and antioxidant status[J].Aquaculture Reports, 2022, 25:101188.

[69] WANG W W, WANG Y A, CUI Z W, et al.Fermented wheat bran polysaccharides intervention alters rumen bacterial community and promotes rumen development and growth performance in lambs[J].Frontiers in Veterinary Science, 2022, 9:841406.

[70] WANG Y, MENG Z Q, GUO J Q, et al.Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs[J].Small Ruminant Research, 2019, 175:65-71.

[71] LEE M T, LIN W C, LIN L J, et al.Effects of dietary Antrodia cinnamomea fermented product supplementation on antioxidation, anti-inflammation, and lipid metabolism in broiler chickens[J].Asian-Australasian Journal of Animal Sciences, 2020, 33(7):1113-1125.

[72] WANG C C, CHANG C H, CHANG S C, et al.In vitro free radicals scavenging activity and antioxidant capacity of solid-state fermented wheat bran and its potential modulation of antioxidative molecular targets in chicken PBMC[J].Revista Brasileira De Zootecnia-Brazilian Journal of Animal Science, 2016, 45(8):451-457.

[73] CHUANG W Y, LIN L J, HSIEH Y C, et al.Effects of Saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers[J].Animal Bioscience, 2021, 34(7):1157-1168.

[74] 陈秋燕, 王瑞芳, 王园, 等.基于斑马鱼模型评价发酵对麦麸多糖抗氧化活性的影响[J].中国粮油学报, 2022, 37(12):35-43.
CHEN Q Y, WANG R F, WANG Y, et al.The effect of fermentation on antioxidant activity of wheat bran polysaccharide was evaluated using zebrafish model[J].Journal of the Chinese Cereals and Oils Association, 2022, 37(12):35-43.

[75] ZHANG J A, CHEN Q Y, WANG Y A, et al.Protective effects of feruloyl oligosaccharides from fermented wheat bran against oxidative stress in IPEC-J2 cells in vitro and in a zebrafish model in vivo[J].Journal of Food Quality, 2022:1-11.

[76] LUO Y H, HE J, LI H A, et al.Wheat bran fermented by mixed fungal strains improves the digestibility of crude fiber and may benefit the gut health without impacting the growth performance in weaned pigs[J].Food &Function, 2021, 12(7):2962-2971.

[77] AN J S, SHI J J, LIU K B, et al.Effects of solid-state fermented wheat bran on growth performance, immune function, intestinal morphology and microflora in lipopolysaccharide-challenged broiler chickens[J].Animals, 2022, 12(9):1100.

[78] WANG Y, HE B B, LIU K B, et al.Effects of long-term dietary supplementation of fermented wheat bran on immune performance and inflammatory response in laying hens[J].Food and Agricultural Immunology, 2022, 33(1):150-166.

[79] WANG Y, WANG R F, HAO X R, et al.Growth performance, nutrient digestibility, immune responses and antioxidant status of lambs supplemented with humic acids and fermented wheat bran polysaccharides[J].Animal Feed Science and Technology, 2020, 269:114644.

[80] WANG R F, WANG Y, ZHANG J, et al.The effects of dietary fermented wheat bran polysaccharides on mucosal and serum immune parameters, hepatopancreas antioxidant indicators, and immune-related gene expression of common carp (Cyprinus carpio) juveniles[J].Aquaculture International, 2022, 30(4):1835-1853.

Research progress on nutritional quality and resource utilization of microbial solid-state fermented wheat bran

ZHANG Kaige1,2, JIANG Di1,2*, WAN Xiaole3, GUAN Erqi2, LI Mengmeng2, CHEN Menghui2, TANG Haojie2, BIAN Ke2*

1(Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China) 2(College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China) 3(Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China)

Abstract Wheat bran is the dominant by-product in wheat processing and has an annual yield of more than 20 million tons. For the rich nutrition in wheat bran, it has a high application potential. However, wheat bran contains anti-nutrients, such as phytic acid, and high levels of insoluble dietary fiber, which inhibits the release of bioactive substances, and thereby limits the comprehensive utilization of wheat bran. Therefore, the modification of wheat bran has become a hotspot, during which microbial fermentation has attracted high attention due to its high efficiency, low cost and no pollution. Microbial fermentation under solid-state can improve the nutritional quality and application value of wheat bran by improving the structure of dietary fiber, reducing the level of anti-nutrients, promoting the release of bioactive substances and improving the antioxidant capacity. This article reviews the research progress of the release of bioactive substances, nutritional improvement, and the improvement of whole wheat food quality by microbial fermentation of wheat bran. In addition, the effects of fermented wheat bran on animal growth performance, intestinal health and immune regulation in feed processing were also summarized. According to the above review, we aim to provide reference for improving the comprehensive utilization rate and additional value of wheat bran.

Key words microorganism; solid-state fermentation; wheat bran; nutritional quality; resource utilization

DOI:10.13995/j.cnki.11-1802/ts.035701

引用格式:张凯歌,江迪,万小乐,等.微生物固态发酵麦麸的营养品质及其资源化利用的研究进展[J].食品与发酵工业,2024,50(4):337-346.ZHANG Kaige,JIANG Di,WAN Xiaole, et al.Research progress on nutritional quality and resource utilization of microbial solid-state fermented wheat bran[J].Food and Fermentation Industries,2024,50(4):337-346.

第一作者:硕士研究生(江迪讲师和卞科教授为共同通信作者,E-mail:lychee_jiang@163.com;kebian@163.com)

基金项目:十四五国家重点研发计划(2021YFD2100903);河南工业大学校属学科平台开放课题(GO202214);河南小麦产业技术体系构建项目(HARS-22-01-G7);河南工业大学青年骨干教师培育计划 (HAUT2020QG)

收稿日期:2023-04-01,改回日期:2023-04-29