竹子是一种生长速度快、分布广泛、生物量高的禾本科常绿植物,可产出竹笋和竹材两种重要产品。中国竹子品种丰富,有很多品质优良的笋用竹,以毛竹笋和雷竹笋产量最高,是世界上最大的竹笋生产国和出口国之一[1]。根据第九次森林资源清查报告,中国现有竹林面积约为641.16万公顷,占林地面积的1.98%,占森林面积的2.94%,其中72.96%为毛竹林[2]。竹笋中含有多种营养物质,如多糖、蛋白质、氨基酸、矿物质元素,也富含膳食纤维(dietary fibers,DF)、黄酮、甾醇和多酚等生物活性物质。中国可食用竹笋较为丰富,产品以鲜竹笋、笋干、清水笋、发酵竹笋等为主,价格低,利润小。
竹笋富含膳食纤维,研究发现,竹笋膳食纤维(bamboo shoots dietary fiber,BSDF)含量约占鲜重的2.23%~4.20%(水分质量分数约为90%),而竹笋加工剩余物约占鲜笋的2/3。BSDF具有以下特点和作用:能保水、吸油和吸附胆固醇,有利于调节肠道功能、降低血糖和血脂水平、预防肥胖和癌症等;具有抗氧化、增强免疫力和延缓衰老等生理功能;在改善食品的风味、颜色、质构和营养价值,还有调节肠道菌群及其代谢物等方面发挥了重要作用[3]。近年来,科研工作者已采用不同的提取改性技术研究BSDF,其中酶法制备的BSDF单糖组成较化学法和物理法更加多样和平衡[4],不同的改性方法得到的BSDF单糖组成比例也有显著的变化[5]。
目前,BSDF的研究主要集中在提取、改性、功能特性和应用等方面。本文综述了近年来国内外BSDF的研究新进展,旨在为BSDF的开发利用提供理论数据支撑,更好的推动竹笋产业的高质量发展。
BSDF主要有生物、化学和物理等提取方法。生物提取法比较温和,能增加BSDF的活性,化学提取法操作方便,但污染环境,且降低DF的功能活性,物理提取法设备成本高、能耗大、操作复杂[6]。BSDF的提取率和品质因提取方法和竹笋品质不同而不同,彭昕[7]发现化学法(31.25%)比水提法(9.18%)和酶解法(2.6%)更高的提取率。不同的提取方法的结果如表1所示。
表1 竹笋膳食纤维提取方法比较
Table 1 Comparison of BSDF extraction methods
提取方法原料提取条件TDF提取率/%IDF提取率/%SDF提取率/%参考文献生物提取麻竹笋采用α-淀粉酶、淀粉葡萄糖苷酶和中性蛋白酶80.9473.877.07[8]方竹笋采用α-淀粉酶、中性蛋白酶、淀粉葡萄糖苷酶64.90±1.2857.62±1.017.28±0.27[9]化学提取法竹笋壳NaOH质量分数为1.97%、制备时间为113min、制备温度为49℃、料液比为1∶40(g∶mL)-87.05-[10]方竹笋碱液浓度0.5mol/L、50℃搅拌40min、料液比料液比1∶30(g∶mL)65.63±1.5660.71±1.145.36±0.43[9]物理提取法竹笋 液料比43∶1g∶mL、超声功率454W、超声时间25min、超声温度72℃-47.23-[11]
注:根据膳食纤维的溶解特性可分为可溶性膳食纤维(soluble dietary fiber,SDF)和不溶性膳食纤维(insoluble dietary fiber,IDF);总膳食纤维(total dietary fiber,TDF);-表示未测定。
由于BSDF溶解性差、持水能力弱,其加工食品具有组织化程度低、结构松散、口感粗糙等品质不佳的问题,限制了BSDF在食品加工领域的应用发展[12]。为了提高BSDF的利用率,需要对BSDF进行合理改性,使改性后的BSDF具有良好的持水力、持油力、膨胀力、离子交换能力、吸附能力和自由基清除能力。生物改性反应条件温和,但效率较低,维持酶的高活性状态条件较为苛刻,很难应用于生产,化学改性效率高,但会引入有害的化学基团并污染环境,物理改性会破坏BSDF的物理结构,交联与重排不同分子链[13]。联合改性方法可实现优势互补,实现BSDF的功能特性的定向调控,近年来BSDF联合改性研究主要以物理改性为主导,其他改性方法为辅。不同改性方法对BSDF功能特性的影响见表2。
表2 不同改性技术对竹笋膳食纤维功能特性的影响
Table 2 Effects of different modification techniques on the functional characteristics of dietary fiber of bamboo shoots
改性方法原材料理化性质变化SDF含量/%参考文献超声处理(ultrasonictreatment,UT)高温处理(high-temperaturecook-ing,HTC)HPHUT-HTCHPH-HTCUT-HPH方竹笋改性后WHC、OHC、SC、GAC和α-AAIR普遍提高,其中UT-HTC对WHC提高效果最好,达到了8.38g/g,而UT-HPH对OHC和SC的提高效果最显著,分别增加了55.35%和91.47%。UT-HTC对GAC和α-AAIR的提高效果最显著,α-AAIR达到56.14%。HPH、HPH-HTC和UT-HPH能显著降低BSDF的粒径,相反,HTC和UT则使BSDF的粒径增大。在GDRI方面,UT-HPH、HPH和HPH-HTC处理效果较好,分别提高了44.51%、30.61%和27.20%。15.79±0.6810.32±0.9114.91±0.2318.76±0.4517.36±0.8419.31±0.75[5]酶解动态高压微射流法(dynamichigh-pressuremicro-fluidization,DHPM)笋头与酶法相比DHPM处理对BSDF的结构和性质改善更加显著,粒径显著减小,木质素和半纤维素被部分破坏,孔状结构显著增加,呈网状结构,RC得到提升、显著提高了WHC、OHC、SC等理化性质,改善了益生功能,能够为益生菌提供更持久的碳源。-[14]CO2挤压方竹笋降低BSDF的颗粒大小,增加其比表面积,破坏其晶体结构,改善WHC、OHC、SC、CAC、NIAC能力11.05[15]机械球磨方竹笋球料质量比为9∶1时BSDF的WHC、OHC和SC显著下降,粉体粒径达到最小。CEC增强,休止角和滑角显著增大,堆积密度和振实密度显著减小。机械球磨会使BSDF内部部分大分子链发生断裂,分子聚合度下降,热稳定性下降,有团聚现象。-[16]亚临界水(subcriticalwater,SW)高压均质(high-pressurehomogeni-zation,HPH)雷竹笋改变了BSDF的结构,降低了RC,显著增强了CAC和NIAC,SW较HPH改性的WHC、OHC、SC更强,而HPH处理对CAC的提高更显著。10.70±0.427.41±0.20[17]高速剪切分散酶处理高速剪切分散和酶处理的组合毛竹笋联合处理后BSDF中纤维含量较多,粒径显著减小,表面粗糙并呈蜂窝状结构。羟基、亚甲基和芳香族化合物暴露量增加,吸附能力显著提高,有效地提高了GAC、CAC和NIAC能力。10.00±0.119.45±0.0510.15±0.03[18]
注:持水力(water-holding capacity,WHC)、持油力(oil-holding capacity,OHC)、膨胀力(swelling capacity,SC)、阳离子交换能力(cation exchange capacity,CEC)、葡萄糖吸附容量(glucose adsorption capacity,GAC)、胆固醇吸附容量(cholesterol adsorption capacity,CAC)、亚硝酸盐离子吸附能力[nitrite ion absorption capacity,NIAC]、相对结晶度(relative crystallinity,RC)、α-淀粉酶活力抑制率(α-amylase activity inhibition ration,α-AAIR)、葡萄糖透析延迟指数(glucose dialysis retardation index,GDRI);-表示未测定。
张华等[19]研究发现,BSDF的WHC、OHC、SC、CAC与NIAC明显高于米糠膳食纤维与大豆膳食纤维,说明BSDF表现出更好的功能特性。TANG等[5]采用物理联合改性法提取BSDF,经UT-HPH联合改性得到的BSDF的SDF含量最高。因UT处理产生的空化和剪切力作用和HPH过程中大分子糖苷键的断裂,破坏晶体结构,导致暴露的亲水性基团增加。YANG等[18]用高速剪切分散-酶处理联合改性BSDF,发现联合改性后粒径显著变小,其羟基、亚甲基和芳香族化合物暴露量大,CAC、NIAC、GAC等吸附量提高。近年来,生物、化学联合改性的研究相对较少,ZHANG等[20]发现,添加蔗糖酯能够减轻BSDF在HPH过程中的聚集行为,通过增加表面电荷和电静力排斥作用,提高BSDF的分散性和稳定性。当蔗糖酯添加量为5 g/L时,BSDF具有最小的粒径、最高的ζ-电位、最低的剪切应力和最佳的流变性能。WANG等[21]利用混合菌种(罗伊乳杆菌、植物乳杆菌)对湿法超粉碎的竹笋进行发酵改性,改善了颜色,增加了风味物质,且IDF含量下降,苦味降低。
DF进入消化系统后,开始快速吸收水分,形成凝胶状态,包裹食物,减少食物中的蛋白质、淀粉和脂肪的吸收,控制体重。不同方法制备的BSDF有不同的降血脂效果,WANG等[22]利用酶水解提取SDF,其可用于控制高脂血症小鼠的体重。苏玉等[23]采用复合酶-物理改性法制备BSDF,其粒径越小,OHC、CAC和促进脂肪排泄的能力越强,对高脂血症的改善作用越好。IDF与SDF的降血脂效果也不同,LI等[3]研究BSDF发现,IDF比SDF具有更强的降血脂功效,且混合物(SDF和IDF)具有协同效应。LI等[24]研究BSDF 得出,BSDF可以调节肠道菌群、脂肪酸合成和氧化相关基因的表达,改善宿主代谢,降低小鼠体重增长,改善血脂水平和血糖控制。ZHOU等[25]从代谢途径研究发现,BSDF 可通过调节过氧化物酶体增殖物激活受体和脂肪酸代谢途径来提高短链脂肪酸的水平,并可富集胆汁酸。
DF可抑制人体对胆固醇、胆酸钠、甘油三酯、低密度脂蛋白等物质的吸收,降低血脂水平,并将体内的油脂和脂肪代谢产物吸附出来,从而达到预防高血脂和胆结石等疾病的目的。邓斌等[26]通过体外吸附性能实验发现,SDF和IDF对胆酸钠的最大吸附量分别达到了151.26和108.56 mg/g,当pH=2时,SDF和IDF对的最大吸附量达到了231.92和755.27 mg/g。WANG等[22]通过酶水解法提取SDF,作为高脂血症小鼠的膳食补充剂,其总胆固醇、甘油三酯和低密度脂蛋白-胆固醇水平分别降低了28.33%、19.54%和39.02%。IKEYAMA等[27]研究发现,BSDF还可以降低高脂饮食诱导的高脂血症大鼠血清胆固醇水平和粪便pH值。
DF具有提高神经末梢对胰岛素的敏感性,抑制胰岛素产生的作用,部分葡萄糖被DF吸附,葡萄糖在胃肠道内的含量和扩散速率降低,进而实现调节血糖水平的目的。LI等[28]发现BSDF能够通过增强胰岛素信号传导和激活PGC-1α改善高脂饮食诱导的小鼠胰岛素敏感性。ZHENG等[29]研究发现TDF具有最强的降血糖效果,SDF能刺激胰岛素的分泌,改善糖尿病小鼠的状态。改性方法对BSDF降血糖效果也有一定影响,TANG等[5]发现不同的改性方法降血糖效果不同,UT-HTC法得到的BSDF对GAC的提高效果最好,而UT-HPH法得到的BSDF对α-AAIR和葡萄糖透析滞后指数的提高效果最好。HUANG等[30]发现BSDF可降低母猪的空腹血胰岛素水平、胰岛素抵抗指数、血红蛋白A1c和糖化终产物水平,提高胎盘血管密度。
抗氧化性与BSDF的自由基清除能力和还原能力有关。不同方法制备的BSDF抗氧化性不同,WANG等[22]用酶法提取的SDF具有良好的抗氧化性,其DPPH自由基清除能力、羟自由基清除能力和ABTS阳离子自由基清除能力分别为80.50%、83.39%和57.94%。DONG等[31]通过超声波辅助高温蒸煮法提取BSDF,提高了BSDF的自由基清除率和还原能力。万仁口等[32]研究发现,抗氧化能力:SDF>TDF>IDF,且抗氧化性与SDF含量呈正相关。邓斌等[26]通过体外抗氧化性研究发现,随着BSDF量的增加,其抗氧化性也逐渐增强。当质量浓度为16 mg/mL时,SDF和IDF的DPPH自由基清除率分别为45.73%和41.87%,ABTS阳离子自由基清除率分别为99.94%和15.09%。此外,KONG等[33]研究发现,BSDF中的总酚和总黄酮与其抗氧化性呈正相关,且BSDF的抗氧化性受多因素影响。LI等[3]研究BSDF表明,其可以调节脂肪酸合成和氧化相关基因的表达。
BSDF可替代一些抗炎药物来调节肠道微生物群的组成、防止肠道屏障破坏,起到抗炎和提高免疫作用。LI等[24]研究发现BSDF能够抑制葡聚糖硫酸钠诱导的小鼠体重下降、结肠缩短、结肠组织损伤、结肠黏膜溃疡和炎性细胞浸润,降低小鼠血清中白细胞介素(interleukin-1 beta,IL-1β)和白细部介素-18(interleukin-18,IL-18)的水平,抑制髓样分化蛋白-2 (myeloid differentiation protein-2,MD-2)、髓样分化因子88(myeloid differentiation primary response gene 88,MyD88)、核因子-κB(nuclear factor-kappa B,NF-κB)和NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor pyrin domain containing 3,NLRP3)信号通路的激活,恢复结肠黏膜屏障功能,调节肠道菌群平衡。同时,也有研究表明[34],BSDF添加到饲料中可改变猪的肠道微生物群落和抑制炎症。
DF还可以改善肠道菌群,增加有益菌群,降解低聚糖,生成短链脂肪酸,抑制肿瘤细胞的生长增殖和癌症基因的表达。GE等[35]研究竹笋的IDF在体外人类粪便发酵过程中对短链脂肪酸(short-chain fatty acids,SCFAs)的产生和肠道菌群的影响发现BSDF显著增加了拟杆菌门的相对丰度,并抑制了腹背菌门的活性,且两种肠道微生物与体重密切相关。碱法制备的IDF中的纤维素、半纤维素和木质素与SCFAs呈显著正相关,导致了乙酸、丙酸、丁酸和总SCFAs的含量升高。SDF与IDF对不同菌群作用不同,WU等[36]通过体外发酵实验发现,竹笋的SDF对乳酸杆菌和双歧杆菌的促进作用比IDF更强,且IDF与SDF实验组比对照组中总SCFAs浓度分别增加了1.28倍和0.71倍。BSDF在体外发酵的过程中可以降低发酵液的pH值,提高碳水化合物的利用率,调节溃疡性结肠炎小鼠肠道菌群的代谢物水平。ZHOU等[25]研究发现BSDF可以缓解与肥胖相关的代谢紊乱。
4.1.1 BSDF在饼干中的应用
添加BSDF可以提高饼干的品质,口感。此外,VANLALLIANI等[37]使用质量分数为6%和8%的竹笋粉替代精制小麦粉,制作出了具有较高感官评分和营养价值的饼干。BSDF还可以作为乳化剂来稳定水油两相体系,乳液的粒径大小和稳定性受BSDF的固含量、油水比、均质次数等因素影响,粒径变小、比表面积增加、孔隙度提高的BSDF可以提升乳液稳定性。何康慧[38]发现经过HPH改性后的BSDF具有纳米级的丝状结构,可用于稳定低内相和中内相的O/W型Pickering乳液。将BSDF稳定的大豆油乳液作为脂肪替代物应用在饼干中,不影响饼干的外观和口感,而且可以减少热量、增加纤维含量,并抑制脂肪的消化。
4.1.2 BSDF在面团中的应用
BSDF可以作为改良剂或膨松剂添加到面团中改善面团的流变体性质和质量品质。张华等[19]在冷冻面团中添加BSDF,提高了面团的弹性和黏性模量,改变其水分分布,增强持水能力,改善微观结构,使淀粉颗粒与面筋网络排列更加均匀。张艳艳等[39]在冻藏面团中添加BSDF也得到类似的结论,而且添加BSDF还可以减少面团的蒸煮损失率,吸水率提高,延迟弛豫时间。
4.1.3 BSDF在淀粉中的应用
WANG等[40]研究了不同添加量和粒径的BSDF对大米淀粉性质的影响,发现BSDF的添加能够改善大米淀粉的功能特性,随着BSDF含量的增加,黏度和糊化时间降低,其他糊化参数、贮存模量和损失模量增加,电静力相互作用和氢键作用提高,结晶区和短程有序结构增加,且小粒径的BSDF会产生高吸水性,从而降低大米淀粉的峰值黏度、最终黏度、硬度、贮存模量和损耗模量。黄艺等[41]在大米淀粉中添加BSDF后,降低了淀粉黏度,抑制了短期回生并提升颗粒热稳定性。随着BSDF添加量的增加,其剪切应力呈递减趋势,凝胶结构的不规则孔洞显著增加。WANG等[8]发现BSDF与大米淀粉混合后再经过DHPM改性可以降低淀粉的糊化黏度和黏弹性,增加了凝胶化焓和相对结晶度和抗性淀粉分数,淀粉的水解程度和速率降低。WANG等[42]还对比了挤压改性对添加和不添加BSDF的大米淀粉的影响,结果表明BSDF与直链淀粉和支链淀粉相互作用增加了其流变性、相对结晶度、有序结构和支化程度,降低了快消化淀粉含量。当BSDF质量分数为9%时,大米淀粉的流变性和相对结晶度达到最大值,快消化淀粉含量达到最小值。此外SAMPAIO等[43]发现BSDF的添加显著提高了挤压过程中的扭矩和比机械能,增加了产品的硬度和水溶性指数,降低了产品的扩展比和糊化特性,且所有挤压食品都表现出双歧杆菌活性。
BSDF可以作为增稠剂来提高肉制品的凝胶强度和质构特性,改善其持水力和产品特性。宋玉[44]将猪皮、水和改性后的BSDF按比例混合制备成凝胶作为脂肪代替物应用于中式香肠,提高了香肠中的水分、蛋白质含量和质构特性,并得出低脂香肠的最佳工艺条件为:BSDF质量分数4.2%、脂肪质量分数15.2%、淀粉质量分数3.2%,相较于传统香肠,低脂香肠的脂肪含量降低了4.8%。李可等[45]研究发现BSDF能够显著提高猪肉盐溶性蛋白(pork salt-soluble protein,PSSP)凝胶的强度、弹性、稳定性和保水性,且添加量为3%时效果最佳。随着BSDF添加量增加,SSP凝胶体系的储能模量和损失模量明显增加,蒸煮损失和离心损失显著降低,凝胶功能特性明显改善。李可等[46]发现BSDF结合预乳化技术显著降低低脂猪肉糜的L*值、脂肪含量和总能量,显著增加低脂猪肉糜的a*值、b*值和乳化稳定性。LI等[47]研究表明BSDF能够提高猪肉糊的水分保持能力、硬度和凝胶强度,减少烹饪损失和挤出水分,改善凝胶的弹性和黏性,形成更均匀和紧密的微观结构,增加不易流动的水分比例,降低自由水比例。
FANG等[14]发现BSDF的添加能显著提高纤维强化酸奶的品质特性,包括黏度、持水力、感官品质等,其中酶解-DHPM联合方法对酸奶的口感影响最小。HE等[48]将BSDF用作水包油(O/W)Pickering乳化液的植物食品颗粒稳定剂,获得了具有新颖乳化能力的植物食品颗粒,其在4周内稳定,且对pH值、离子强度和巴氏杀菌条件不敏感。BSDF悬浮液和BSDF稳定的O/W乳化液均表现出剪切变稀行为。此外,随着BSDF含量的增加,乳化液的黏度和模量均增加,乳化液的表面覆盖率与BSDF悬浮液的含量呈正相关。ZHAO等[49]研究发现通过使用Lactiplantibacillus plantarum发酵红枣和竹笋,可以生产一种新型低糖饮料,改善了饮料中的多种营养成分和抗氧化指标,蔗糖质量分数降低了44.10%,总酚质量分数增加了11.09%,总抗氧化能力和超氧阴离子清除能力分别增加了12.30%和59.80%。ZHENG等[50]研究发现BSDF和牛奶布丁复合体系是一种典型的具有屈服应力的假塑性流体。随着BSDF添加量的增加,系统的流动性减弱,弹性增强,并在2 g BSDF/100 g时达到峰值,此时系统的稳定性最接近固体。BSDF使颗粒间的聚集更紧密,与凝胶体系结合使微观结构更致密。
竹笋膳食纤维是天然可再生生物质-竹笋的主要成分,其具有来源丰富,分布范围广的特点。以笋壳、笋头等竹笋为原料制备竹笋膳食纤维,既变废为宝,又避免了环境污染,对于竹笋产业的发展具有重要意义。此外,竹笋还可以直接制备成竹笋膳食纤维粉添加剂,广泛应用于大食品领域。最新研究表明,竹笋膳食纤维具有降血脂、降胆固醇、降血糖、抗氧化、抗炎、改善肠道微生物等功能活性,显著提升了竹笋膳食纤维的开发利用价值。近年来,竹笋膳食纤维的应用得到一定发展,主要用于面条、粉丝、烘焙食品(饼干、面包等)、肉制品、奶制品和饮料等领域,但附加值较低。为了提升竹笋膳食纤维的附加值,通过改性增强竹笋膳食纤维的功能活性,制备功能食品,将是未来竹笋膳食纤维开发的一个重要方向。竹笋膳食纤维的主要成分为纤维素等,还可进一步开发药用辅料、功能材料等系列高附加值产品。因此,未来竹笋膳食纤维的开发利用还具有广阔的空间。
[1] 张延平.浙、闽、川、湘竹笋及产地土壤POPs的分布与健康风险评估[D].北京:中国林业科学研究院,2018.ZHANG Y P.Distribution and health risk assessment of POPs in bamboo shoots and soils of origin in Zhejiang,Fujian,Sichuan and Hunan[D].Beijing:Chinese Academy of Forestry Sciences,2018.
[2] 李玉敏,冯鹏飞.基于第九次全国森林资源清查的中国竹资源分析[J].世界竹藤通讯,2019,17(6):45-48.LI Y M,FENG P F.Bamboo resources in China based on the ninth national forest inventory data[J].World Bamboo and Rattan Newsletter,2019,17(6):45-48.
[3] LI Q,FANG X J,CHEN H J,et al.Retarding effect of dietary fibers from bamboo shoot (Phyllostachys edulis) in hyperlipidemic rats induced by a high-fat diet[J].Food &Function,2021,12(10):4696-4706.
[4] TANG Y M,LI A P,XIAO J P,et al.Effects of bamboo shoots (Phyllostachys edulis) dietary fibers prepared by different processes on the adsorption characteristics of polyphenols[J].Journal of Food Biochemistry,2021,45(5):e13721.
[5] TANG C D,YANG J L,ZHANG F S,et al.Insight into the physicochemical,structural,and in vitro hypoglycemic properties of bamboo shoot dietary fibre:Comparison of physical modification methods[J].International Journal of Food Science and Technology,2022,57(8):4998-5010.
[6] 刘欣,姜鹏飞,傅宝尚,等.竹笋膳食纤维的提取、生理功能特性及其在食品中的应用[J].食品与发酵工业,2023,49(3):354-362.LIU X,JIANG P F,FU B S,et al.Extraction,physiological and functional properties of dietary fiber from bamboo shoots and its application in food[J].Food and Fermentation Industry,2023,49(3):354-362.
[7] 彭昕.雷竹笋水溶性膳食纤维提取及其应用特性研究[D].长沙:中南林业科技大学,2017.PENG X.Study on the extraction of water-soluble dietary fiber from thunder bamboo shoots and its application characteristics[D].Changsha:Central South University of Forestry and Technology,2017.
[8] WANG N,WU L R,HUANG S,et al.Combination treatment of bamboo shoot dietary fiber and dynamic high-pressure microfluidization on rice starch:Influence on physicochemical,structural,and in vitro digestion properties[J].Food Chemistry,2021,350:128724.
[9] TANG C D,WU L R,ZHANG F S,et al.Comparison of different extraction methods on the physicochemical,structural properties,and in vitro hypoglycemic activity of bamboo shoot dietary fibers[J].Food Chemistry,2022,386:132642.
[10] 邓斌.竹笋壳棕色素的提取及残渣利用技术研究[D].贵阳:贵州民族大学,2022.DENG B.Research on extraction and residue utilization technology of brown pigment from bamboo shoot shells[D].Guiyang:Guizhou Minzu University,2022.
[11] 史辉,周泽林,余文华,等.响应面法优化竹笋中不溶性膳食纤维的超声辅助提取工艺[J].食品与发酵科技,2019,55(2):14-18;21.SHI H,ZHOU Z L,YU W H,et al.Optimization of ultrasonic-assisted extraction process for insoluble dietary fiber from bamboo shoots by response surface analysis[J].Food and Fermentation Science and Technology,2019,55(2):14-18.
[12] GARCIA-AMEZQUITA L E,TEJADA-ORTIGOZA V,SERNA-SALDIVAR S O,et al.Dietary fiber concentrates from fruit and vegetable by-products:Processing,modification,and application as functional ingredients[J].Food and Bioprocess Technology,2018,11(8):1439-1463.
[13] LI B,YANG W,NIE Y Y,et al.Effect of steam explosion on dietary fiber,polysaccharide,protein and physicochemical properties of okara[J].Food Hydrocolloids,2019,94:48-56.
[14] FANG D Y,WANG Q,CHEN C H,et al.Structural characteristics,physicochemical properties and prebiotic potential of modified dietary fibre from the basal part of bamboo shoot[J].International Journal of Food Science and Technology,2021,56(2):618-628.
[15] YANG M,WU L R,CAO C J,et al.Extrusion improved the physical and chemical properties of dietary fibre from bamboo shoot by-products[J].International Journal of Food Science and Technology,2021,56(2):847-856.
[16] 汤彩碟,张甫生,杨金来,等.机械球磨处理对方竹笋全粉理化特性及微观结构的影响[J].食品与发酵工业,2022,48(12):175-182.TANG C D,ZHANG F S,YANG J L,et al.Effect of mechanical ball milling treatment on physicochemical properties and microstructure of whole Chimonobambusa quadrangularis[J].Food and Fermentation Industries,2022,48(12):175-182.
[17] YANG K,YANG Z H,WU W J,et al.Physicochemical properties improvement and structural changes of bamboo shoots (Phyllostachys praecox f.Prevernalis) dietary fiber modified by subcritical water and high pressure homogenization:a comparative study[J].Journal of Food Science and Technology-Mysore,2020,57(10):3659-3666.
[18] YANG M,WU L R,CAO C J,et al.Improved function of bamboo shoot fibre by high-speed shear dispersing combined with enzyme treatment[J].International Journal of Food Science and Technology,2019,54(3):844-853.
[19] 张华,李银丽,李佳乐,等.竹笋膳食纤维对冷冻面团流变学特性、水分分布和微观结构的影响[J].食品科学,2018,39(1):53-57.ZHANG H,LI Y L,LI J L,et al.Effect of bamboo shoot dietary fiber on rheological properties,moisture distribution and microstructure of frozen dough[J].Food Science,2018,39(1):53-57.
[20] ZHANG Y J,WU L R,ZHANG F S,et al.Sucrose ester alleviates the agglomeration behavior of bamboo shoot dietary fiber treated via high pressure homogenization:Influence on physicochemical,rheological,and structural properties[J].Food Chemistry,2023,413:135609.
[21] WANG L,LUO Y Y,ZHANG Y,et al.Quality analysis of ultra-fine whole pulp of bamboo shoots (Chimonobambusa quadrangularis) fermented by Lactobacillus plantarum and Limosilactobacillus reuteri[J].Food Bioscience,2023,52:102458.
[22] WANG C H,NI Z J,MA Y L,et al.Antioxidant and hypolipidemic potential of soluble dietary fiber extracts derived from bamboo shoots (Phyllostachys Praecox)[J].Current Topics in Nutraceutical Research,2018,17(2):195-205.
[23] 苏玉,李璐,黄亮,等.超微化雷竹笋膳食纤维对高脂血症小鼠的影响[J].食品科学,2019,40(15):203-210.SU Y,LI L,HUANG L,et al.Effect of ultramicronized dietary fiber from thunder bamboo shoots on hyperlipidemic mice[J].Food Science,2019,40(15):203-210.
[24] LI Q,WU W J,FANG X J,et al.Structural characterization of a polysaccharide from bamboo (Phyllostachys edulis) shoot and its prevention effect on colitis mouse[J].Food Chemistry,2022,387:132807.
[25] ZHOU X L,MA L J,DONG L,et al.Bamboo shoot dietary fiber alleviates gut microbiota dysbiosis and modulates liver fatty acid metabolism in mice with high-fat diet-induced obesity[J].Frontiers in Nutrition,2023,10:1161698.
[26] 邓斌,祖林鹏,杨成,等.竹笋壳不溶性膳食纤维制备工艺优化及功能性质研究[J].中国食品添加剂,2022,33(8):18-27.DENG B,ZU L P,YANG C,et al.Optimization of preparation process and functional properties of insoluble dietary fiber from bamboo shoot shell[J].China Food Additives,2022,33(8):18-27.
[27] IKEYAMA N,SAKAMOTO M,OHKUMA M,et al.Fecal microbiota perspective for evaluation of prebiotic potential of bamboo hemicellulose hydrolysate in mice:A preliminary study[J].Microorganisms,2021,9(5):888.
[28] LI X F,FU B T,GUO J,et al.Bamboo shoot fiber improves insulin sensitivity in high-fat diet-fed mice[J].Journal of Functional Foods,2018,49:510-517.
[29] ZHENG Y F,WANG Q,HUANG J Q,et al.Hypoglycemic effect of dietary fibers from bamboo shoot shell:An in vitro and in vivo study[J].Food and Chemical Toxicology,2019,127:120-126.
[30] HUANG S B,WU D Y,HAO X Y,et al.Dietary fiber supplementation during the last 50 days of gestation improves the farrowing performance of gilts by modulating insulin sensitivity,gut microbiota,and placental function[J].Journal of Animal Science,2023,101:skad021.
[31] DONG Y F,LI Q,ZHAO Y H,et al.Effects of ultrasonic assisted high-temperature cooking method on the physicochemical structure characteristics and in vitro antioxidant capacities of dietary fiber from Dendrocalamus brandisii Munro shoots[J].Ultrasonics Sonochemistry,2023,97:106462.
[32] 万仁口,贺杨正,李功景,等.酶解制备竹笋可溶性膳食纤维及其抗氧化活性研究[J].中国食品学报,2021,21(3):153-160.WAN R K,HE Y Z,LI G J,et al.Preparation and antioxidant activity of bamboo shoot soluble dietary fiber extracted by enzyme method[J].Journal of Chinese Institute of Food Science and Technology,2021,21(3):153-160.
[33] KONG C K,TAN Y N,CHYE F Y,et al.Nutritional composition and biological activities of the edible shoots of Bambusa vulgaris and Gigantochloa ligulata[J].Food Bioscience,2020,36:100650.
[34] SUN C S,SONG R,ZHOU J Y,et al.Fermented bamboo fiber improves productive performance by regulating gut microbiota and inhibiting chronic inflammation of sows and piglets during late gestation and lactation[J].Microbiology Spectrum,2023:e0408422.
[35] GE Q,LI H Q,ZHENG Z Y,et al.In vitro fecal fermentation characteristics of bamboo insoluble dietary fiber and its impacts on human gut microbiota[J].Food Research International,2022,156:111173.
[36] WU W,HU J,GAO H,et al.The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics[J].Food Chemistry,2020,332:127372.
[37] VANLALLIANI,DHIMAN A K,KATHURIA D.Effect of packaging on quality attributes of functional cookies during storage[J].Journal of Food Processing and Preservation,2022,46(3):e16386.
[38] 何康慧.竹笋水不溶性膳食纤维稳定Pickering乳液及其应用[D].武汉:华中农业大学,2020.HE K H.Stabilization of Pickering emulsion with water-insoluble dietary fiber from bamboo shoots and its application[D].Wuhan:Huazhong Agricultural University,2020.
[39] 张艳艳,肖乃勇,张宁,等.竹笋膳食纤维对冻藏过程中面团加工特性、水分分布及微观结构的影响[J].食品科技,2018,43(10):200-206.ZHANG Y Y,XIAO N Y,ZHANG N,et al.Effect of bamboo shoots dietary fiber on processing characteristics and water distribution during dough freeze storage[J].Food Science and Technology,2018,43(10):200-206.
[40] WANG N,HUANG S,ZHANG Y,et al.Effect of supplementation by bamboo shoot insoluble dietary fiber on physicochemical and structural properties of rice starch[J].LWT,2020,129:109509.
[41] 黄艺,张同芳,张甫生,等.方竹笋超微粉对大米淀粉理化和结构特性的影响[J].食品与发酵工业,2022,48(22):95-100;109.HUANG Y,ZHANG T F,ZHANG F S,et al.Effects of Chimonobambusa quadrangularis shoot superfine powder on physicochemical and structural properties of rice starch[J].Food and Fermentation Industry,2022,48(22):95-100;109.
[42] WANG N,WU L R,ZHANG F S,et al.Modifying the rheological properties,in vitro digestion,and structure of rice starch by extrusion assisted addition with bamboo shoot dietary fiber[J].Food Chemistry,2022,375:131900.
[43] SAMPAIO U M,DA SILVA M F,GOLDBECK R,et al.Technological and prebiotic aspects of young bamboo culm flour (Dendrocalamus latiflorus) combined with rice flour to produce healthy extruded products[J].Food Research International,2023,165:112482.
[44] 宋玉.竹笋膳食纤维的改性及在中式香肠中的应用研究[D].贵阳:贵州大学,2018.SONG Y.Research on the modification of bamboo shoot dietary fiber and its application in Chinese sausage[D].Guiyang:Guizhou University,2018.
[45] 李可,刘俊雅,扶磊,等.竹笋膳食纤维对猪肉盐溶性蛋白热诱导凝胶特性的影响[J].食品科学,2019,40(4):56-61.LI K,LIU J Y,FU L,et al.Effect of bamboo shoot dietary fiber on thermal gelling properties of pork salt-soluble proteins from pork[J].Food Science,2019,40(4):56-61.
[46] 李可,李燕,刘俊雅,等.竹笋膳食纤维结合预乳化植物油对低脂猪肉糜乳化稳定性和流变学特性的影响[J].食品与发酵工业,2020,46(20):9-14.LI K,LI Y,LIU J Y,et al.Effect of bamboo shoot dietary fiber combined with pre-emulsified vegetable oil on emulsion stability and rheological properties of lower-fat meat batters[J].Food and Fermentation Industries,2020,46(20):9-14.
[47] LI K,LIU J Y,FU L,et al.Effect of bamboo shoot dietary fiber on gel properties,microstructure and water distribution of pork meat batters[J].Asian-Australasian Journal of Animal Sciences,2020,33(7):1180-1190.
[48] HE K H,LI Q,LI Y,et al.Water-insoluble dietary fibers from bamboo shoot used as plant food particles for the stabilization of O/W Pickering emulsion[J].Food Chemistry,2020,310:125925.
[49] ZHAO C M,DU T,LI P,et al.Production and characterization of a novel low-sugar beverage from red jujube fruits and bamboo shoots fermented with selected Lactiplantibacillus plantarum[J].Foods,2021,10(7):1439.
[50] ZHENG J,WU J H,DAI Y Y,et al.Influence of bamboo shoot dietary fiber on the rheological and textural properties of milk pudding[J].LWT,2017,84:364-369.
ZHANG Jie,GUO Rencong,WU Liangru,et al.Research progress of bamboo shoots dietary fiber and its application[J].Food and Fermentation Industries,2024,50(18):384-390.