生物胺是一类含有氨基碱性有机化合物的总称,一般由氨基酸通过脱羧反应生成,普遍存在于各种发酵食品中[1-2],过量摄入会引起腹泻、呕吐等症状[3-4]。研究表明生物胺与乙醇有协同作用,会加剧饮酒后带来的不利影响,尤其是生物胺中的组胺和苯乙胺[5]。因此,减少酒中生物胺含量对于提高成品酒品质具有重要意义[6]。一些国家已制定了葡萄酒中组胺的限定标准,其中最严格的是德国规定的不得超过2 mg/L[7],目前我国还未制定黄酒和白酒生物胺限量标准。本文总结了不同类型的黄酒和白酒中生物胺含量水平、酿酒过程中生物胺的动态生成规律,以及影响黄酒和白酒生物胺形成的因素,以期为黄酒和白酒生物胺的控制提供参考。
黄酒和白酒是以酒曲作为糖化发酵剂、以粮谷类为原料酿制的典型中国酒。部分黄酒和白酒样品中生物胺种类和含量见表1。黄酒的生物胺含量为2.56~260 mg/L,以腐胺、酪胺、尸胺和组胺为主;白酒的生物胺含量为0.220 1~13.027 mg/L。有关白酒中生物胺的研究较少,总体上黄酒中的生物胺含量高于白酒,也高于同属发酵酒的啤酒和葡萄酒(生物胺含量分别为2.37~11.568 mg/L和3.55~44.00 mg/L)[8-9]。目前我国尚无酒类生物胺限量的明确规定。有研究认为,发酵食品中总生物胺含量应低于200 mg/kg,酒精饮料中组胺含量上限为2 mg/L,酪胺含量上限为10 mg/L[10-13]。从本文收集到的研究结果来看,仅有少部分黄酒样品生物胺超过上述限量。从表1看,不同类型样品生物胺种类和含量有较大差异,例如甜型黄酒生物胺含量低于半干型和半甜型。此外,同一类型的酒中,生物胺种类和含量也有较大的差异。但目前关于不同类型酒中生物胺含量的研究较少,本文收集到的数据有限,且生物胺含量受多种因素影响,并不能准确说明造成上述差异的具体原因。
表1 不同类型黄酒和白酒中生物胺含量
Table 1 Comparison of biogenic amine contents in different types of Huangjiu and Baijiu
分类类型/发酵剂生物胺种类总生物胺质量浓度/(mg/L)黄酒半干型/麦曲酪胺、组胺、尸胺、腐胺、5-羟色胺酪胺、组胺、尸胺、腐胺、2-苯乙胺、色胺、精胺、亚精胺29.3~197[14]78.5[15]半甜型/麦曲酪胺、组胺、尸胺、腐胺、5-羟色胺78.7~260[14]甜型/麦曲组胺、1,6-己二胺3.47~4.11[16]市售未知类型/未知酪胺、组胺、尸胺、腐胺、2-苯乙胺、色胺、精胺、亚精胺20.8~76.8[17]151.02~181.48[18]2.56~37.29[19]白酒清香型/未知酪胺、组胺、尸胺、腐胺、盐酸吡哆胺、2-苯乙胺、色胺、精胺、亚精胺3.83~7.94[20]酱香型/大曲色胺、酪胺甲胺、乙胺、吡咯烷、腐胺、尸胺8.716~13.027[21]0.220 1~0.395[22]兼香型/大曲甲胺、乙胺、吡咯烷、腐胺2-苯乙胺、腐胺1.897[23]0.113[24]浓香型/大曲2-苯乙胺、腐胺、亚精胺0.403[24]米香型/小曲(本研究室)色胺、苯乙胺、腐胺、尸胺、组胺、酪胺、亚精胺、精胺14.34~33.80
传统的黄酒制作工艺主要包括浸米、蒸饭、拌曲落缸、发酵和压榨澄清。研究显示浸米过程中会积累较多的生物胺,并且浸米时间越长,发酵醪中生物胺含量越高[25]。采用免浸米工艺发酵得到的黄酒生物胺含量较对照组下降了71.95%[26]。黄酒中大部分生物胺的形成是在发酵前期和中期[9,27]。ZHANG等[28]的研究显示,绍兴地区黄酒发酵过程中前6 d生物胺含量从最初的54.52 mg/L增加到146.35 mg/L,后期缓慢减少到104.18 mg/L;腐胺在发酵前期迅速上升,在发酵中期下降幅度较大,在发酵后期又有回升的趋势,其余7种生物胺(组胺、尸胺、酪胺、苯乙胺、精胺、亚精胺、色胺)呈现先上升后缓慢下降的趋势。许禄[29]对黄酒发酵过程的研究显示发酵前期(发酵前13 d)形成的生物胺含量占成品中生物胺总量的76%,其中酪胺、组胺、腐胺在前酵期明显增加,苯乙胺和尸胺含量变化不明显。
关于白酒酿造过程中生物胺形成的动态规律研究报道很少。范文来等[22]研究发现兼香型白酒发酵过程中酒醅的生物胺总量逐渐升高,发酵第20天酒醅生物胺总量上升至16 mg/kg,到第60天生物胺总量下降至11.78 mg/kg;甲胺、乙胺、吡咯烷和腐胺含量在第10天到第20天迅速增加,第20天~第30天略有下降;尸胺含量在发酵过程中一直处于上升状态,含量最高时达到3.44 mg/kg。本实验室对米香型小曲白酒发酵过程的研究显示生物胺积累主要在发酵前期和中期,苯乙胺、腐胺和亚精胺呈现先上升后下降的趋势;组胺、尸胺和精胺波动幅度不大;酪胺呈现逐渐下降的趋势。总的来说,白酒发酵过程中生物胺形成趋势与黄酒相似。由于生物胺普遍具有较高的沸点(如腐胺158 ℃、尸胺178 ℃),因此蒸酒后生物胺含量降低。范文来等[22]的研究显示兼香型白酒蒸酒环节酒醅中的生物胺有27.71%流向酒体中,本研究室酿造的米香型小曲白酒经蒸馏后有42.6%的生物胺流向酒体中。
发酵食品中生物胺形成的一般机制是:游离氨基酸通过转运蛋白运送至微生物细胞内,在氨基酸脱羧酶的作用下脱羧形成相应的生物胺,生物胺再通过转运蛋白运送到微生物细胞外[30-31]。影响酿酒中生物胺形成的因素主要有以下几个方面。
酿酒中的氨基酸主要来源于原料蛋白质的水解[32]。高粱和糯米分别是白酒和黄酒酿造的常用原料。高粱中蛋白质含量为7.84%~9.09%,糯米中蛋白质占比为8.10%~10.30%,高粱和糯米的氨基酸组成及含量也较为相似[33-36]。黄酒发酵过程中,生物胺前体氨基酸(甲硫氨酸、精氨酸、色氨酸、苯丙氨酸、赖氨酸、组氨酸和酪氨酸)总量呈上升趋势,大约为400~1 300 mg/L[37-40]。白酒的氨基酸含量较黄酒更低[41],任宇婷等[42]的研究结果显示清香型白酒发酵过程(0~28 d)酒醅中生物胺前体氨基酸(甲硫氨酸、精氨酸、苯丙氨酸、赖氨酸、组氨酸和酪氨酸)含量从13.2 mg/kg上升到121.2 mg/kg。一些研究表明游离氨基酸与生物胺含量之间有很强的正相关性[43-45],这可能是黄酒生物胺含量较高的原因之一[46-47]。但前体氨基酸与生物胺的关系复杂,并不一定是简单的线性关系[48-49]。
氨基酸是合成生物胺的前体物质,可考虑降低发酵体系中氨基酸浓度来限制生物胺的积累。有研究通过将黄酒生产中酿酒酵母的PEP4基因(编码一种蛋白水解酶)敲除,降低了黄酒中游离氨基酸浓度,使得生物胺含量下降了25.5%[50]。但这一方式对黄酒香气成分及营养价值的影响还有待进一步的研究。
酿酒过程中微生物种类很多,已报道的部分与酿酒中生物胺形成有关的微生物见表2。Lactobacillus、Leuconostoc等乳酸菌在多数研究中被认为是黄酒中产生物胺的主要微生物。这与目前对于酿酒中生物胺主要来自乳酸菌的观点一致[51-52]。但酿酒中的一些非乳酸菌和真菌也具有产生物胺的能力,如牛天娇[53]基于相关性分析认为Saccharomyces和Rhizopus等真菌对黄酒中生物胺的生成有较大贡献;Staphylococcus、Citrobacter、Cronobacter和Saccharomyces cerevisiae经实验验证具有产生物胺的能力[54-55]。关于白酒酿造中产胺微生物的研究较少。本研究室对米香型白酒生物胺和微生物的相关性分析结果提示Aspergillus、Trichoderma与色胺、苯乙胺、腐胺、酪胺亚精胺的生成相关,Enterobacter与苯乙胺、腐胺、尸胺、亚精胺的生成有关。Saccharomyces、Enterobacter、Lactobacillus和Staphylococcus是酿酒过程中常见的兼性厌氧微生物,在整个发酵过程都较为活跃;Rhizopus、Aspergillus和Trichoderma为酿酒过程中常见的好氧真菌,一般在发酵前期较为活跃。生物胺的生成多集中在发酵前期和中期,因此上述几种微生物在生物胺合成上可能都有贡献。除微生物种类会影响生物胺合成外,微生物数量对生物胺合成也有较大影响。黄酒发酵前期和中期的细菌数量较多,在发酵后期由于酒精度、酸度等因素的影响,细菌数量呈现大幅减少的趋势[56]。
表2 酿酒过程中与生物胺形成相关的微生物
Table 2 Microorganisms associated with biogenic amines formation during winemaking
菌种相关生物胺种类来源Lactobacillus亚精胺、尸胺、腐胺、酪胺、精胺Leuconostoc腐胺、尸胺、组胺Sphingomonas腐胺、尸胺Acinetobacter腐胺、尸胺Empedobacter腐胺、尸胺Weissella酪胺Lactococcus尸胺、精胺相关性分析[53,59-60]Pediococcus组胺、亚精胺、尸胺、腐胺Saccharopolyspora组胺、尸胺、精胺Saccharomyces组胺、酪胺、色胺Rhizopus精胺、腐胺Aspergillus精胺Millerozyma亚精胺、尸胺、腐胺Apiotrichum精胺Lactobacillus coryniformis腐胺、组胺、酪胺从黄酒发酵液中筛选[61]Lactobacillus brevisEnterobacter cloacae腐胺、尸胺、组胺Lactobacillus plantarum苯乙胺、酪胺Klebsiella pneumoniae苯乙胺、腐胺、尸胺Enterococcus durans苯乙胺、酪胺从黄酒曲中筛选[55,62]Escherichia coli腐胺、尸胺、组胺Citrobacter amalonaticus腐胺、尸胺、组胺Staphylococcus haemolyticus腐胺、尸胺、组胺Enterobacter hormaechei腐胺、组胺
从微生物角度考虑,可通过筛选酿酒过程中低产或不产生物胺的菌株从而降低成品酒生物胺含量。有研究从黄酒发酵醪中筛选出不产或低产生物胺的植物乳杆菌,将其应用到黄酒浸米或发酵工艺中,最终成品黄酒生物胺含量明显降低,并且对成品酒风味影响不大[53,57-58]。目前这类研究多集中在乳酸菌方面,关于其他非乳酸菌微生物的影响研究报道较少。由于中国黄酒和白酒生产基于混菌发酵体系,对于微生物组成的精准控制有较大困难。
氨基酸脱羧酶是催化前体氨基酸形成生物胺的关键酶。基于表2信息结合uniprot、NCBI数据库检索,对酿酒过程中与生物胺形成相关的微生物中四类氨基酸脱羧酶(鸟氨酸脱羧酶、组氨酸脱羧酶、酪氨酸脱羧酶、赖氨酸脱羧酶)进行了系统进化树分析(图1)。收集到的赖氨酸脱羧酶序列均来自细菌,部分乳酸菌脱羧酶序列相似度达到90%以上,其余的序列差异较大;酪氨酸脱羧酶序列相似度较低,大多在50%左右;收集到了相对较多的真菌鸟氨酸脱羧酶序列,例如Saccharomyces cerevisiae、Rhizopus microsporus等,只有Lactobacillus helveticus、Lactobacillus johnsonii、Leuconostoc oenos、Staphylococcus epidermidis等的序列相似度在70%以上,其余真菌和细菌相似度均低于50%;收集到的组氨酸脱羧酶序列都来自细菌,相似度均大于50%。
A-赖氨酸脱羧酶;B-酪氨酸脱羧酶;C-鸟氨酸脱羧酶;D-组氨酸脱羧酶
图1 酿酒过程中微生物氨基酸脱羧酶氨基酸序列的系统进化树分析
Fig.1 Phylogenetic tree analysis of amino acid sequences of common microbial amino acid decarboxylase during winemaking
选取酿酒过程中代表性微生物(酵母菌、霉菌、乳酸菌等)的氨基酸脱羧酶序列进行理化特性预测,结果如表3所示,结果显示大部分氨基酸脱羧酶的等电点在4.63~6.08。白酒和黄酒发酵过程的pH值一般在4.5以下,不会对酶活性造成直接影响。大部分脱羧酶不稳定指数<40,提示有较好的稳定性,这与离体氨基酸脱羧酶仍具有产生物胺能力的报道吻合[63]。亚细胞定位预测结果表明大部分脱羧酶蛋白位于细胞质,推断多数氨基酸脱羧酶为胞内酶,目前已有研究证明部分氨基酸脱羧酶为胞内酶[64-65]。但少数微生物Lactobacillus sp.和Leuconostoc oenos的组氨酸脱羧酶定位预测显示其位于胞外,有待进一步实验验证。
表3 氨基酸脱羧酶理化性质预测
Table 3 Prediction of physicochemical properties of amino acid decarboxylase
氨基酸脱羧酶种类菌种氨基酸序列长度理论等电点不稳定指数亚细胞定位酪氨酸脱羧酶Lactobacillus brevis 6265.4933.24细胞质Staphylococcus6165.0237.73细胞质Aspergillus parasiticus 10665.4939.31细胞质Clostridium scatologenes 8975.4334.37细胞质Bacillus 6275.1534.84细胞质赖氨酸脱羧酶Enterobacter hormaechei 7105.3142.33细胞质Pantoea4615.9946.49细胞质Klebsiella michiganensis7155.7741.98细胞质鸟氨酸脱羧酶Saccharomyces cerevisiae4665.3329.41细胞质Lactobacillus helveticus7016.0834.56细胞质Acinetobacter sp.9296.0050.28细胞质Brettanomyces custersii 4678.8542.81线粒体Rhizopus microsporus4304.9941.95线粒体Leuconostoc oenos7455.4635.86细胞质组氨酸脱羧酶Lactobacillus sp.3114.6340.39胞外 Citrobacter pasteurii 3785.2331.14细胞质Weissella diestrammenae4416.0135.96细胞质
从氨基酸脱羧酶的角度考虑,降低黄酒和白酒中生物胺含量可采用2种方式,一是下调氨基酸脱羧酶基因的表达,如薛林林等[66]的研究显示,阿魏酸能显著抑制粪肠球菌和屎肠球菌酪氨酸脱羧酶基因的表达从而降低体系中酪胺产量;二是通过外源物小分子优先占据氨基酸脱羧酶活性位点,使得氨基酸无法与相应的脱羧酶结合。如LIN等[67]的分子对接预测结果显示胡椒、辣椒和生姜中的部分小分子与氨基酸脱羧酶的活性中心有较强的结合能力,经实验验证香辛料对离体氨基酸脱羧酶的抑制率达到16%。
研究显示,温度会显著影响发酵食品中的生物胺生成水平[68]。较高的温度使部分产胺微生物生长代谢活跃从而导致生物胺含量的增加[69-72]。杨晓满等[73]探究不同发酵温度(18 ℃~24 ℃)对蜂蜜酒生物胺形成的影响,结果显示24 ℃组总生物胺含量最高,其中酪胺含量是18 ℃组的2倍。但MAIJALA[74]研究温度及不同发酵剂对香肠中生物胺含量的影响,表明温度与生物胺合成的关系并不只是简单的正相关关系,还与发酵剂中微生物的种类有关。
大部分黄酒和白酒发酵过程中的pH值低于4.5[75-76],大多数细菌的最适pH值为6.5~7.5,酵母、霉菌的最适pH值为5.0~6.0[77]。许多研究表明氨基酸经过脱羧作用形成生物胺是微生物应对酸性环境的一种机制[51,78]。但并非pH值越低生物胺含量越高。如LANDETE等[79]研究3个地区葡萄酒(pH值为3.1~3.9)生物胺的差异显示,pH值较高者其组胺含量也更高。食品发酵是一个复杂的体系,pH值除影响酒中多种微生物的生长之外,还会影响酶分子构象的稳定性及酶活中心的结构[80-81]。
在食品发酵过程中添加某些外源物可减少生物胺积累。目前报道的外源物主要包括两类,一类是有机酸,其作用机制主要是抑制发酵体系中菌落总数和乳酸菌数,如肖付才等[82]添加柠檬酸、苹果酸和乳酸发酵使泡菜中生物胺总量分别降低了40.46%、36.13%和37.29%;另一类是植源性天然产物,其作用机制可能是其中的某些小分子优先占据氨基酸脱羧酶活性位点或抑制氨基酸脱羧酶基因的表达,如BOZKURT[83]添加绿茶提取物发酵香肠使酪胺、组胺和腐胺分别降低了26%、37%和40%。本研究室在黄酒发酵过程中添加黄芪、枸杞和桔梗提取液,组胺含量降低了14.89%~24.96%。
本文综述了不同类型黄酒和白酒中的生物胺含量、生物胺在酿酒过程中生成规律和影响因素。黄酒和白酒发酵过程中大部分生物胺的生成都集中在发酵前期和中期,总体上看黄酒的生物胺水平高于白酒,小部分黄酒样品生物胺超过了某些研究认为的安全限量值。影响生物胺生成的因素主要有前体氨基酸含量、微生物种类差异、氨基酸脱羧酶活性、发酵工艺及发酵条件等,可考虑从这几个方面着手来控制黄酒和白酒中生物胺水平。
[1] 杨姗姗, 张凤艳, 蒋万枫, 等. 发酵酒中生物胺的研究进展[J]. 中国酿造, 2022, 41(3):18-23.YANG S S, ZHANG F Y, JIANG W F, et al. Research progress of biogenic amines in fermented alcoholic drink[J]. China Brewing, 2022, 41(3):18-23.
[2] LUO Q Q, SHI R Y, GONG P F, et al. Biogenic amines in Huangjiu (Chinese rice wine): Formation, hazard, detection, and reduction[J]. LWT, 2022, 168:113952.
[3] 王光强, 俞剑燊, 胡健, 等. 食品中生物胺的研究进展[J]. 食品科学, 2016, 37(1):269-278.WANG G Q, YU J S, HU J, et al. Progress in research on biogenic amines in foods[J]. Food Science, 2016, 37(1):269-278.
[4] KHAIRY G M, AZAB H A, EL-KORASHY S A, et al. Validation of a fluorescence sensor microtiterplate for biogenic amines in meat and cheese[J]. Journal of Fluorescence, 2016, 26(5):1905-1916.
[5] SUN H L, LIU S P, MAO J Q, et al. New insights into the impacts of Huangjiu compontents on intoxication[J]. Food Chemistry, 2020, 317:126420.
[6] 刘慕妆, 任红, 孙哲, 等. 黄酒生物胺的研究进展[J]. 中国酿造, 2022, 41(3):30-37.LIU M Z, REN H, SUN Z, et al. Research progress on biogenic amines in Huangjiu[J]. China Brewing, 2022, 41(3):30-37.
[7] 何晨怡, 童琳娜, 王楠, 等. 黄酒贮藏过程中生物胺变化规律的研究[J]. 食品研究与开发, 2019, 40(21):32-38.HE C Y, TONG L N, WANG N, et al. Changes of biogenic amines in yellow rice wine during storage[J]. Food Research and Development, 2019, 40(21):32-38.
[8] 张敬, 赵树欣, 薛洁, 等. 发酵型饮料酒中生物胺含量的调查与分析[J]. 食品与发酵工业, 2012, 38(6):165-170.ZHANG J, ZHAO S X, XUE J, et al. Investigation and analysis of the content of biogenic amines in fermented alcoholic beverage[J]. Food and Fermentation Industries, 2012, 38(6):165-170.
[9] GOMEZ H A G, MARQUES M O M, BORGES C V, et al. Biogenic amines and the antioxidant capacity of juice and wine from Brazilian hybrid grapevines[J]. Plant Foods for Human Nutrition, 2020, 75(2):258-264.
[10] 宋颖, 董全. 黄酒中生物胺的形成与控制研究进展[J]. 食品工业科技, 2016, 37(8):387-391.SONG Y, DONG Q. Research progress in formation and control of the biogenic amine in Chinese rice wine[J]. Science and Technology of Food Industry, 2016, 37(8):387-391.
[11] NOUT M J R. Fermented foods and food safety[J]. Food Research International, 1994, 27(3):291-298.
[12] HALSZ A, BARTH , SIMON-SARKADI L, et al. Biogenic amines and their production by microorganisms in food[J]. Trends in Food Science &Technology, 1994, 5(2):42-49.
[13] TAILOR S A, SHULMAN K I, WALKER S E, et al. Hypertensive episode associated with phenelzine and tap beer: A reanalysis of the role of pressor amines in beer[J]. Journal of Clinical Psychopharmacology, 1994, 14(1):5-14.
[14] ZHONG J J, YE X Q, FANG Z X, et al. Determination of biogenic amines in semi-dry and semi-sweet Chinese rice wines from the Shaoxing Region[J]. Food Control, 2012, 28(1):151-156.
[15] XIA X L, ZHANG Q W, ZHANG B, et al. Insights into the biogenic amine metabolic landscape during industrial semidry Chinese rice wine fermentation[J]. Journal of Agricultural and Food Chemistry, 2016, 64(39):7385-7393.
[16] 宁维, 陈婧, 张楚妍, 等. 直接稀释-UHPLC-MS/MS同时测定黄酒中的9种生物胺[J]. 现代预防医学, 2020, 47(23):4335-4339; 4407.NING W, CHEN J, ZHANG C Y, et al. Simultaneous determination of 9 biogenic amines in rice wine by direct dilution-UHPLC-MS/MS[J]. Modern Preventive Medicine, 2020, 47(23):4335-4339;4407.
[17] QIN F Y, WU Z Y, ZHANG W X. Evaluation of six commercial koji on the formation of biogenic amines and higher alcohols in rice wine[J]. Journal of the Institute of Brewing, 2022, 128(3):124-132.
[18] 牛天娇, 郭永杰, 孙二娜, 等. 高效液相色谱法测定黄酒发酵醪液中生物胺含量[J]. 食品研究与开发, 2020, 41(5):184-188.NIU T J, GUO Y J, SUN E N, et al. Determination of biogenic amine in fermented mash of yellow rice wine by HPLC[J]. Food Research and Development, 2020, 41(5):184-188.
[19] 王可利, 叶泰, 徐斐, 等. UPLC-MS/MS法测定黄酒中8种生物胺[J]. 食品科学, 2021, 42(16):281-285.WANG K L, YE T, XU F, et al. Determination of eight biogenic amines in Huangjiu(rice wine) by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Science, 2021, 42(16):281-285.
[20] 刘慧琳, 赵源, 张瑛, 等. 白酒和黄酒中生物胺的高效液相色谱分析法[J]. 中国食品学报, 2020, 20(8):248-254.LIU H L, ZHAO Y, ZHANG Y, et al. Determination of biogenic amines in Baijiu and Chinese rice by high performance liquid chromatography[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(8):248-254.
[21] 王春利, 赵晓娟, 王英姿. 白酒中8种生物胺的高效液相色谱分析法[J]. 酿酒科技, 2017(11):113-116.WANG C L, ZHAO X J, WANG Y Z. Determination of 8 biogenic amines in Baijiu by HPLC[J]. Liquor-Making Science &Technology, 2017(11):113-116.
[22] 范文来, 徐岩, 温永柱. 白酒发酵与蒸馏过程中5种生物胺变化[J]. 食品工业科技, 2015, 36(9):144-146; 157.FAN W L, XU Y, WEN Y Z. Quantification for 5 selected biogenic amines in fermentation and distillation of Chinese liquor by HPLC[J]. Science and Technology of Food Industry, 2015, 36(9):144-146; 157.
[23] 温永柱, 范文来, 徐岩, 等. 白酒中5种生物胺的HPLC定量分析[J]. 食品工业科技, 2013, 34(7):305-308.WEN Y Z, FAN W L, XU Y, et al. Quantification for 5 selected biogenic amines in Chinese liquor by HPLC[J]. Science and Technology of Food Industry, 2013, 34(7):305-308.
[24] 陈智毅, 陈聪汉, 肖永坚, 等. 高效液相色谱法测定米酒中生物胺的含量[J]. 食品科学, 2013, 34(12):229-233.CHEN Z Y, CHEN C H, XIAO Y J, et al. Determination of biogenic amines in rice wine by high performance liquid chromatography[J]. Food Science, 2013, 34(12):229-233.
[25] 魏晓璐. 黄酒乳酸菌酸化发酵对降低生物胺的影响[D].无锡:江南大学,2017.WEI X L. Reducing biogenic amines in Chinese rice wine by acid fermentation of lactic acid bacteria[D]. Wuxi: Jiangnan University,2017.
[26] 王兰, 钱斌, 赖敏辉, 等. 免浸米的黄酒酿造新工艺研究[J]. 酿酒科技, 2022(5):56-60.WANG L, QIAN B, LAI M H, et al. New production technology of Huangjiu without rice-soaking process[J]. Liquor-Making Science &Technology, 2022(5):56-60.
[27] 牛天娇, 郭永杰, 陈历水, 等. 黄酒生产过程中生物胺的形成及变化[J]. 中国酿造, 2019, 38(10):67-71.NIU T J, GUO Y J, CHEN L S, et al. Formation and change of biogenic amine in Chinese rice wine during brewing process[J]. China Brewing, 2019, 38(10):67-71.
[28] ZHANG F J, XUE J, WANG D L, et al. Dynamic changes of the content of biogenic amines in Chinese rice wine during the brewing process[J]. Journal of the Institute of Brewing, 2013, 119(4):294-302.
[29] 许禄. 黄酒酿造过程中生物胺变化规律的研究[D]. 上海: 上海海洋大学, 2016.XU L. Study on the change law of biogenic amines during the brewing of yellow rice wine[D].Shanghai: Shanghai Ocean University, 2016.
[30] AHMAD W, MOHAMMED G I, AL-ERYANI D A, et al. Biogenic amines formation mechanism and determination strategies: Future challenges and limitations[J]. Critical Reviews in Analytical Chemistry, 2020, 50(6):485-500.
[31] GAO X L, LI C, HE R H, et al. Research advances on biogenic amines in traditional fermented foods: Emphasis on formation mechanism, detection and control methods[J]. Food Chemistry, 2023, 405:134911.
[32] 陈金斌, 芮鸿飞, 方佳宁, 等. 糯米蛋白质与黄酒氨基酸的相关性分析[J]. 酿酒科技, 2017(4):51-56.CHEN J B, RUI H F, FANG J N, et al. Analysis of the correlations between amino acid content in yellow rice wine and protein content in glutinous rice[J]. Liquor-Making Science &Technology, 2017(4):51-56.
[33] 陈淑荣. 高梁品种资源和杂交种氨基酸的组分和含量的分析[J]. 吉林农业科学, 1986, 11(3):31-34.CHEN S R. The analysis of constituent and content of amino acid in vareity resource and hybrids of sorghum[J]. Journal of Jilin Agricultural Sciences, 1986, 11(3):31-34.
[34] 吴海静, 钟继仁, 田晓林, 等. 大黄米白酒高级醇产生规律的研究[J]. 中国酿造, 2016, 35(11):99-102.WU H J, ZHONG J R, TIAN X L, et al. Regularity of higher alcohols production during fermentation of glutinous millet Baijiu[J]. China Brewing, 2016, 35(11):99-102.
[35] 毛祥, 温雪瓶, 黄丹, 等. 5种常用酿酒高粱的主要成分及淀粉特性差异分析[J]. 中国酿造, 2020, 39(3):57-62.MAO X, WEN X P, HUANG D, et al. Difference analysis on main components and starch properties in five commonly used liquor-making sorghum[J]. China Brewing, 2020, 39(3):57-62.
[36] 付平, 吴天祥, 吴力亚, 等. 香禾糯酿酒原料的理化性质及挥发性化合物分析[J]. 食品与发酵科技, 2022, 58(1):80-88.FU P, WU T X, WU L Y, et al. Analysis of physicochemical properties and volatile compounds of kam sweet rice wine raw materials[J]. Food and Fermentation Science &Technology, 2022, 58(1):80-88.
[37] 陈青柳, 刘双平, 唐雅凤, 等. 绍兴机械黄酒发酵过程中风味物质变化[J]. 食品科学, 2018, 39(14):221-228.CHEN Q L, LIU S P, TANG Y F, et al. Changes in flavor components during fermentation process of mechanically produced Shaoxing rice wine[J]. Food Science, 2018, 39(14):221-228.
[38] 芮鸿飞. 外源氨基酸对黄酒发酵的影响研究[D]. 杭州: 浙江农林大学, 2015.RUI H F. Effect of exogenous amino acids on the fermentation in Chinese rice wine[D].Hangzhou: Zhejiang A &F University, 2015.
[39] 高云超, 宫晓波, 杨春英, 等. 广东河源客家黄酒氨基酸分析[J]. 食品安全质量检测学报, 2020, 11(24):9503-9515.GAO Y C, GONG X B, YANG C Y, et al. Analysis of amino acids for Hakka rice wines from Guangdong Heyuan[J]. Journal of Food Safety &Quality, 2020, 11(24):9503-9515.
[40] 田翔, 王君杰, 秦慧彬, 等. 超高效液相色谱法测定不同黄酒中17种氨基酸的分析研究[J]. 酿酒科技, 2019(11):74-78;82.TIAN X, WANG J J, QIN H B, et al. Determination of 17 kinds of free amino acids in different Huangjiu products by UPLC[J]. Liquor-Making Science &Technology, 2019(11):74-78; 82.
[41] 张庄英, 范文来, 徐岩. 不同香型白酒中游离氨基酸比较分析[J]. 食品工业科技, 2014, 35(17):280-284; 288.ZHANG Z Y, FAN W L, XU Y. Comparative analysis of free amino acid content and composition in different aroma type Chinese liquors[J]. Science and Technology of Food Industry, 2014, 35(17):280-284; 288.
[42] 任宇婷, 乔美灵, 孙子羽, 等. 清香型白酒发酵过程中高级醇形成规律[J]. 食品与发酵工业, 2023, 49(4):38-44.REN Y T, QIAO M L, SUN Z Y, et al. Formation law of higher alcohols during the fermentation of light-flavor Baijiu[J]. Food and Fermentation Industries, 2023, 49(4):38-44.
[43] 张无疾, 夏小乐, 张斌, 等. 黄酒前酵中生物胺生成规律的研究[J]. 现代食品科技, 2015, 31(10):269-274; 300.ZHANG W J, XIA X L, ZHANG B, et al. Patterns in the formation of biogenic amines in Chinese rice wine during primary fermentation process[J]. Modern Food Science and Technology, 2015, 31(10):269-274; 300.
[44] 赵凤, 杨宏荣, 王贤文, 等. 侗族腌鱼发酵过程中生物胺与游离氨基酸的相关性[J]. 贵州农业科学, 2022, 50(2):113-119. ZHAO F, YANG H R, WANG X W, et al. Correlations between biogenic amines and free amino acids in Dong nationality traditional kipper during the fermentation process[J]. Guizhou Agricultural Sciences, 2022, 50(2):113-119.
[45] ÖZDESTAN Ö, ÜREN A. Biogenic amine content of tarhana: A traditional fermented food[J]. International Journal of Food Properties, 2013, 16(2):416-428.
[46] 栾同青. 黄酒酿造过程生物胺变化规律及其产生菌株研究[D]. 济南: 齐鲁工业大学, 2013.LUAN T Q. Changes of biogenic amines and their producing strains during yellow rice wine brewing[D].Jinan: Qilu University of Technology, 2013.
[47] 王然然. 一株弯曲乳杆菌腐胺生成途径及其调控的研究[D].无锡:江南大学,2017.WANG R R. Study on the putrescine biosynthesis pathways in a Lactobacillus curvatus strain[D]. Wuxi: Jiangnan University,2017.
[48] DABADÉ D S, JACXSENS L, MICLOTTE L, et al. Survey of multiple biogenic amines and correlation to microbiological quality and free amino acids in foods[J]. Food Control, 2021, 120:107497.
[49] 李东蕊. 豆瓣酱工业发酵过程中生物胺的生成规律及微生物多样性的研究[D].无锡:江南大学,2020.LI D R. Study on the formation regularity of biogenic amines and microbial diversity during the industrial fermentation of broad bean paste[D]. Wuxi: Jiangnan University,2020.
[50] GUO X W, GUAN X Y, WANG Y Z, et al. Reduction of biogenic amines production by eliminating the PEP4 gene in Saccharomyces cerevisiae during fermentation of Chinese rice wine[J]. Food Chemistry, 2015, 178:208-211.
[51] BARBIERI F, MONTANARI C, GARDINI F, et al. Biogenic amine production by lactic acid bacteria: A review[J]. Foods, 2019, 8(1):17.
[52] TIAN S F, ZENG W Z, FANG F, et al. The microbiome of Chinese rice wine (Huangjiu)[J]. Current Research in Food Science, 2022, 5:325-335.
[53] 牛天娇. 黄酒酿造中微生物菌群结构及对生物胺降解作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.NIU T J. The microbial flora structure and degradation of biogenic amines during rice wine brewing[D]. Harbin: Harbin Institute of Technology, 2020.
[54] CARUSO M, FIORE C, CONTURSI M, et al. Formation of biogenic amines as criteria for the selection of wine yeasts[J]. World Journal of Microbiology and Biotechnology, 2002, 18(2):159-163.
[55] 朱晓娟. 黄酒酒曲中生物胺产生菌的分离鉴定和分子检测[D]. 天津: 天津科技大学, 2018.ZHU X J. Isolation, Indentification and Molecule Detection Biogenic Amines Producing Bacteria of Rice Wine Qu[D]. Tianjin: Tianjin University of Science &Technology, 2018.
[56] 张凤杰, 薛洁, 王异静, 等. 黄酒中生物胺的形成及其影响因素[J]. 食品与发酵工业, 2013, 39(2):62-68.ZHANG F J, XUE J, WANG Y J, et al. Study on biogenic amines formation and influencing factors in Chinese rice wine[J]. Food and Fermentation Industries, 2013, 39(2):62-68.
[57] 梅璐. 低产生物胺菌株的筛选及在黄酒酿造中的应用[D]. 合肥: 合肥工业大学, 2022.MEI L. Screening of low biogenic amine producing strains and its application in yellow rice wine brewing[D].Hefei: Hefei University of Technology, 2022.
[58] LIU S P, SUN H L, LIU C X, et al. Reducing biogenic amine in seriflux and Huangjiu by recycling of seriflux inoculated with Lactobacillus plantarum JN01[J]. Food Research International, 2021, 150(Pt A):110793.
[59] 陈历水, 沈雪梅, 刘蕾, 等. 黄酒生产过程中细菌群落结构与生物胺含量变化分析[J]. 食品研究与开发, 2018, 39(11):76-83. CHEN L S, SHEN X M, LIU L, et al. Analysis of changes about bacterial community structure and biogenic amines during the production of rice wine[J]. Food Research and Development, 2018, 39(11):76-83.
[60] CHEN G M, LI W L, TONG S G, et al. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine[J]. Current Research in Food Science, 2022, 5:1433-1444.
[61] 曹利瑞, 熊智强, 朱松, 等. 黄酒酿造过程中产生物胺菌株的筛选及其特性研究[J]. 中国食品学报, 2018, 18(6):68-75.CAO L R, XIONG Z Q, ZHU S, et al. Screening of strains producing biogenic amines and its characteristics during the Chinese rice wine formation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(6):68-75.
[62] 胡翠翠, 李秋妍, 朱晓娟, 等. 黄酒酒曲中产生物胺细菌的分离鉴定[J]. 食品研究与开发, 2017, 38(19):170-174.HU C C, LI Q Y, ZHU X J, et al. Isolation and identification of biogenic amine-producing bacteria in Chinese rice wine qu[J]. Food Research and Development, 2017, 38(19):170-174.
[63] TABANELLI G, TORRIANI S, ROSSI F, et al. Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PRI60[J]. Journal of Food Science, 2012, 77(4): M231-M237.
[64] ZHU H X, XU G C, ZHANG K, et al. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding[J]. Scientific Reports, 2016, 6:27779.
[65] JESSOP M, LIESCHE C, FELIX J, et al. Supramolecular assembly of the Escherichia coli LdcI upon acid stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(2): e2014383118.
[66] 薛林林, 王远, 李彬彬, 等. 阿魏酸对粪肠球菌和屎肠球菌产酪胺机制的影响[J]. 食品科学, 2019, 40(22):33-38.XUE L L, WANG Y, LI B B, et al. Mechanistic study of the effect of ferulic acid on tyramine production by Enterococcus faecalis and Enterococcus faecium[J]. Food Science, 2019, 40(22):33-38.
[67] LIN Z, WU Z Y, ZHANG W X. Bioinformatics analysis of amino acid decarboxylases related to four major biogenic amines in pickles[J]. Food Chemistry, 2022, 393:133339.
[68] DOEUN D, DAVAATSEREN M, CHUNG M S. Biogenic amines in foods[J]. Food Science and Biotechnology, 2017, 26(6):1463-1474.
[69] JIA T T, YU Z. Effect of temperature and fermentation time on fermentation characteristics and biogenic amine formation of oat silage[J]. Fermentation, 2022, 8(8):352.
[70] 陈露, 马良, 谭红霞, 等. 不同发酵条件下萝卜泡菜生物胺变化规律研究[J]. 中国调味品, 2022, 47(11):68-74.CHEN L, MA L, TAN H X, et al. Study on the changes of biogenic amines in radish pickles under different fermentation conditions[J]. China Condiment, 2022, 47(11):68-74.
[71] LORENZO C, BORDIGA M, PÉREZ-LVAREZ E P, et al. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine[J]. Food Research International, 2017, 99:328-335.
[72] ALTUNER E M, ELJAGMANI S. Changes in the chemical composition of Turkish white cheese according to storage temperature[J]. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca-Food Science and Technology,2020,77:34.
[73] 杨晓满,杨晓婷,赵可及,等.生产工艺对蜂蜜酒中组胺和酪胺形成的影响[J].浙江农业科学,2019,60(4):584-586;590.YANG X M, YANG X T, ZHAO K J, et al. Effects of production process on the formation of histamine and tyramine in mead[J]. Journal of Zhejiang Agricultural Sciences,2019,60(4):584-586;590.
[74] MAIJALA R, NURMI E, FISCHER A. Influence of processing temperature on the formation of biogenic amines in dry sausages[J]. Meat Science, 1995, 39(1):9-22.
[75] 王印壮, 李素萍, 段定定, 等. 红谷黄酒发酵过程中理化性质和物质变化规律[J]. 食品研究与开发, 2022, 43(17):8-15.WANG Y Z, LI S P, DUAN D D, et al. Changes of physicochemical properties and substances during the red millet Huangjiu fermentation[J]. Food Research and Development, 2022, 43(17):8-15.
[76] 崔守瑜, 戴奕杰. 酱香型白酒发酵过程中微生物及其酒醅变化分析[J]. 酿酒科技, 2021(6):65-68.CUI S Y, DAI Y J. Change rules of microorganisms and fermented grains during fermentation of Jiangxiang Baijiu[J]. Liquor-Making Science &Technology, 2021(6):65-68.
[77] 北京大学制药厂生物化学专业72届工农兵学员.普通微生物学:(五)微生物的生长及其控制[J].微生物学通报,1976,3(3):33-38.Peking University Pharmaceutical Factory biochemistry major 72nd class of workers, peasants and soldiers. General microbiology: (5) The growth of microorganisms and their control[J]. Microbiology China,1976,3(3):33-38.
[78] PEREZ M, CALLES-ENRQUEZ M, NES I, et al. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments[J]. Applied Microbiology and Biotechnology, 2015, 99(8):3547-3558.
[79] LANDETE J M, FERRER S, POLO L, et al. Biogenic amines in wines from three Spanish regions[J]. Journal of Agricultural and Food Chemistry, 2005, 53(4):1119-1124.
[80] 谢超,王阳光,邓尚贵.水产品中组胺产生机制及影响因素研究概述[J].肉类研究,2009,23(4):74-78.XIE C, WANG Y G, DENG S G. Summarization of histamine of aquatic product bringing mechanism and effect factors research[J]. Meat Research,2009,23(4):74-78.
[81] 何传波, 魏好程, 熊何健, 等. 枇杷叶多糖酶法提取工艺优化及其离子交换层析纯化[J]. 食品科学, 2016, 37(8):45-50.HE C B, WEI H C, XIONG H J, et al. Optimization of enzymatic extraction of polysaccharides from loquat leaves and purification by ion exchange chromatography[J]. Food Science, 2016, 37(8):45-50.
[82] 肖付才, 刘凯, 陈凤仪, 等. 有机酸对泡菜亚硝酸盐和生物胺的抑制作用[J]. 中国调味品, 2020, 45(10):80-84.XIAO F C, LIU K, CHEN F Y, et al. Inhibition of nitrite and biogenic amines in pickle by organic acids[J]. China Condiment, 2020, 45(10):80-84.
[83] BOZKURT H. Utilization of natural antioxidants: Green tea extract and Thymbra spicata oil in Turkish dry-fermented sausage[J]. Meat Science, 2006, 73(3):442-450.