顶空固相微萃取-气相色谱-质谱联用技术结合电子舌分析不同残糖含量蓝莓酒体风味

王利萍1,丁昱文2,吴颜欣2,邱树毅1,戴怡凤1,3*,周鸿翔1

1(贵州大学 酿酒与食品工程学院,贵州省发酵工程与生物制药重点实验室,贵州 贵阳,550025)2(贵州茅台(集团)生态农业产业发展有限公司,贵州 丹寨,557500)3(北京食品营养与人类健康高精尖创新中心,北京工商大学,北京,100048)

摘 要 蓝莓酒的风味会影响其质量与感官评价,因此研究蓝莓酒中的风味物质十分必要。该文利用顶空固相微萃取-气相色谱-质谱联用技术结合电子舌研究2种半甜、2种半干蓝莓酒风味,发现4种蓝莓酒的苦味、涩味均表现出随残糖含量下降而逐渐升高的趋势,酸味、后苦味、后涩味无显著性差异。4种蓝莓酒中,半甜型蓝莓酒中酯类化合物含量高于半干型蓝莓酒,而半干型蓝莓酒中醇类化合物高于半甜型蓝莓酒。乙酸乙酯、萜品油烯、月桂酸乙酯等挥发性风味化合物在半甜型蓝莓酒中含量较高,肉桂酸乙酯、苯甲酸乙酯、苯乙酸乙酯等化合物在半干型蓝莓酒中含量较高, 正辛醇、乙酸与发酵程度无显著性关联。此外,利用偏最小二乘法判别分析,分析发现4种蓝莓酒中13种潜在差异标志物,并结合香气活度值研究发现meso-2,3-丁二醇与芳樟醇分别仅为半甜型与半干型的整体风味做出贡献,而大马酮、苯乙醇、异戊醇、乙酸的香气活度值>500,为不同残糖含量蓝莓酒的整体风味做出了重要贡献。

关键词 发酵蓝莓酒;顶空固相微萃取-气相色谱-质谱联用技术;电子舌;偏最小二乘法判别分析;香气活度值

新鲜蓝莓收获后易受微生物腐烂、机械损伤以及水分和营养成分的损失,保存时间较短、保鲜难度与保鲜成本较高[1-2]。因此,可以将产量高的蓝莓加工为果酒或果汁等深加工产品[3]。其中占比最大[3]的蓝莓酒不仅酒精度低,营养价值高,更利于人体吸收,被称为“液体黄金”[4-5]

蓝莓酒香气不仅对于优选水果原料以及市场销售而言至关重要[6],还是决定蓝莓酒质量最重要的感官特征。刘国华等[7]比较8种不同蓝莓发酵酒香气化合物差异,除灿烂蓝莓酒之外的7种蓝莓酒中均以酯类化合物为主,香气特征是果香和花香。灿烂蓝莓酒中则以其他香气化合物为主,香气特征主要是植物香。WANG等[8]通过偏最小二乘法判别分析(partial least-squares discrimination analysis,PLS-DA)区分新鲜蓝莓与采后减重20%、30%、40%的蓝莓所酿的蓝莓酒,并发现蓝莓采后脱水以及脱水程度将影响蓝莓酒的挥发性风味化合物。总体而言,虽然在不同蓝莓酒中起作用的香气化合物存在差异,但酯类、醇类、萜烯类、挥发性脂肪酸、醇类是其中主要的化合物[9-10]

在风味分析技术方面,具有自动化、无需溶剂、灵敏度与重复性较高以及所需样品量小特点的顶空固相微萃取-气相色谱-质谱联用技术(headspace solid phase microextraction gas chromatography-mass spectrometry, HS-SPME-GC-MS)被广泛运用于分析蓝莓酒中的挥发性风味化合物[7, 11-15]。蓝莓酒感官品评方面可以借助电子舌等电子感官对比样品中滋味化合物对不同传感器的响应差异。例如,SUN等[16]利用电子舌对比不同浓度甘露糖蛋白对蓝莓酒滋味的影响,发现甘露糖蛋白有助于蓝莓酒圆润口感,降低了负面口感。

目前,对于不同残糖含量果酒的风味分析十分有限。但残糖含量是影响消费者对于果酒感知的直接因素,因此研究不同发酵程度蓝莓酒的挥发性风味化合物以及对电子舌传感器响应强度的差异不仅有助于对于提升蓝莓酒的品质,还能更好地匹配消费者的喜好。本研究以2种半甜、2种半干蓝莓酒作为研究对象,通过电子舌比较4种蓝莓酒滋味对不同传感器响应强度的差异,并使用HS-SPME-GC-MS分析不同残糖含量蓝莓酒的挥发性风味化合物,通过聚类分析、PLS-DA、香气活度值(odour activity values,OAV)探索不同残糖含量蓝莓酒中挥发性风味化合物分布、潜在标志性风味化合物以及风味特征。

1 材料与方法

1.1 样品与仪器

蓝莓酒:遇见蓝雪半甜型(LT),酒精度为12%vol、遇见蓝雪半干型(LG),酒精度为12%vol、遇见丹红半甜型(DT),酒精度为13%vol、遇见丹红半干型(DG),酒精度为13%vol。4种蓝莓酒均来自贵州茅台(生态)农业产业发展有限责任公司;NaCl,国药集团化学试剂有限公司;SZ-93A型纯水蒸馏器,上海亚荣有限责任公司;棕榈酸乙酯、正辛酸、正癸酸、丁二酸二乙酯、苯乙醇、乙酸、苯甲醛、己酸,罗恩试剂;月桂烯、α-松油醇、异丁醇、大马酮、橙花醇、乙酸乙酯、苯乙烯、乳酸乙酯、异戊醇、水杨酸甲酯,麦克林试剂;苯乙酸乙酯,辛酸乙酯、辛醇、R-2,3-丁二醇、癸酸乙酯、苯甲酸乙酯、肉豆蔻酸乙酯、己酸乙酯、乙酸异戊酯,阿拉丁试剂;芳樟醇2,4-二甲基苯乙烯,Innochem试剂;α-紫罗酮、乙酸苯乙酯、月桂酸乙酯,源叶生物;4-甲基-2-戊醇,TCI试剂;meso-2,3-丁二醇,Sigma试剂;C7~C4正构烷烃标准品,美国o2si公司。

SA-402B型电子舌,日本Insent公司;7890A-5975C气相色谱-质谱联用仪,美国Agilent科技有限公司;DVB/CAR/PDMS(50/30 μm)三相萃取头,美国Supelco公司。

1.2 电子舌分析方法

通过两步清洗法测定4种蓝莓酒对不同传感器的响应强度。

1.3 HP-SPME-GC-MS分析方法

将萃取头插入GC-MS进样口,老化1 h。取10 mL蓝莓酒样品、3 g NaCl以及终质量浓度为0.401 3 mg/L 4-甲基-2-戊醇内标溶液于20 mL顶空瓶中,60 ℃孵化20 min后萃取头萃取40 min,萃取头于进样口解析5 min进行仪器分析。

色谱柱:DB-WAX毛细管柱(30 m×0.32 mm×0.25 μm),不分流进样。进样口温度250 ℃,升温程序:40 ℃ 保持 3 min,然后 2 ℃/min 升温至 120 ℃ 保持 1 min,后 8 ℃/min 升温至 250 ℃ 保持 2 min,氦气流速1 mL/min。电子轰击(EI)离子源;离子源温度 230 ℃;电子能量70 eV;质量扫描范围 35~550 amu。

定性定量方法:以NIST谱库对比特征离子、标准品比对以及保留指数对照对蓝莓酒中的挥发性风味化合物进行定性分析。通过内标标准曲线定量。

1.4 数据分析

标准偏差与显著性差异分析由SPSS 25.0 统计软件分析确定。各类化合物百分含量柱状图、PCA图由Origin 2021 绘制。PLS-DA由SIMCA 13.0软件进行分析。聚类分析热图、OAV气泡图由R语言绘制。

2 结果与分析

2.1 四种蓝莓酒电子舌分析

由图1可知,丹红半甜与蓝雪半干蓝莓酒主要与鲜味相关性较高,丹红半干与蓝雪半甜蓝莓酒主要与咸味相关性较高。

图1 四种蓝莓酒电子舌分析PCA图
Fig.1 PCA plots of electronic tongue analysis of four blueberry wines

由图2可知,4种蓝莓酒的酸味、后苦味、后涩味响应值无显著性差异(P<0.05)。丹红半甜与蓝雪半干蓝莓酒的鲜味与咸味无显著性差异(P<0.05),丹红半干与蓝雪半甜蓝莓酒的鲜味与咸味无显著性差异(P<0.05)。除此之外,4种蓝莓酒对苦味与涩味传感器的响应值均呈现相同的变化趋势,即2种半干型蓝莓酒的苦味与涩味均强于对应的2种半甜型蓝莓酒。

图2 四种蓝莓酒电子舌分析对传感器响应值差异
Fig.2 Differences in sensor response values for electronic tongue analysis of four blueberry wines

2.2 四种蓝莓酒中挥发性风味化合物分析

根据图3可知4种蓝莓酒中所检出的挥发性风味化合物中酯类化合物与醇类化合物含量占主要优势,其次是酸类化合物。这与文献中蓝莓酒挥发性风味化合物中酯类、醇类化合物为主的结论相一致[12-13,17-18]

图3 各类风味化合物峰面积含量
Fig.3 Percentage of peak area of various flavor compounds

在4种蓝莓酒中,半甜型蓝莓酒的酯类化合物高于半干型蓝莓酒。而醇类化合物在不同残糖含量蓝莓酒中的变化趋势则与之相反,即半干型蓝莓酒中醇类化合物高于半甜型蓝莓酒。除此之外,发酵程度相同的2种蓝莓酒中酯类化合物与醇类化合物的含量无显著性差异(P<0.05)。

由表1可知,乳酸乙酯、癸酸乙酯在2种半干型蓝莓酒中含量无显著性差异(P<0.05)。丁二酸二乙酯在2种半甜型蓝莓酒中含量无显著性差异(P<0.05)。己酸乙酯、苯甲酸乙酯在DG、DT蓝莓酒中无显著差异(P<0.05),辛酸乙酯在DG、DT以及LG、LT蓝莓酒中无显著性差异(P<0.05)。上述结果表明,乳酸乙酯、癸酸乙酯、丁二酸二乙酯与不同蓝莓酒的发酵条件无关,在相同残糖含量蓝莓酒中的分布无显著性差异(P<0.05)。此外,4种蓝莓酒中正辛醇的含量以及异丁醇、R-2,3-丁二醇、meso-2,3-丁二醇在2种半干型蓝莓酒、2种半甜型蓝莓酒中的含量无显著性差异(P<0.05),说明正辛醇不随发酵程度变化,在4种蓝莓酒中的含量保持相对稳定,后3种醇类化合物在蓝莓酒中的分布可能与其他发酵条件有关。

表1 四种蓝莓酒中挥发性风味化合物含量
Table 1 Volatile flavor compounds in four blueberry wines

类别化合物风味描述感官阈值/(mg/L)感官阈值酒精度含量/(mg/L)DGDTLGLT酯类乙酸乙酯菠萝[19]12[19]10%vol[19]280.156 7±16.442 4b339.684 4±12.554a235.601 9±18.105c266.621 1±7.699 2b乙酸异戊酯香蕉味、甜味[19]0.16[19]10%vol[19]0.190 2±0.005b0.221 9±0.001 8a0.193 7±0.030 2ab0.218 9±0.003ab正己酸乙酯果香、茴香[20]0.014[21]11%vol[21]0.609 1±0.050 9c0.532 6±0.040 2c0.758 5±0.067b0.944 7±0.041 4a乳酸乙酯乳酸、覆盆子[20]150[19]10%vol[19]18.321 1±0.051 1a14.713 5±1.085 4b17.466 7±1.086 2a14.017±0.427 3b辛酸乙酯梨果香、花香[19]0.58[19]10%vol[19]2.098 9±0.198 5b1.811 7±0.175 5b2.594 9±0.148 6a2.728 7±0.083 2a癸酸乙酯果味、葡萄[21]0.2[21]11%vol[21]0.245 9±0.012 8b0.304 3±0.015 6a0.217 9±0.006 1b0.342 7±0.044 1a苯甲酸乙酯甜味、果味[22]0.575[21]11%vol[21]0.002 4±0.000 2b0.002 1±0.000 2b0.003 7±0.000 3a0.002 1±0.000 1b丁二酸二乙酯果味[23]1200[19]10%vol[19]21.806 1±0.689 1b17.360 6±0.916 8c24.583 6±1.661 2a18.725 6±1.343 1c苯乙酸乙酯玫瑰香、蜂蜜[23]0.65[22]11%vol[22]0.013 3±0.000 6ab0.012 2±0.000 6b0.014 8±0.000 5a0.012 9±0.001 5b乙酸苯乙酯玫瑰香、蜂蜜[24]1.8[19]10%vol[19]0.020 2±0.002 1ab0.017 2±0.000 8bc0.015 6±0.001 4c0.022 1±0.003 2a月桂酸乙酯叶片[25]5.9[26]水中[26]0.000 5±0.000 05c0.001±0.000 05b0.000 9±0.000 02b0.001 7±0.000 14a棕榈酸乙酯苹果、甜味[27]2[28]水中[28]0.000 8±0.000 2c0.001 1±0.000 1b0.000 4±0.000 1d0.001 4±0.000 2a肉桂酸乙酯肉桂、甜果味[29]0.001 1[21]11%vol[21]0.042 3±0.002 4a0.031 2±0.000 8b0.030 6±0.002 3b0.027 7±0.00 4b水杨酸甲酯薄荷[25]0.04[26]水中[26]0.006 5±0.000 6a0.005 6±0.000 7a0.006 3±0.000 2a0.004 3±0.000 9b醇类异丁醇溶剂、酒精[29]0.4[22]11%vol[22]40.393 2±3.789 2a32.493±5.965 3b43.334 2±3.240 2a31.653 3±1.331 1b异戊醇奶酪[30]0.28[22]11%vol[22]357.607 2±18.564 8a340.568 3±36.158b322.604±11.058 2ab331.285 5±2.964 8bR-2,3-丁二醇果味[19]150[19]10%vol[19]592.443±46.069 4b750.319 5±50.866 4a627.813 1±19.314 4b723.642 3±61.307 4ameso-2,3丁二醇果味[19]150[19]10%vol[19]139.550 2±9.037 8b186.061 6±10.288 9a146.236 1±4.558 9b188.411 7±3.688 2a苯乙醇花香[29]0.14[22]10%vol[22]212.683 4±4.920 2b188.642 1±9.946 9c250.326 8±9.846 7a239.743 4±17.321 9a正辛醇茉莉花、柠檬[19]0.8[19]10%vol[19]0.004 1±0.000 1a0.003 4±0.000 7a0.004±0.000 1a0.003 7±0.000 2a

续表1

类别化合物风味描述感官阈值/(mg/L)感官阈值酒精度含量/(mg/L)DGDTLGLT萜烯类芳樟醇花香、柑橘[24]0.015[19]10%vol[19]0.016 4±0.000 2a0.014 8±0.001b0.016 2±0.000 8a0.014 8±0.000 5bα-松油醇甜香[31]0.25[21]10%vol[21]0.191 4±0.007 3a0.171 4±0.003 2b0.144 3±0.003 9c0.178 7±0.001 4b萜品油烯茴香、薄荷[30]0.2[26]水中[26]0.035 5±0.000 4b0.037 5±0.000 5a0.032 7±0.001 2c0.034 4±0.000 9b醛酮类苯甲醛杏仁[32]5[28]14%vol[28]0.051 3±0.007 6b0.043 9±0.003 4b0.064 4±0.002 8a0.053 7±0.007 6abα-紫罗酮紫罗兰、花香[33]0.0123[33]12%vol[33]0.218 2±0.025b0.150 1±0.009 5c0.290 1±0.012 2a0.265 2±0.043 4ab大马酮玫瑰、柑橘[31]0.000 05[34]10%vol[34]0.327 7±0.003 5bc0.308 2±0.021 1c0.578±0.084 6a0.483 1±0.061 5ab酸类乙酸醋味[29]2[22]11%vol[22]1 668.095 3±136.336 8a2 270.221 7±584.419 2a1 822.563 2±66.643 9a2 562.569 1±740.909a己酸奶酪[24]3[19]10%vol[19]2.343 9±0.248 3b2.099 2±0.17b2.146 6±0.103 9b2.820 1±0.321 4a辛酸脂肪、奶酪[19]10[19]10%vol[19]20.819 8±1.069 7c15.891±1.314d27.224±1.0431b30.977 5±0.610 7a癸酸脂肪[35]6[19]10%vol[19]5.195 9±0.370 3c4.564±0.132 2d8.409 2±0.368a7.713 1±0.312 6b烯烃类苯乙烯香脂、甜味[36]0.125[14]水中[14]0.024 2±0.002 6c0.014 2±0.000 8d0.032 4±0.003 3a0.03±0.001 9b2,4-二甲基苯乙烯柑橘、松树[37]0.085[37]水中[37]0.001 9±0.000 3a0.001 6±0.000 1b0.001 6±0.000 1b0.002±0.000 1a

注:不同的字母表示该化合物在不同酒样之间存在显著性差异(P<0.05)。

除酯类化合物与醇类化合物之外,蓝莓酒中也存在酸类、萜烯类等化合物。乙酸在4种蓝莓酒中的分布无显著性差异(P<0.05),说明乙酸的含量与发酵程度无显著相关(P<0.05)。芳樟醇在2种半干型、2种半甜型蓝莓酒中无显著性差异(P<0.05),α-松油醇在2种半甜型蓝莓酒中无显著性差异(P<0.05),说明芳樟醇与α-松油醇在蓝莓酒中的含量与不同残糖含量无显著性相关(P<0.05)。

如图4所示,蓝莓酒中化合物的分布与蓝莓酒的残糖含量存在一定的关系。例如乙酸乙酯、萜品油烯、月桂酸乙酯等化合物在2种半甜型蓝莓酒中含量较高,而肉桂酸乙酯、水杨酸甲酯、乳酸乙酯、芳樟醇等化合物在半干型蓝莓酒中含量较高。

图4 不同残糖含量蓝莓酒中挥发性风味化合物的分布
Fig.4 Distribution of volatile flavor compounds in blueberry wine with different residual sugar contents

如图5所示,在该PLS-DA模型中, R2X=0.853、R2Y=0.992,Q2 =0.96。经过200 次置换检验发现该模型预测结果稳定性较好,未出现过拟合现象(图6)。通过PLS-DA筛选出VIP>1的α-松油醇、2,4-二甲基苯乙烯、肉桂酸乙酯、乙酸苯乙酯等13 种潜在标志物(图7)。

图5 四种蓝莓酒挥发性风味化合物PLS-DA结果
Fig.5 PLS-DA result of volatile flavor compounds of four blueberry wines

图6 四种蓝莓酒挥发性风味化合物PLS-DA置换检验
Fig.6 PLS-DA replacement test for volatile flavor compounds in four blueberry wines

图7 四种蓝莓酒挥发性风味化合物VIP值
Fig.7 VIP values of volatile flavor compounds for four blueberry wines

果酒的香气是所有芳香化合物协调作用的结果,但挥发性风味化合物的存在与否或浓度高低均不可用于判断该化合物对于整体香气是否做出了贡献[14]。可以通过计算OAV以评估该化合物对蓝莓、蓝莓酒以及其他果酒整体风味的贡献[14,38-39]。如表2所示,乙酸乙酯、异丁醇、α-紫罗酮、乙酸等17 种化合物对蓝莓酒的整体风味做出贡献。其中,大马酮、苯乙醇、异戊醇、乙酸、异丁醇、己酸乙酯、肉桂酸乙酯、乙酸乙酯、α-紫罗酮对蓝莓酒的花香、菠萝、香蕉等果味做出突出贡献。另外,meso-2,3-丁二醇仅为2种半甜型蓝莓酒的整体风味贡献了果香味,芳樟醇仅为2种半干型蓝莓酒的整体风味贡献了柑橘香味。

表2 四种蓝莓酒中挥发性风味化合物OAV
Table 2 Volatile flavor compounds OAV in four blueberry wines

化合物蓝莓酒种类DGDTLGLT乙酸乙酯23.3528.3119.6322.22乙酸异戊酯1.191.391.211.37正己酸乙酯43.5138.4754.1867.48乳酸乙酯<1<1<1<1辛酸乙酯3.623.124.474.70癸酸乙酯1.231.521.091.71苯甲酸乙酯<1<1<1<1丁二酸二乙酯<1<1<1<1苯乙酸乙酯<1<1<1<1乙酸苯乙酯<1<1<1<1月桂酸乙酯<1<1<1<1棕榈酸乙酯<1<1<1<1肉桂酸乙酯38.4728.3727.8225.22水杨酸甲酯<1<1<1<1异丁醇100.9881.23108.3479.13异戊醇1 277.171 216.321 366.441 183.16R-2,3-丁二醇3.955.004.194.82meso-2,3-丁二醇<11.24<11.26苯乙醇1 519.171 347.441 788.051 712.45正辛醇<1<1<1<1芳樟醇1.09<11.08<1α-松油醇<1<1<1<1萜品油烯<1<1<1<1苯甲醛<1<1<1<1α-紫罗酮17.74 12.21 23.58 21.56 大马酮7 753.05 6 163.75 11 560.49 9 662.02 乙酸834.05 1 135.11 911.28 1 281.28 己酸<1<1<1<1辛酸2.081.592.723.10癸酸<1<11.401.29苯乙烯<1<1<1<12,4-二甲基苯乙烯<1<1<1<1

3 结论与讨论

根据电子舌分析结果发现,4种蓝莓酒酸味、后涩味、后苦味无显著性差异(P<0.05),而苦味、涩味与蓝莓酒的残糖含量呈负相关,即半干型蓝莓酒的苦味与涩味传感器响应强于半甜型蓝莓酒。通过对蓝莓酒中的挥发性风味化合物进行分析发现,4种蓝莓酒中酯类化合物与醇类化合物占主要优势,乙酸乙酯、萜品油烯、月桂酸乙酯等化合物在半甜型蓝莓酒中含量更高,肉桂酸乙酯、苯甲酸乙酯、苯乙酸乙酯等化合物在半干型蓝莓酒中含量更高。根据PLS-DA筛选出VIP值>1 的α-松油醇、2,4-二甲基苯乙烯、肉桂酸乙酯等13 种潜在标志性化合物。结合32种化合物的OAV分析发现大马酮、苯乙醇、异戊醇、乙酸、己酸乙酯等17种挥发性风味化合物为蓝莓酒的整体香气贡献了紫罗兰等花香、香蕉等果香以及其他风味。此外,meso-2,3-丁二醇为半甜型蓝莓酒的整体风味贡献了果香味,芳樟醇则为2种半干型蓝莓酒的整体风味贡献了柑橘香味。

参考文献

[1] CAO X H, ZHANG F F, ZHAO D Y, et al.Effects of freezing conditions on quality changes in blueberries[J].Journal of the Science of Food and Agriculture, 2018, 98(12):4673-4679.

[2] 赵剑雷. 发酵蓝莓酒中不同酵母菌间相互作用机制初步研究[D].贵阳:贵州大学, 2022.
ZHAO J L.Preliminary study on the interaction mechanism between different yeasts in fermented blueberry wine[D].Guiyang:Guizhou University, 2022.

[3] YU S Y.Research progress on development and utilization of blueberry wine and its pomace[J].E3S Web of Conferences, 2020, 145:01017.

[4] 方雨洁. 贵州麻江地区蓝莓酒酿造工艺优化及品质分析[D].扬州:扬州大学, 2022.
FANG Y J.Optimization of brewing process and quality analysis of blueberry wine in majiang area of Guizhou[D].Yangzhou:Yangzhou University, 2022.

[5] 刘思远. 高功率脉冲微波催陈对蓝莓酒色泽及风味的影响研究[D].上海:上海海洋大学, 2022.
LIU S Y.The study of the color and flavor in blueberry wine promoted by high power pulsed microwave[D].Shanghai:Shanghai Ocean University, 2022.

[6] LIU F T, LI S J, GAO J H, et al.Changes of terpenoids and other volatiles during alcoholic fermentation of blueberry wines made from two southern highbush cultivars[J].LWT-Food Science and Technology, 2019, 109:233-240.

[7] 刘国华, 姚依林, 黄明泉, 等.不同蓝莓品种发酵酒香气物质的检测分析研究[J].酿酒科技, 2022(8):118-124;130.
LIU G H, YAO Y L, HUANG M Q, et al.Detection and analysis of aroma components in fermented wines made from 8 blueberry varieties[J].Liquor-Making Science &Technology, 2022(8):118-124;130.

[8] WANG Y, ZHANG Q, CUI M Y, et al.Aroma enhancement of blueberry wine by postharvest partial dehydration of blueberries[J].Food Chemistry, 2023, 426:136593.

[9] 刘炎赫, 王超, 王浩, 等.HS-GCMS气质方法检测蓝莓酒中香气成分研究[J].农技服务, 2016, 33(5):5-7.
LIU Y H, WANG C, WANG H, et al.Study on detection of aroma components in blueberry wine by HS-GCMS[J].Agricultural Technology Service, 2016, 33(5):5-7.

[10] MENDES-FERREIRA A, COELHO E, BARBOSA C, et al.Production of blueberry wine and volatile characterization of young and bottle-aging beverages[J].Food Science &Nutrition, 2019, 7(2):617-627.

[11] 胡品. 不同制备工艺对蓝莓酒品质及抗氧化能力的影响研究[D].广州:仲恺农业工程学院, 2018.
HU P.Study on the effects of different preparation techniques on the quality and antioxidant capacity of blueberry wine[D].Guangzhou:Zhongkai University of Agriculture and Engineering, 2018.

[12] 张杰, 赵洋溢, 林静, 等.蓝莓果酒主发酵工艺参数优化及其品质分析[J].江西农业大学学报, 2022, 44(3):690-705.
ZHANG J, ZHAO Y Y, LIN J, et al.Optimization of main fermentation process parameters and quality analysis of blueberry wine[J].Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(3):690-705.

[13] 吴继军, 肖更生, 徐玉娟, 等.河源南高丛蓝莓酒精发酵前后挥发性成分变化[J].食品安全质量检测学报, 2014, 5(10):3117-3123.
WU J J, XIAO G S, XU Y J, et al.Aroma compounds of southern high-bush blueberry in Heyuan area before and after alcohol fermentation[J].Journal of Food Safety &Quality, 2014, 5(10):3117-3123.

[14] HUANG M Z, LIU X Z, LI X, et al.Effect of Hanseniaspora uvarum- Saccharomyces cerevisiae mixed fermentation on aroma characteristics of Rosa roxburghii Tratt, blueberry, and plum wines[J].Molecules, 2022, 27(22):8097.

[15] 盖禹含, 辛秀兰, 杨国伟, 等.不同酵母发酵的蓝莓酒香气成分GC-MS分析[J].食品科学, 2010, 31(4):171-174.
GAI Y H, XIN X L, YANG G W, et al.GC-MS analysis of aromatic composition of blueberry wine fermented with different species of yeast strains[J].Food Science, 2010, 31(4):171-174.

[16] SUN X Y, YAN Z C, ZHU T, et al.Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein[J].Food Chemistry, 2019, 279:63-69.

[17] 傅红雪. 添加氮源和维生素对发酵蓝莓酒品质的影响[D].合肥:安徽农业大学, 2015.
FU H X.Influence of adding nitrogen source and vitamins on quality of fermented blueberry wine[D].Hefei:Anhui Agricultural University, 2015.

[18] 王文博. 辅色剂对蓝莓酒陈酿期间颜色和花色苷辅色作用的影响[D].合肥:安徽农业大学, 2019.
WANG W B.Effects of copigments on color and anthocyanin copigmentation of blueberry wines during aging[D].Hefei:Anhui Agricultural University, 2019.

[19] PEINADO R A, MAURICIO J C, MORENO J.Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var.capensis[J].Food Chemistry, 2006, 94(2):232-239.

[20] JIANG B, ZHANG Z W.Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the Loess Plateau Region of China[J].Molecules, 2010, 15(12):9184-9196.

[21] FERREIRA V, LPEZ R, CACHO J F.Quantitative determination of the odorants of young red wines from different grape varieties[J].Journal of the Science of Food and Agriculture, 2000, 80(11):1659-1667.

[22] PINO J A, QUERIS O.Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques[J].Food Chemistry, 2010, 122(4):1241-1246.

[23] NIU Y W, ZHU Q, XIAO Z B.Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value[J].Food Research International, 2020, 131:108986.

[24] VILANOVA M, SIEBERT T E, VARELA C, et al.Effect of ammonium nitrogen supplementation of grape juice on wine volatiles and non-volatiles composition of the aromatic grape variety Albario[J].Food Chemistry, 2012, 133(1):124-131.

[25] NIU Y W, WANG P P, XIAO Z B, et al.Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis:An insight at the molecular level[J].Food Chemistry, 2019, 275:143-153.

[26] PINO J A, MESA J.Contribution of volatile compounds to mango (Mangifera indica L.) aroma[J].Flavour and Fragrance Journal, 2006, 21(2):207-213.

[27] ZHAO L L, RUAN S L, YANG X K, et al.Characterization of volatile aroma compounds in litchi (Heiye) wine and distilled spirit[J].Food Science &Nutrition, 2021, 9(11):5914-5927.

[28] 范文来, 徐岩.酒类风味化学[M].北京:中国轻工业出版社, 2014.
FAN W L, XU Y.Wine flavor chemistry [M].Beijing:China Light Industry Press,2014

[29] LAN Y B, GUO J X, QIAN X, et al.Characterization of key odor-active compounds in sweet Petit Manseng (Vitis vinifera L.) wine by gas chromatography-olfactometry, aroma reconstitution, and omission tests[J].Journal of Food Science, 2021, 86(4):1258-1272.

[30] JIANG B, XI Z M, LUO M J, et al.Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China[J].Food Research International, 2013, 51(2):482-489.

[31] MASLOV L, TOMAZ I, MIHALJEVI ŽULJ M, et al.Aroma characterization of predicate wines from Croatia[J].European Food Research and Technology, 2017, 243(2):263-274.

[32] GAO J S, XI Z M, ZHANG J F, et al.Influence of fermentation method on phenolics, antioxidant capacity, and volatiles in blackberry wines[J].Analytical Letters, 2012, 45(17):2603-2622.

[33] GOTTMANN J, VESTNER J, FISCHER U.Sensory relevance of seven aroma compounds involved in unintended but potentially fraudulent aromatization of wine due to aroma carryover[J].Food Chemistry, 2023, 402:134160.

[34] GUTH H.Quantitation and sensory studies of character impact odorants of different white wine varieties[J].Journal of Agricultural and Food Chemistry, 1997, 45(8):3027-3032.

[35] DELGADO J A, SNCHEZ-PALOMO E, OSORIO ALISES M, et al.Chemical and sensory aroma typicity of La Mancha Petit Verdot wines[J].LWT, 2022, 162:113418.

[36] FENAROLI G.Fenaroli’s Handbook of Flavor Ingredients[M].Boca Raton:CRC Press, 2019.

[37] MASANETZ C, GROSCH W.Hay-like off-flavour of dry parsley[J].Zeitschrift für Lebensmitteluntersuchung Und -Forschung A, 1998, 206(2):114-120.

[38] ZHONG W, LIU S Q, YANG H, et al.Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans[J].LWT, 2021, 145:111261.

[39] 徐青柳. 非酿酒酵母菌株筛选及其与酿酒酵母混合发酵对蓝莓酒品质的影响[D].雅安:四川农业大学, 2021.
XU Q L.Screening of non-Saccharomyces cerevisiae strains and the effect of mixed fermentation with Saccharomyces cerevisiae on blueberry wine quality[D].Ya’an:Sichuan Agricultural University, 2021.

Flavor analysis of blueberry wines with different residual sugar contents by headspace solid phase microextraction gas chromatography-mass spectrometry combined with electronic tongue

WANG Liping1, DING Yuwen2, WU Yanxin2, QIU Shuyi1, DAI Yifeng1,3*, ZHOU Hongxiang1

1(Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China)2(Kweichow Moutai (Group) Ecological Agriculture Industry Development Co.Ltd., Danzhai 557500, China)3(Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China)

ABSTRACT The flavor of blueberry wine affects its quality and sensory evaluation, so it is necessary to study the flavor compounds in blueberry wine.In this paper, the flavor of two semi-sweet blueberry wines and two semi-dry blueberry wines were investigated via headspace solid phase microextraction gas chromatography-mass spectrometry and electronic tongue.It was found that the bitterness and astringency of the four blueberry wines showed a gradual increase with the decrease of residual sugar content, and there was no significant difference in the sourness, post-bitterness, and post-astringency.Among the four blueberry wines, the semi-sweet blueberry wine contained higher levels of esters than the semi-dry blueberry wine, while the semi-dry blueberry wine contained higher levels of alcohol than the semi-sweet blueberry wine.Volatile flavor compounds, such as ethyl acetate, terpinolene, and ethyl dodecanoate were higher in semi-sweet blueberry wines, whereas compounds such as ethyl cinnamate, ethyl benzoate, and ethyl phenylacetate were higher in semi-dry blueberry wines, and 1-octanol and acetic acid had no significant correlation with the degree of fermentation.In addition, partial least-squares discrimination analysis was used to identify 13 potential differential markers in the four blueberry wines, and combined with the odour active values study, it was found that meso-2,3-butanediol and linalool only contributed to the overall flavor of semi-sweet and semi-dry, respectively, whereas β-damascenone, 2-phenylethanol, 3-methy1-butanol, and acetic acid with odour active values >500 made a significant contribution to the overall flavor of the blueberry wines with different residual sugar contents.

Key words fermented blueberry wine;headspace solid phase microextraction gas chromatography-mass spectrometry;electronic tongue;partial least-squares discrimination analysis;odour active values

DOI:10.13995/j.cnki.11-1802/ts.038300

引用格式:王利萍,丁昱文,吴颜欣,等.顶空固相微萃取-气相色谱-质谱联用技术结合电子舌分析不同残糖含量蓝莓酒体风味[J]. 食品与发酵工业,2024,50(11):294-300. WANG Liping, DING Yuwen, WU Yanxin, et al. Flavor analysis of blueberry wines with different residual sugar contents by headspace solid phase microextraction gas chromatography-mass spectrometry combined with electronic tongue[J]. Food and Fermentation Industries,2024,50(11):294-300.

第一作者:硕士研究生(戴怡凤教授为通信作者,E-mail:yifengdai2010@163.com)

基金项目:国家自然科学基金地区基金项目(32260640);蓝莓酒技术研发(黔科合支撑[2022]重点 006 号);国家自然科学基金青年科学基金项目(31801509);北京食品营养与人类健康高精尖创新中心开放基金项目(20182010);贵州省发酵工程与白酒酿造人才基地(黔人领发[2018]3号);科技平台及人才团队计划项目(黔科合平台人才(2018)5251);2022年贵州省高等学校教学内容和课程体系改革项目-酒类风味化学

收稿日期:2023-12-19,改回日期:2024-02-06