基于气味活性值的旋转锥柱处理前后黄瓜特征香味成分分析

孙正光1,杨晓东2*,吴薇1,杨鹏飞1*,杨靖1,白冰1,黄凯1,刘龑章1,刘帅3,崔凤喜3

1(郑州轻工业大学 烟草科学与工程学院,河南 郑州,450002)

2(山东中烟工业有限责任公司,山东 济南,250000)

3(潍坊梨园食品机械有限公司,山东 潍坊,261200)

摘 要 为分析对比旋转锥柱提取前后黄瓜特征香味成分的富集效果,采用气相色谱-质谱联用技术结合气味活性值(odor activity value,OAV)确定显著影响黄瓜特征风味的挥发性物质,明确旋转锥柱提取前后黄瓜特征香味成分的差异性。结果表明,黄瓜旋转锥柱提取前后指纹色谱图明显不同,其化合物的种类和含量存在较大差异;依据香味数据库共筛选出52种挥发性香气成分,提取前为30种,总含量为1 225.60 mg/kg,提取后为52种,总含量为2 522.01 mg/kg,特征致香物质被有效提取富集;OAV分析结果表明,旋转锥柱提取前有18种重要香气成分(OAV>1),提取后有28种重要香气成分(OAV>1),C6~C9的醛类和醇类成分对黄瓜特征风味的形成影响极显著,具有特征蔬菜青香和黄瓜似香气的(E)-6-壬烯醛、(Z)-2-壬烯醛、(E)-2,(Z)-6-壬二烯醛和(E)-2,(Z)-6-壬烯-1-醇等成分经旋转锥柱提取后其OAV尤为突出。该研究可为黄瓜特征风味香原料的制备及黄瓜果味附加产品的开发提供参考。

关键词 旋转锥柱;黄瓜;提取;气味活性值

黄瓜(Cucumis sativus L.)为葫芦科黄瓜属匍匐攀援植物[1],全球种植面积广泛且需求量大,具有新鲜清爽的独特风味口感[2-3]。因其兼具药理和保健功效而在消费者中广受喜爱[4-6]。目前国内外关于黄瓜的研究主要集中于优质新品种及其致病菌和活性研究[7-8]、挥发性成分分析[9-10]以及黄瓜附加产品的研究开发等方面[11-12]

旋转锥柱(spinning cone column,SCC)是一种高效逆流液气接触萃取富集挥发性成分的技术,具有提取效率高、物料停留时间短、产品组分香气自然等优点[13],其对水溶性悬浊液及其瓜果原浆汁挥发性成分具有良好的提取富集效果,在食品[14]、饮料[15]、精油[16]和轻重组分分离[17]等方面均有应用。气味活性值(odor activity value,OAV)为质量浓度与嗅觉阈值的比值,能较好地表述各成分对整体香气的贡献程度,已广泛应用于水果[18]、蔬菜[19]、烟草[20-21]、茶[22]、酒[23]、食品[24-25]和酱调料[26]等风味特征与香味活性成分之间的关联分析。但目前还未见旋转锥柱技术应用于黄瓜深加工的相关报道,因此本研究采用SCC技术提取黄瓜挥发性香气成分,结合OAV分析对比处理前后黄瓜挥发性关键活性成分的差异,为黄瓜附加产品的进一步开发利用提供新思路。

1 材料与方法

1.1 材料与试剂

二氯甲烷(色谱纯),山东禹王和天下新材料有限公司;无水硫酸钠(分析纯),烟台市双双化工有限公司;纯净水,娃哈哈集团有限公司;正己醛(97%)、2-己烯醛(99%)、(E)-4-庚烯醛(98%)、(Z)-4-庚烯醛(98%)、庚醛(≥98%)、1-辛烯-3-醇(97%)、正辛醛(99%)、(E,E)-2,4-庚二烯醛(98%)、(E,E)-2,4-壬二烯醛(96%)、(Z)-2-辛烯醛(≥98%)、(E)-2-辛烯醛(98%)、(Z)-6-壬烯醛(98%)、(E)-6-壬烯醛(98%)、壬醛(99%)、(E)-2-壬烯醛(98%)、(Z)-柠檬醛(≥98%)、(E)-2-壬烯醛(98%)、(E)-2,(Z)-6-壬二烯醛(≥98%)、乙酸苄酯(>99%)、(E)-2,(Z)-6-壬二烯-1-醇(≥98%)、(E)-2-壬烯-1-醇(97%)、(Z)-6-壬烯-1-醇(98%)、1-壬醇(98%)、癸醛(≥98%)、(Z)-2-壬烯-1-醇(97%)、丁基辛醇(98%)、(Z)-2,4-癸二烯醛(≥98%)、月桂醛(98%)、β-紫罗兰酮(96%)、十三醛(98%)、石竹素(99%)、桃醛(98%)、肉豆蔻醇(≥98%)、十五醛(≥97%)、(Z)-9-十六碳烯醛(≥98%)、十六醛(98%)、十五烷酸(98%)、棕榈酸乙酯(97%)、硬脂醇(98%)、花生醇(95%)、二十一醇(97%)、山嵛醇(98%)、2,6二氯甲苯(内标物,≥98.6%)、C7~C40正构烷烃(≥99.6%),上海麦克林生化科技股份有限公司;新鲜黄瓜,山东省潍坊市本地。

1.2 仪器与设备

8890-5977B型气相色谱-质谱联用仪,美国安捷伦科技有限公司;DLSB-5-20型低温冷却液循环泵、R-1001VN型旋转蒸发仪,郑州长城科工贸有限公司;PL203型电子天平,梅特勒-托利多公司;HH-S2型数显恒温水浴锅,江苏金怡仪器科技有限公司;KQ5200DB型数控超声波清洗器,昆明市超声仪器有限公司;粉碎精碎机(Φ为2.2 mm)、YL-1000L型旋转锥体柱蒸馏装置,梨园食品机械有限公司。

1.3 实验方法

1.3.1 黄瓜浆汁的处理

采用精碎机将新鲜黄瓜进行粉碎打浆,加入1倍黄瓜质量的的纯净水使黄瓜浆汁呈流动态后置于SCC储料罐中备用。

1.3.2 旋转锥柱提取黄瓜挥发性成分的萃取处理

黄瓜浆汁于SCC储料罐进入原料预加热系统(97 ℃)预热后从锥体顶部进入蒸馏塔内,塔底温度99.5 ℃,塔顶温度100.9 ℃,主塔内效率为6%,原料供给流量为400 kg/h,挥发性成分经塔顶部冷凝系统冷凝后收集,残渣于主塔底部排出。

1.3.3 旋转锥柱提取前后黄瓜挥发性成分的萃取处理

提取前:取40 mL黄瓜浆汁加入40 mL二氯甲烷超声萃取30 min,二氯甲烷相无水硫酸钠除水干燥后常压浓缩至1 mL,加入100 μL内标溶液后,GC-MS分析。

提取后:取40 mL SCC提取挥发性轻组分加入40 mL二氯甲烷萃取3次,合并二氯甲烷相无水硫酸钠干燥除水后常压浓缩至1 mL,加入100 μL内标溶液后,GC-MS分析。

1.3.4 GC-MS分析条件

色谱条件:Agilent 122-7062 DB-5MS毛细管柱(60 m×250 μm×0.25 μm);进样口温度:280 ℃;载气:99.999%高纯度氦气,流速:1.0 mL/min;不分流进样,进样量:1.0 μL。升温程序:初始温度为40 ℃,以1.5 ℃/min的升温速度升至140 ℃,保持15 min,以3 ℃/min升至200 ℃,保持0 min;以5 ℃/min升至280 ℃结束。

质谱条件:采用SCAN模式,传输线温度280 ℃;离子源温度为230 ℃;四极杆温度为150 ℃;离子源为XTR-EI源,电子能量为70 eV;溶剂延迟时间为8 min;扫描范围:35~700 amu。

1.3.5 气味活性值

OAV为各香气成分在样品中的质量浓度(C)与嗅觉阈值(T)的比值,其计算如公式(1)所示:

(1)

[:OAV为各成分的气味活性值;C为各成分的含量,mg/kg;T表示各成分在水中的嗅觉阈值,mg/kg。

1.4 数据处理分析

所有试验均重复5次,结果取其平均值;NIST 20谱库检索结合保留指数(retention index,RI)进行化合物定性分析;https://www.vcf-online.nl/OFTVCompoundSearchResult.cfm结合http://flavornet.org/flavornet.html香气数据库查询筛选致香成分及其嗅觉阈值;采用内标-标准曲线法结合内标-半定量法进行定量分析;中药色谱指纹图谱相似度评价系统(2012,130723)计算图谱相似度,Origin 2021绘制总离子流图和图谱相似度相关性热图;Excel和SPSS 27.0进行数据分析。

2 结果与分析

2.1 旋转锥柱提取前后黄瓜挥发性成分总离子指纹色谱分析

依据所检测化合物的保留时间和丰度绘制旋转锥柱处理前后黄瓜挥发性成分的总离子指纹色谱图(图1),从图中可以看出指纹色谱图存在明显不同,表明旋转锥柱处理前后其化合物的种类及其含量存在较大差异。

图1 转锥柱处理前后黄瓜挥发性成分总离子指纹色谱图

Fig.1 Total ionic fingerprint chromatograms of cucumber volatile components before and after treatment with transconical columns

注:UE为提取前,SCC为提取后(下同)。

运用中药色谱指纹图谱相似度评价系统进行指纹图谱的相似度计算,其相似度相关性热图结果如图2 所示,相关性热图用于可视化表达样本间的相关性和重复性,良好重复性的样本在热图部分中具有较深的颜色,一般情况下相关系数>0.7表明样本间相关性极显著,由图2可知各重复平行试验组内呈显著正相关,重复性较好,提取前后组间呈显著负相关,表明提取前后挥发性成分存在较大差异,与指纹色谱图分析结果相一致。

图2 指纹图谱相似度相关性热图

Fig.2 Heat map of similarity correlation of fingerprint profiles

2.2 旋转锥柱提取前后黄瓜特征风味成分的鉴定分析

黄瓜旋转锥柱提取前后挥发性成分经谱库检索结合RI及https://www.vcf-online.nl/OFTVCompoundSearchResult.cfm香气风味库共鉴定出52种挥发性香气成分,结果如表1所示。未提取前鉴定出30种,包括醛类13种、醇类13种、酮类1种、酯类1种、酸类1种、其他类1种;提取后鉴定出52种,包括醛类26种、醇类18种、酮类3种、酯类2种、酸类1种、其他类2种。醛类化合物是性质活泼的中间体,在传统热加工或超声辅助等提取方式下易被氧化分解[27],使黄瓜原有的香气风味被破坏。SCC提取由于物料接触时间短,处理温度低,众多低级醛类的微量风味物质被富集提取,如庚醛、正辛醛、壬醛、癸醛、(Z)-柠檬醛和月桂醛等,有效避免了香气或加工物料的热分解,使黄瓜萃取物香气自然逼真,原生态。

表1 主要活性香气成分定性结果

Table 1 Qualitative results of main active aroma components

编号名称CAS号RIaRI文献RI特征离子定性方式b提取前提取后1正己醛66-25-181281256.0、72.0MS、RI、S√√22-己烯醛505-57-785385483.0、98.1MS、RI、S√√3(E)-4-庚烯醛62238-34-089989881.0、97.0MS、RI、S√√4(Z)-4-庚烯醛6728-31-090290568.0、84.0MS、RI、S-√5庚醛111-71-790491370.0、81.0MS、RI、S-√61-辛烯-3-醇3391-86-498298372.0、96.9MS、RI、S√√72-甲基-3-辛酮923-28-498798571.7、99.0MS、RI-√8正辛醛124-13-01005100067.1、84.0MS、RI、S-√9(E,E)-2,4-庚二烯醛4313-03-51015101281.0、110.0MS、RI、S√√10(E,E)-2,4-壬二烯醛5910-87-21022102481.0、138.0MS、RI、S√√112,2-二甲基辛醇2370-14-11046-85.1、127.1MS、RI√√12(Z)-2-辛烯醛2363-89-51057105983.0、107.0MS、RI、S-√13(E)-2-辛烯醛2548-87-01060106383.0、93.0MS、RI、S√√14(3E,5E)-辛-3,5-二烯-2-酮38284-27-41095109895.0、124.1MS、RI√√15(Z)-6-壬烯醛2277-19-21102110181.1、122.1MS、RI、S-√16(E)-6-壬烯醛2277-20-51103-81.0、93.0MS、RI、S√√17壬醛124-19-61106110282.1、98.1MS、RI、S√√18(Z)-2-壬烯醛60784-31-81142114870.0、83.1MS、RI、S-√19(E)-2-壬烯醛18829-56-61152115683.0、96.1MS、RI、S√√20(E)-2,(Z)-6-壬二烯醛557-48-21158116269.1、79.0MS、RI、S√√21乙酸苄酯140-11-411621172108.0、151.0MS、RI、S-√22(E)-3-(Z)-6-壬二烯-1-醇56805-23-31165-76.0、93.0MS、RI、S√√23(E)-2,(Z)-6-壬二烯醇28069-72-91167116969.1、93.1MS、RI、S√√24(E)-2-壬烯-1-醇31502-14-41169117182.1、95.1MS、RI、S√√25(Z)-6-壬烯-1-醇35854-86-51172117167.1、95.1MS、RI、S√√261-壬醇143-08-81173117283.1、98.1MS、RI、S√√2710-十一炔醇2774-84-71186-79.1、95.1MS、RI√√28二氢香芹醇619-01-21202120293.1、140.1MS、RI√√29癸醛112-31-21208121471.0、81.1MS、RI、S-√30(Z)-2-壬烯-1-醇41453-56-91219-67.1、81.0MS、RI、S√√312,2,4-三甲基-5-己烯-3-醇90676-50-91227-69.0、87.0MS、RI√√32(Z)-柠檬醛106-26-31244124183.0、96.1MS、RI、S-√334-氧代壬醛74327-29-01247-85.0、99.1MS、RI√√34癸醚2456-28-21261-71.1、85.0MS、RI√√35丁基辛醇3913-02-81288-79.1、85.1MS、RI-√36(Z)-2,4-癸二烯醛25152-84-51322131891.0、152.0MS、RI、S-√372,4-十二二烯醛13162-47-51404-109.0、180.0MS、RI-√38月桂醛112-54-91409140271.1、109.1MS、RI、S-√39β-紫罗兰酮14901-07-614851488135.2、177.1MS、RI、S-√40十三醛10486-19-81514151082.0、96.1MS、RI、S-√41石竹素1139-30-61584158195.0、107.0MS、RI、S-√42桃醛124-25-41619162582.1、96.1MS、RI、S√√43肉豆蔻醇112-72-11677167683.1、97.1MS、RI、S√√44十五醛2765-11-91714171582.1、96.1MS、RI、S√√45(Z)-9-十六碳烯醛56219-04-61758175983.1、93.0MS、RI、S-√46十六醛629-80-11820181882.1、96.1MS、RI、S-√47十五烷酸1002-84-21866186983.1、129.1MS、RI、S√√48棕榈酸乙酯628-97-71994199497.0、111.1MS、RI、S√√49硬脂醇112-92-52086208169.1、97.1MS、RI、S-√50花生醇629-96-92248225283.1、97.1MS、RI、S-√51二十一醇15594-90-82265-83.0、111.0MS、RI、S√√52山嵛醇661-19-82472247068.1、97.0MS、RI、S-√

注:a表示RI和文献RI为化合物通过DB-5ms色谱柱计算和查询的保留指数;b表示MS:经质谱数据库查询鉴定; S:与标准品对照鉴定;RI:经保留指数对比鉴定;“√”表示检测到;“-”表示未检测到。

挥发性C6~C9的醛和醇是水果、蔬菜和绿色风味特征的重要贡献者,这些较短链的挥发物是由亚油酸和亚麻酸的氧化裂解和脱羧作用产生的,通常被称为“绿色香味物”,具有强烈且穿透性强的青草和浓郁的黄瓜气味[28]。酯类和酮类成分同样是形成黄瓜特征气味不可或缺的化合物,酯与“果味”属性相关,且一般具有清甜而成熟的甜香、果香或酒香气,酮类成分香气细腻柔,大多具有甜润而持久的花香、果香和辛香底韵,香气持久细腻,厚实感强[29]

2.3 旋转锥柱提取前后黄瓜特征风味成分的OAV分析

由表2可知,旋转锥柱处理前后其化合物含量分别为1 225.60 mg/kg和2 522.01 mg/kg,提取后其含量显著提高,且得到的挥发性成分含有更多的醛类和醇类等影响黄瓜特征风味的关键物质,其中(E)-2,(Z)-6-壬二烯醛、(E)-3-(Z)-6-壬二烯-1-醇、(E)-2,(Z)-6-壬二烯-1-醇和(Z)-6-壬烯-1-醇等成分呈倍速增长,特征香味成分富集效果显著,与PUGLISI等[14]研究结果相一致,传统热加工或超声辅助提取会使酯氧化酶失活,导致醛醇类风味物质含量降低,旋转锥柱处理可以增加提取物中黄瓜的新鲜度和天然水果香,检测出处理前没有达到检出限的物质,对黄瓜特征风味的呈现有协调修饰的作用,使香气丰富多样且饱满,嗅香天然且舒适性好。

表2 旋转锥柱处理前后主要活性成分阈值、含量及 OAV

Table 2 Threshold,content,and OAV of major active ingredients before and after SCC treatment

编号名称阈值/(mg/kg)线性方程R2含量/(mg/kg)处理前处理后OAV1正己醛0.21y=0.803x+0.00570.99919.38±0.0620.51±0.9844.67/97.6722-己烯醛0.85y=0.9075x+0.01190.998129.87±1.8944.26±1.2735.14/52.073(E)-4-庚烯醛0.0042y=0.9709x-0.00030.99876.22±0.3115.22±0.661480.95/3623.814(Z)-4-庚烯醛0.0034y=1.0656x+0.00280.9933NA2.05±0.02-/602.945庚醛0.061y=1.0085x+0.0010.9925NA8.06±0.15-/132.1361-辛烯-3-醇0.0027y=0.4224x+0.00170.99946.55±0.551.50±0.032425.93/555.5672-甲基-3-辛酮∗- -NA0.73±0.01-8正辛醛0.015y=0.3125x+0.00040.9985NA0.50±0.01-/33.339(E,E)-2,4-庚二烯醛0.0154y=0.5224x+0.01810.991622.42±2.0823.74±1.351455.84/1541.5610(E,E)-2,4-壬二烯醛0.0004y=2.3159x-0.03280.99440.51±0.032.71±0.131275.00/6775.00112,2-二甲基辛醇∗- -6.33±0.672.07±0.08-12(Z)-2-辛烯醛0.5y=0.7113x-0.00570.9973NA1.41±0.06-/2.8213(E)-2-辛烯醛17y=0.5601x+0.00330.99951.07±0.112.74±0.020.06/0.1614(3E,5E)-辛-3,5-二烯-2-酮∗- -10.56±1.067.83±0.33-15(Z)-6-壬烯醛0.0036y=1.0663x+0.02070.9913NA2.25±0.07-/625.0016(E)-6-壬烯醛0.00014y=0.7347x-0.00420.999937.91±4.6266.32±2.35270785.71/473714.2917壬醛0.23y=0.8274x+0.00190.99934.57±0.1714.17±0.5219.87/61.6118(Z)-2-壬烯醛0.00002y=0.118x+0.02490.9977208.79±1.98304.57±7.3810439500.00/15228500.0019(E)-2-壬烯醛0.0005y=0.718x+0.02490.9996NA0.41±0.09-/820.0020(E)-2,(Z)-6-壬二烯醛0.0001y=0.7429x+0.08710.9997593.24±9.471262.14±13.865932400.00/12621400.00

续表2

编号名称阈值/(mg/kg)线性方程R2含量/(mg/kg)处理前处理后OAV21乙酸苄酯0.03y=0.3787x+0.00020.9976NA0.64±0.05-/21.3322(E)-3-(Z)-6-壬二烯-1-醇0.003y=0.8518x+0.00140.999610.75±0.0658.07±1.033583.33/19356.6723(E)-2,(Z)-6-壬二烯-1-醇0.0002y=0.7466x+0.00580.999323.48±0.85133.40±2.38117400.00/667000.0024(E)-2-壬烯-1-醇0.13y=0.9346x-0.00210.999531.33±3.7160.25±0.79241.00/463.4625(Z)-6-壬烯-1-醇0.001y=0.6358x+0.0290.999758.59±4.38128.98±1.4158590.00/128980.00261-壬醇0.018y=0.3992x+0.03140.995511.86±0.0245.75±1.64658.89/2541.672710-十一炔醇∗- -12.33±0.887.43±0.04-28二氢香芹醇∗- -8.62±0.0635.22±0.61-29癸醛3.8y=0.7411x-0.00010.9993NA2.30±0.05-/0.6130(Z)-2-壬烯-1-醇-y=0.5739x+0.02280.997812.33±0.4418.68±1.38-312,2,4-三甲基-5-己烯-3-醇∗- -7.55±0.7550.64±3.08-32(Z)-柠檬醛0.03y=0.2966x+0.00970.9974NA7.87±0.09-/262.33334-氧代壬醛∗- -27.85±1.7032.99±2.08-34癸醚∗- -8.31±0.441.11±0.03-35丁基辛醇-y=0.2817x-0.00070.9994NA0.59±0.01-36(Z)-2,4-癸二烯醛0.01y=0.1961x+0.00060.9999NA0.67±0.07-/67.00372,4-十二二烯醛∗- -NA1.40±0.39-38月桂醛0.033y=0.471x+0.00540.9994NA1.04±0,32-/31.5239β-紫罗兰酮4.5y=0.238x-0.00040.9993NA0.30±0.01-/0.0740十三醛0.07y=0.0737x+0.01470.9988NA1.01±0.02-/14.4341石竹素5.5y=0.1684x+0.01320.9951NA3.45±0.05-/0.6342桃醛0.11y=0.6722x-0.00710.99963.44±0.0324.20±0.7431.27/220.0043肉豆蔻醇-y=0.8889x-0.04030.999530.48±1.4723.31±2.57-44十五醛1.0y=1.3687x+0.02180.999422.57±4.0269.53±3.4822.57/69.5345(Z)-9-十六碳烯醛-y=0.2733x+0.01040.9938NA2.08±0.16-46十六醛-y=0.2571x+0.0030.9975NA1.21±0.23-47十五烷酸-y=0.3795x+0.00660.99918.65±0.767.00±0.22-48棕榈酸乙酯1.5y=0.5398x-0.00270.99959.79±0.092.27±0.186.53/1.5149硬脂醇-y=0.4249x-0.00410.9986NA3.63±0.07-50花生醇-y=0.5307x-0.00380.9903NA4.92±0.85-51二十一醇-y=0.1705x-0.02190.99950.37±0.037.43±0.36-52山嵛醇-y=0.1755x+0.00270.9942NA1.45±0.04-总量1225.60±13.242522.01±27.73

注:含量表示为平均值±标准差(n=5);嗅觉阈值查询于《化合物香味阈值汇编》及https://www.vcf-online.nl/OFTVCompoundSearchResult.cfm和http://flavornet.org/flavornet.html网站;“-”为未查询到;NA为未检测到;*表示通过内标-半定量法计算。

OAV为待测物的质量浓度与其嗅觉阈值的比值,可以表征不同样品中有突出贡献的香气活性化合物,OAV<1时认为化合物对整体香气贡献较小或有修饰风味的作用;OAV>1时认为化合物对整体香气起关键作用,且OAV越大作用越显著[30]。旋转锥柱提取前其OAV>1的化合物有18种,提取后OAV>1的化合物有28种。相关研究表明,C6~C9的醛类和醇类成分是黄瓜香气和味道密切相关的特征挥发性成分,能赋予黄瓜独特的风味口感,对黄瓜特征风味的形成影响极其显著,极低含量的该类物质也易被嗅闻感知,阈值极小,且C6醛与青草、绿色风味相关,C9醛与花果样风味相关[31-32]。如(E)-4-庚烯醛(阈值0.004 2 mg/kg)、1-辛烯-3-醇(阈值0.002 7 mg/kg)、(E,E)-2,4-壬二烯醛(阈值0.000 4 mg/kg)、(E)-6-壬烯醛(阈值0.000 14 mg/kg)、(Z)-2-壬烯醛(阈值0.000 02 mg/kg)、(E)-2,(Z)-6-壬二烯醛(阈值0.000 1 mg/kg)、(E)-3-(Z)-6-壬二烯-1-醇(阈值0.003 mg/kg)、(E)-2,(Z)-6-壬二烯-1-醇(阈值0.000 2 mg/kg)、和(Z)-6-壬烯-1-醇(阈值0.001 mg/kg)等,SCC提取后该类物质因其极低的阈值且含量较大,OAV相对较高,均具有强烈浓郁绿色蔬菜青香和黄瓜似香气,穿透性极强,表明该类成分对黄瓜的特征风味贡献较大[33-34]

其他挥发性成分的作用也不容忽视,虽然它们的含量相对较低,但仍然在黄瓜的风味中起辅助和协调作用,且每种挥发性成分的贡献取决于其各自的嗅觉阈值和与其他化合物的相互作用。部分化合物的含量较高,但由于其阈值较高,则对黄瓜整体风味的贡献较小[35],如癸醛(阈值3.8 mg/kg)和石竹素(阈值5.5 mg/kg)。乙酸苄酯有清新的茉莉花香,棕榈酸乙酯具有微弱蜡香、果香和奶油香气[36],其OAV均超过1,表明对黄瓜特征香味同样起关键作用。

3 结论

采用GC-MS结合OAV,对旋转锥柱处理前后黄瓜特征风味成分进行对比分析,结果表明旋转锥柱处理前后其化合物的种类及其含量存在较大差异,且重复平行试验组内呈显著正相关,重复性较好,提取前后组间呈显著负相关,表明差异较大;GC-MS分析结合香气风味数据库共筛选出52种挥发性香气成分,其中未提取前检测出30种,提取后检测出52种,其化合物含量分别为1 225.60 mg/kg和2 522.01 mg/kg;OAV结果表明旋转锥柱提取前后其OAV>1的化合物分别有18和28种,且具有蔬菜青香和黄瓜似香气特征的(E)-6-壬烯醛、(Z)-2-壬烯醛、(E)-2,(Z)-6-壬二烯醛和(E)-2,(Z)-6-壬二烯-1-醇等成分经旋转锥柱提取后其OAV尤为突出。

本实验对旋转锥柱处理前后黄瓜特征风味成分进行对比分析,为黄瓜特征风味香原料的制备及黄瓜果味附加产品的开发提供参考。由于不同香味化合物间相互辅助和协调配比,能产生和合、加合、掩盖等不同作用的效果,对整体的风味变化影响显著。因此后续研究将进一步结合气相色谱-嗅觉-质谱嗅闻、分子感官组学和活性作用阈值等技术,为旋转锥柱技术应用于黄瓜深加工提供理论依据。

参考文献

[1] CHE G,ZHANG X L.Molecular basis of cucumber fruit domestication[J].Current Opinion in Plant Biology,2019,47:38-46.

[2] ZHANG J P,FENG S J,YUAN J,et al.The formation of fruit quality in Cucumis sativus L[J].Frontiers in Plant Science,2021,12:729448.

[3] KAUR M,SHARMA P.Recent advances in cucumber (Cucumis sativusL.)[J].The Journal of Horticultural Science and Biotechnology,2022,97(1):3-23.

[4] TUAMA A A,MOHAMMED A A.Phytochemical screening and in vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus[J].Saudi Journal of Biological Sciences,2019,26(3):600-604.

[5] 蒋素华,王林青,吴景亮,等.黄瓜新品种‘优NT603’[J].园艺学报,2023,50(8):1807-1808.JIANG S H,WANG L Q,WU J L,et al.A new cucumber cultivar ‘You NT603’[J].Acta Horticulturae Sinica,2023,50(8):1807-1808.

[6] YANG F,JIANG H Y,CHANG G Z,et al.Effects of rhizosphere microbial communities on cucumber Fusarium wilt disease suppression[J].Microorganisms,2023,11(6):1576.

[7] NASH R J,BARTHOLOMEW B,PENKOVA Y B,et al.Iminosugar idoBR1 isolated from cucumber Cucumis sativus reduces inflammatory activity[J].ACS Omega,2020,5(26):16263-16271.

[8] DU X F,ROUTRAY J,WILLIAMS C,et al.Association of refreshing perception with volatile aroma compounds,organic acids,and soluble solids in freshly consumed cucumber fruit[J].ACS Food Science &Technology,2022,2(9):1495-1506.

[9] CHEN S H,HUANG H L,HUANG G L.Extraction,derivatization and antioxidant activity of cucumber polysaccharide[J].International Journal of Biological Macromolecules,2019,140:1047-1053.

[10] SAAD A M,MOHAMED A S,EL-SAADONY M T,et al.Palatable functional cucumber juices supplemented with polyphenols-rich herbal extracts[J].LWT,2021,148:111668.

[11] SAAD A M,MOHAMED A S,RAMADAN M F.Storage and heat processing affect flavors of cucumber juice enriched with plant extracts[J].International Journal of Vegetable Science,2021,27(3):277-287.

[12] LUO Y,WANG K,ZHUANG H N,et al.Elucidation of aroma compounds in passion fruit(Passiflora alata Ait) using a molecular sensory approach[J].Journal of Food Biochemistry,2022,46(9):e14224.

[13] ZIVDAR M,SHAHROUEI N.Murphree vapor efficiency prediction in SCC columns by computational fluid dynamics analysis[J].Chemical Product and Process Modeling,2022,17(3):273-292.

[14] PUGLISI C,RISTIC R,SAINT J,et al.Evaluation of spinning cone column distillation as a strategy for remediation of smoke taint in juice and wine[J].Molecules,2022,27(22):8096.

[15] グレゴリー グランシー.茶を含む植物抽出物のタブレット調製システムおよび方法:にほん,JP7174438B[P].2022-11-17.GREGORY GLANCY.Tablet preparation systems and methods for tea-containing plant extracts:Japan,JP7174438B[P].2022-11-17.

[16] 郑小嘎,吴爱东,陈庆彩,等.一种高品质玫瑰花精油高效提取方法,中国,CN113930290A[P].2022-01-14.ZHENG X G,WU A D,CHEN Q C,et al.An efficient extraction method for high quality rose essential oil,China,CN113930290A[P].2022-01-14.

[17] 欧泽洁,孔凡玉,周月南,等.基于超临界CO2萃取和旋转锥体柱法的啤酒花提取物香气特征比较[J].食品安全质量检测学报,2023,14(12):46-53.OU Z J,KONG F Y,ZHOU Y N,et al.Comparison of aroma characteristics of hop extracts based on supercritical CO2 extraction and spinning cone column method[J].Journal of Food Safety &Quality,2023,14(12):46-53.

[18] PINO J A,TRUJILLO R.Characterization of odour-active compounds of sour guava (Psidium acidum[DC.]Landrum) fruit by gas chromatography-olfactometry and odour activity value[J].Flavour and Fragrance Journal,2021,36(2):207-212.

[19] 赵丽丽,史冠莹,蒋鹏飞,等.基于OAV和GC-O-MS法鉴定香椿中的关键香气成分[J].现代食品科技,2022,38(11):264-275.ZHAO L L,SHI G Y,JIANG P F,et al.Identification of the key aroma components in Toona sinensis using odor activity value and gas chromatography-olfactometry-mass spectrometry[J].Modern Food Science and Technology,2022,38(11):264-275.

[20] 杨靖,宋梦坤,杨鹏飞,等.基于香气活力值的烤烟烟叶清(青)香风格特征分析[J].烟草科技,2020,53(1):34-43.YANG J,SONG M K,YANG P F,et al.Analysis of fresh(green)aroma note of flue-cured tobacco based on odor activity value[J].Tobacco Science and Technology,2020,53(1):34-43.

[21] 沈梦浩,刘博,乔跃辉,等.基于香气活力值的加拿大烟叶主流烟气关键酸性香气成分分析[J].云南农业大学学报(自然科学),2023,38(3):456-464.SHEN M H,LIU B,QIAO Y H,et al.Analysis of key acidic aroma components of Canadian tobacco leaves mainstream smoke based on odor activity value[J].Journal of Yunnan Agricultural University (Natural Science),2023,38(3):456-464.

[22] PANG X L,YU W S,CAO C D,et al.Comparison of potent odorants in raw and ripened Pu-erh tea infusions based on odor activity value calculation and multivariate analysis:Understanding the role of pile fermentation[J].Journal of Agricultural and Food Chemistry,2019,67(47):13139-13149.

[23] FAN S S,TANG K,XU Y,et al.Characterization of the potent odorants in Tibetan Qingke Jiu by sensory analysis,aroma extract dilution analysis,quantitative analysis and odor activity values[J].Food Research International,2020,137:109349.

[24] 陈芝飞,蔡莉莉,郝辉,等.香气活力值在食品关键香气成分表征中的应用研究进展[J].食品科学,2018,39(19):329-335.CHEN Z F,CAI L L,HAO H,et al.Progress in the application of odor activity values in the characterization of key aroma components in foods[J].Food Science,2018,39(19):329-335.

[25] WEI H C,WEI Y K,QIU X J,et al.Comparison of potent odorants in raw and cooked mildly salted large yellow croaker using odor-active value calculation and omission test:Understanding the role of cooking method[J].Food Chemistry,2023,402:134015.

[26] LIN H B,LIU Y,HE Q,et al.Characterization of odor components of Pixian Douban (broad bean paste) by aroma extract dilute analysis and odor activity values[J].International Journal of Food Properties,2019,22(1):1223-1234.

[27] 李婷婷,黄名正,唐维媛,等.刺梨汁中挥发性成分测定及其呈香贡献分析[J].食品与发酵工业,2021,47(4):237-246.LI T T,HUANG M Z,TANG W Y,et al.Determination of volatile components in Rosa roxburghii Tratt juice and the analysis of its contribution for aroma[J].Food and Fermentation Industries,2021,47(4):237-246.

[28] ATIAMA-NURBEL T,QUILICI S,BOYER E,et al.Volatile constituents of Cucumis sativus:Differences between five tropical cultivars[J].Chemistry of Natural Compounds,2015,51(4):771-775.

[29] YUN J,CUI C J,ZHANG S H,et al.Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea[J].Food Chemistry,2021,360:130033.

[30] 李瑞丽,田数,郭春生,等.基于感官导向的香荚兰特征风味物质分析及重构[J].食品科学,2023,44(4):217-223.LI R L,TIAN J,GUO C S,et al.Sensory-guided analysis and recombination of characteristic flavor compounds in Vanilla planifolia Andrews[J].Food Science,2023,44(4):217-223.

[31] 尚明月,吴燕,陈劲枫,等.黄瓜果皮和果肉芳香物质的成分鉴定及差异比较[J].西北农业学报,2021,30(9):1365-1373.SHANG M Y,WU Y,CHEN J F,et al.Identification and comparison of aroma components in peel and flesh of cucumber[J].Acta Agriculturae Boreali-occidentalis Sinica,2021,30(9):1365-1373.

[32] ZHANG J,GU X C,YAN W J,et al.Characterization of differences in the composition and content of volatile compounds in cucumber fruit[J].Foods,2022,11(8):1101.

[33] 王新惠,何峰,李瑞丽,等.基于感官组学分析鉴定无花果提取物关键特征风味物质[J].食品科学,2024,45(4):225-231.WANG X H,HE F,LI R L,et al.Identification of key aroma compounds in fig extracts through sensomics approach[J].Food Science,2024,45(4):225-231.

[34] 徐竖,白冰,刘煜宇,等.蝶豆花净油挥发性香气成分分析及卷烟加香应用[J].安徽农业科学,2019,47(10):163-166.XU S,BAI B,LIU Y Y,et al.Analysis of volatile aroma components from Clitoria ternatea L.flower absolute oil and its applications in cigarette flavoring[J].Journal of Anhui Agricultural Sciences,2019,47(10):163-166.

[35] 贲昊玺,陆大东,卞宁生,等.黄瓜化学成分的提取与研究(英文)[J].天然产物研究与开发,2008,20(3):388-394.BEN H X,LU D D,BIAN N S,et al.Studies on the chemical constituents of cucumber[J].Natural Product Research and Development,2008,20(3):388-394.

[36] SHAN N,GAN Z Y,NIE J,et al.Comprehensive characterization of fruit volatiles and nutritional quality of three cucumber (Cucumis sativus L.) genotypes from different geographic groups after bagging treatment[J].Foods,2020,9(3):294.

Characteristic aroma components of cucumber based on odor activity value analysis before and after rotary spinning cone column treatment

SUN Zhengguang1,YANG Xiaodong2*,WU Wei1,YANG Pengfei1*,YANG Jing1,BAI Bing1,HUANG Kai1,LIU Yanzhang1,LIU Shuai3,CUI Fengxi3

1(College of Tobacco Science and Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)

2(Shandong China Tobacco Industry Co.Ltd.,Jinan 250000,China)

3(Weifang Liyuan Food Machinery Co.Ltd.,Weifang 261200,China)

ABSTRACT To analyze and compare the enrichment effect of cucumber characteristic aroma components before and after rotary spinning cone column extraction,gas chromatography-mass spectrometry (GC-MS) coupled with odor activity value (OAV) was used to identify the volatile substances that play a significant role in the characteristic flavor of cucumber,and to clarify the differences between the characteristic aroma components of cucumber before and after rotary spinning cone column extraction.Results showed that the fingerprint chromatograms of cucumber before and after rotary spinning cone column extraction were obviously different,and there were large differences in the types and contents of the compounds.52 volatile components were screened out according to the aroma database,including 30 volatile components with a total content of 1 225.60 mg/kg before the extraction and 52 volatile components with a total content of 2 522.01 mg/kg after the extraction,and the aroma-inducing compounds were enriched by the effective extraction.The results of OAV analysis showed that there were 18 important aroma components (OAV>1) before rotary spinning cone column extraction and 28 important aroma components (OAV>1) after extraction,and the aldehydes and alcohols components of C6-C9 had a highly significant effect on the formation of the characteristic flavor of cucumber.The OAV of (E)-6-nonenal,(Z)-2-nonenal,(E)-2,(Z)-6-nonadienal,and (E)-2,(Z)-6-nonen-1-ol,which had the characteristic vegetable green aroma and cucumber-like aroma,was particularly prominent after the extraction by rotary spinning cone column.This study can provide a reference for the preparation of cucumber characteristic flavor aroma raw materials and the development of cucumber fruity additional products.

Key words spinning cone column; cucumber; extraction; odor activity value

DOI:10.13995/j.cnki.11-1802/ts.037582

引用格式:孙正光,杨晓东,吴薇,等.基于气味活性值的旋转锥柱处理前后黄瓜特征香味成分分析[J].食品与发酵工业,2024,50(18):309-316.

SUN Zhengguang,YANG Xiaodong,WU Wei,et al.Characteristic aroma components of cucumber based on odor activity value analysis before and after rotary spinning cone column treatment[J].Food and Fermentation Industries,2024,50(18):309-316.

第一作者:硕士研究生(杨晓东工程师和杨鹏飞副教授为共同通信作者,E-mail:362550536@qq.com;pf_yang@zzuli.edu.cn)

基金项目:国家自然科学基金青年基金资助项目(81903507);山东中烟工业有限责任公司科技项目“利用废弃烟叶自主开发烟草提取物及精细化加工技术研究”

收稿日期:2023-10-08,改回日期:2023-11-08