柑橘果皮重要成分及其应用研究进展

刘雪峰1,杨梅1,向苹苇1,马晓丽1,胡德玉2,杨茂盛3,袁项成1*

1(重庆三峡农业科学院,重庆,404155)2(重庆市万州区经济作物发展中心,重庆,404120) 3(重庆市涪陵区经济作物发展中心,重庆,408099)

摘 要 柑橘果皮含有丰富的生物活性物质,具有重要的营养、保健和医学价值。该文系统总结了近年来在柑橘果皮的重要生物活性成分和加工应用方面的研究进展。柑橘果皮中富含的生物活性物质主要有黄酮类、生物碱类、香精油、柠檬苦素类、果胶、膳食纤维和类胡萝卜素等,具有抗氧化活性、抗菌消炎活性、抗糖尿病活性、抗肥胖活性、抗心脑血管疾病活性和抗癌活性等,不同品种的柑橘果皮已被应用于生产药物、食品或食品添加剂、食品包装、动物饲料、有机肥和生物燃料等,从柑橘果皮活性成分深入挖掘和综合利用方面进行了展望,以期为柑橘果皮在食品、医药等领域的合理开发和综合应用提供参考。

关键词 柑橘;果皮;活性成分;加工应用

柑橘是世界上种植最广泛的农作物之一[1],也是世界上第一大水果。目前,世界柑橘年产量已达1.58亿t,约有三分之一会被加工,进而每年会产生大量的柑橘“残渣”[2]。柑橘果皮约占果实总质量的25%~40%,是“残渣”的重要组成部分,如果不进一步加工利用,柑橘果皮大部分会被直接丢弃,没有有效的再利用,并导致严重的环境污染。在一些国家,柑橘果皮经过干燥或者加工后,被用来治疗或预防消化不良、呕吐和哮喘等[3]

柑橘果皮是精油、果胶和黄酮类化合物等的重要来源,由于其成分多样,具有诸多生物活性、抗氧化活性、抗炎特性和其他对人类健康的重要益处,具有重要的营养、保健和医学价值[4]。近年来,柑橘果皮富含的多甲氧基黄酮(polymethoxylated flavones, PMFs)在治疗痴呆、阿尔茨海默病显示出积极作用,在食品和制药行业引起了广泛的关注[5-6]。值得注意的是,最近有研究者发现柑橘果皮中橙皮苷和新橙皮苷为冠状病毒SARS-CoV-2的蛋白酶3Clpro和PLpro的抑制剂,表明柑橘果皮具有预防或治疗新型冠状病毒肺炎的潜力[7]。众多研究表明,柑橘果皮不是废物,而是一种未被充分开发利用的宝贵资源。因此,本文对柑橘果皮的主要活性成分与应用进行了全面总结展望,以期为柑橘果皮在食品、医药等领域的合理开发和综合应用提供参考。

1 主要活性成分

柑橘果皮中富含有多种生物活性物质,包括黄酮类(flavonoids)、生物碱类(alkaloids)、香精油(essential oils)、柠檬苦素类(limonins)、果胶(pectin)、膳食纤维(dietary fiber)和类胡萝卜素(carotenoids)等,具有保持健康、防治疾病的功能,可以药用[8]。目前,已从柑橘果皮中分离和鉴定出了大约140种化学成分。

1.1 黄酮类

黄酮类化合物是以黄酮(flavone)为母核而衍生的一类黄色色素,广泛分布于水果和蔬菜中,特别是它们的果皮中[9]。根据三碳键(C3)结构的氧化程度和B环的连接位置等特性,黄酮类化合物可分为下列九类:黄酮和黄酮醇(flavonol);黄烷酮(flavanone)和黄烷酮醇(dihydroglavonol);异黄酮(isoflavone);异黄烷酮(isoflavanone);查耳酮(chalcone);二氢查耳酮(dihydrochalcone);橙酮(aurone);黄烷(flava)和黄烷醇(flavanol)。目前已经从柑橘类植物中分离鉴定出60多种黄酮类单体[10],绝大部分以黄烷酮和PMFs两种形式存在[11]。黄烷酮是柑橘属植物中最重要的黄酮类物质,约占类黄酮总量的80%,大多以糖苷的形式存在,如橙皮苷(hesperidin)、芸香柚皮苷(narirutin)、新橙皮苷(neohesperidin)及柚皮苷(naringin)等[12]。第二类是PMFs,它是柑橘属植物中的特有成分,较一般黄酮类化合物具有更强的生理活性,较为常见的有川陈皮素(nobiletin)、橘皮素(tangeretin)以及甜橙黄酮(sinensetin)[13]。PMFs具有较少的极性和近似的平面结构,其对生物膜的渗透性强,容易被血液吸收[14]。甲氧基的数量和位置对PMFs的生物学功能有很大的影响,随着甲氧基含量的增加,PMFs在接近和穿透癌细胞时具有更高的疏水性,而具有更强的生物活性[15]。从柑橘果皮中提取的黄酮类化合物具有广泛的生物活性,包括抗氧化、抗炎、抑菌、抗病毒、抗过敏、保护神经系统、预防动脉粥样硬化、抗肿瘤等[16-19]。其在生物医学领域拥有巨大的应用潜力。

1.2 生物碱类

生物碱是存在于自然界中的一类含氮的碱性有机化合物,大多数具有含氮杂环,有旋光性和明显的生物活性,是中草药中重要的有效成分之一。现代药理学研究表明生物碱具有调节血脂的功效,通过阻止胆酸或胆固醇从肠道吸收,促进胆酸或胆固醇从粪便排出;抑制胆固醇的体内合成;促进胆固醇的转化,增强细胞膜上低密度脂蛋白受体表达,加快低密度脂蛋白胆固醇清除,加速脂蛋白分解;激活脂蛋白代谢酶类,促进三酰甘油的水解;阻止其他脂质的体内合成,或促进其他脂质的代谢等途径达到降血脂的效果[20]。柑橘属植物中存在的生物碱类化合物主要有羟苯乙醇胺(octopamine)、辛弗林(synephrine)、酪胺(tyramine)、N-甲基酪胺(N-methyltyramine)、大麦芽碱(hordenine)等苯乙胺生物碱[21]。辛弗林是柑橘果皮中最丰富的生物碱,具有收缩血管、增加高血压、扩张气管的作用,还能改善代谢、增加热量消耗、氧化脂肪、减肥等[22-25]。但是,目前关于柑橘果皮中辛弗林的安全性存在较大争议,虽然已有部分研究人员开展了部分药效试验对其药理作用和安全性进行了初步评价,但以急性毒性实验为主[26-27],更多的亚慢性毒性实验和慢性实验有待于进一步系统开展,为安全性评价提供更为全面的依据。

1.3 柠檬苦素类

柠檬苦素类似物是一系列天然的四环三萜化合物,广泛存在于楝科和芸香科植物中[28-29]。芸香科植物中柠檬苦素类似物主要有柠檬苦素苷元类、降解型柠檬苦素类和糖苷型柠檬苦素类。柑橘中柠檬苦素类似物以苷元和糖苷的形式存在,苷元是引起后苦味的主要原因,水溶性差,糖苷水溶性良好且几乎无苦味,在强酸和强碱条件下发生水解,生成相应的苷元和葡萄糖[30]。柑橘果皮中的柠檬苦素类似物主要有柠檬苦素(limonin)、诺米林(nomilin)、脱乙酰诺米林(deacetylnomilin)、黄柏酮(obacunone)、柠檬苦素酸(limonexic acid)、异柠檬苦素酸(isolimonexic acid)、枸橼苦素(citrusin)、宜昌素(ichangensin)等[31],具有抗癌、抗氧化、抗病毒、降低胆固醇、防止动脉粥样硬化、镇痛催眠、消炎抑菌、抗疟杀虫等生物活性[32-35],在医学和农业植保领域有广阔的开发利用前景。然而,这些生物活性已通过体外试验并得到了很好的评价,但由于其不稳定性和通过口服途径的生物利用度较差,无法在体内达到预期的药理活性[32]。因此,如何提高其稳定性及生物利用度是下一步需要攻克的技术难点。

1.4 香精油

柑橘精油主要集中在柑橘果皮的油腺中,是一类由萜烯和萜烯氧化物所组成的具有挥发性的复杂混合物,其中含有多种挥发性化学物质,如柠檬烯(limonene)、α/β-蒎烯(α/β-pinene)、β-月桂烯(β-myrcene)、芳樟醇(linalool)、α-葎草烯(α-humulene)和α-萜品醇(a-terpineol),这些物质具有抗氧化、抗炎、抗菌和促进伤口愈合的活性[36]。大多数柑橘果皮中的精油主要成分是单萜化合物和倍半萜化合物及其含氧衍生物(醇类、醛类、酯类、酮类和酚类)[37]。其中柠檬烯是柑橘精油的主要成分,占32%~98%[38-39],醇、醛和酯等含氧化合物虽然含量不足5%,却是柑橘精油香气的主要来源[40]

近年来,柑橘精油以其广谱的抗菌活性以及残留毒性小的优势受到广泛的关注[41]。橘子精油[42-43]、柠檬精油[44-45]、佛手柑精油[46-47]、甜橙精油[48-51]、葡萄柚精油[52]等不同品种柑橘精油的抗菌活性得到有效验证。此外,OBOH等[53]发现橙子果皮精油通过抑制α-葡萄糖苷酶和α-淀粉酶的活性来控制碳水化合物代谢,进而控制2型糖尿病。在体外研究中,橙子、柚子和葡萄柚皮被证明能抑制结肠癌细胞中的蛋白酶体活性[54]。YANG等[55]研究发现,橙皮精油可抑制人肺癌细胞A549和前列腺癌细胞22RV-1的增殖。

综上,柑橘果皮精油广谱的抗菌活性使其在食品保鲜中具有巨大应用潜力,而其抗癌活性又让医学工作者看到了在疾病治疗方面的利用价值。

1.5 果胶

柑橘果胶主要存在于柑橘果皮的细胞壁中,是柑橘中主要的水溶性功能成分之一,其含量占果皮干重的20%~30%。结构分析表明,果胶的骨架由甲基化的聚-α-D-半乳糖醛酸残基组成[56]。植物中,由半乳糖醛酸单体构成的线性同型半乳糖醛酸聚糖(homogalacturonan,HG)是主要的果胶成分,占比65%,具有侧链结构的鼠李半乳糖醛酸聚糖Ⅰ占比20%~35%,鼠李半乳糖醛酸聚糖Ⅱ占比2%~10%[57-59] 。果胶作为一种天然的食品添加剂和保健品,可广泛应用于食品、医药保健品和一些化妆品中。酯化度和胶凝度是影响果胶应用的主要因素。酯化度又称甲氧基化,指果胶中甲酯化、乙酰化和酰胺化比例的总和。根据酯化度的差异,果胶分为低酯果胶(25%~50%)和高酯果胶(50%~80%)[60]。有研究发现橙皮果胶的酯化程度为69.8%[61],可以归类为高酯果胶,在高浓度糖和酸性pH条件下会形成凝胶[62]。柑橘果皮中含有极为丰富的果胶,以现有的提取方法通常能达到20%以上的产出率,全球85.5%的工业果胶都是从柑橘果皮中提取到的[63]

柑橘类果胶因对人体有益而被广泛研究。已有研究证明它可以改善肠道炎症,降低心脏病发病率和降低血液胆固醇水平[64-65]。然而,柑橘类果胶仍然存在一些理化特性的缺陷,如当它分散在水中时,会形成结块。柑橘果胶由于其分子质量和结构特点,难以被人体消化道消化。因此,有必要对柑橘类果胶进行修饰,以增强其功能属性。柑橘类果胶可以通过调节pH值(低或高)、辐射、热或酶等处理修饰[66]。与天然柑橘果胶相比,改性果胶具有更广阔的应用前景,由于分子质量较低,因此更容易通过小肠绒毛进入人体血液。

1.6 膳食纤维

膳食纤维是指不能被人体小肠消化吸收,而对人体有保健功能的多糖类物质,具有调节人体血压、血糖、血脂代谢等生理作用,被誉为第七种营养素[67]。膳食纤维根据物理、化学和功能性质可以分为可溶性膳食纤维和不溶性膳食纤维[68],果胶属于可溶性膳食纤维,不溶性膳食纤维通过软化粪便来预防便秘问题。推荐男性的膳食纤维日摄入量为30~38 g,女性为20~25 g[69]。柑橘果皮是膳食纤维重要来源之一,其中的可溶性膳食纤维含量是其他来源膳食纤维的几倍甚至几十倍[70],这一点尤其重要,因为人们摄入的膳食纤维必须是平衡的,即水可溶部分必须占总量的30%~50%[71]。WANG等[72]对5种柑橘类植物膳食纤维的理化性质和生化特性进行了研究,发现不同柑橘品种的膳食纤维理化性质和生化特性有所不同。为了最大限度地发挥膳食纤维良好的加工特性、生理活性和保健功能,可以利用高温、高压、超微粉碎、微波、蒸汽爆破和酸碱处理等将膳食纤维改性[73-74],这将有助于更好的开发膳食纤维功能性食品。

1.7 类胡萝卜素

类胡萝卜素是一类重要的天然色素的总称,普遍存在于动物、高等植物、真菌、细菌和藻类之中,已经鉴定出700多种结构和几何异构体[75]。类胡萝卜素对植物的生存和人类的健康都是必不可少的[76],其具有调节脂质代谢、保护视力、减缓神经退行性病变、保护心血管、抑制癌细胞生长、提高机体免疫力等多种功能特性[77]。然而,人体自身不能合成类胡萝卜素,只能通过饮食摄取[78]。柑橘是全球膳食类胡萝卜素的重要来源,在所有水果中类胡萝卜素种类最多,柑橘中大约发现了115种类胡萝卜素[79]。柑橘果皮中的主要的类胡萝卜素包括叶黄素(lutein)、玉米黄质(zeaxanthin)、β-柠乌素(β-citraurin)、9Z-紫黄质(9Z-violaxanthin)、β-隐黄质(β-cryptoxanthin)、β-胡萝卜素(β-carotene)和α-胡萝卜素(α-carotene)等,最后2种含量极低[80-82]。不同柑橘品种果皮的类胡萝卜素组成和含量存在差异,使柑橘类果实呈现黄色、橙色、红色和深红色等[83]

2 加工应用现状

目前,不同品种的柑橘果皮已被应用于药物、食品、添加剂生产,甚至包括乙醇和甲烷的生产,以及作为动物饲料或有机肥等。

2.1 草药

中医认为,成熟的柑橘果皮经干燥处理后是一种重要的中草药,数千年来一直被广泛用于支气管炎、哮喘等呼吸系统和消化系统疾病的治疗[84]。在我国南方,干燥的成熟柑橘果皮因其保健作用而经常搭配肉类炖成汤,搭配豆类和米饭煮成粥,或加工成各种零食。在中国不同地区,对干燥的成熟柑橘果皮的称谓各不相同,有广陈皮、新陈皮、苏红皮、樟头红等。在日本,柑橘类成熟果皮也会被用来制作“陈皮”和“橙皮”[85]。在韩国,干燥的柑橘果皮被称为“金皮”,是一种草药。干燥的成熟柑橘果皮的整体质量受到品种、加工、贮藏时间等诸多因素的影响。民间的传统经验认为,贮存时间越长的干燥的成熟柑橘果皮质量越好。然而,最近有研究发现,随着贮存时间的延长,干燥的成熟柑橘果皮中的代谢物先增加后减少,不同用途的橘皮最佳贮藏时间不同[86]。目前,干燥的成熟柑橘果皮的应用并不局限于呼吸和胃肠道系统,还涉及到心血管、抗肿瘤、抗氧化、抗炎等多个方面[87]。然而,对干燥的成熟柑橘果皮的药物用途的系统研究比较缺乏,其作用机制仍有待进一步深入研究。

2.2 食品和食品添加剂

目前,柑橘果皮已经以不同形式出现在许多家庭的餐桌上[88]。饼干生产中添加15%的橘子皮可显著改善膳食纤维,并达到最佳感官品质,同时可以增强饼干抗氧化特性,并抑制饼干样品的脂质过氧化[89-90]。在蛋糕中加入柠檬皮粉,降低了过氧化物含量,增加了蛋糕的硬度,对感官品质基本无影响[91]。ADEMOSUN等[92]通过添加橙子皮生产出了低血糖指数的冰淇淋,在对感官品质没有不利影响的前提下提高了冰淇淋的抗氧化性。此外,柑橘果皮饮料因其独特的香气和口味而成为最受欢迎的饮料之一,ADEMOSUN等[93]研究表明,柑橘果皮饮料的抗氧化性能低于绿茶,但其单胺氧化酶(monoamine oxidase,MAO)和丁酰胆碱酯酶(butyrylcholinesterase,BChE)抑制能力高于绿茶。

从柑橘果皮提取的果胶,可以作为多种食品的添加剂,例如制作低糖果酱、果冻[94]和方便面[95]等,它还被用作沙拉酱、冰淇淋和沙拉酱中的增稠剂和乳化剂[96-97],ARIOUI等[98]将橙皮果胶加入到酸奶中,发现0.6%的果胶掺入显著提高了酸奶的黏度、黏附性和黏聚性。李继伟等[99]开发了柑橘果皮膳食纤维面包,并通过体外试验发现在20 min内,膳食纤维面包中淀粉的消化速率显著低于对照,消化产生的还原糖相当于对照的72.86%~77.83%。这说明柑橘果皮膳食纤维可以减缓淀粉的消化速度,因此,开发柑橘果皮膳食纤维面包有利于血糖水平的控制,有一定的应用前景。利用橙皮纤维代替脂肪制作的冰淇淋的脂肪含量只有传统冰淇淋的25%[100],这对于爱吃冰淇淋又担心引起肥胖的人群是值得庆祝的好消息。另有研究证实苦橙皮提取物可以提高调味牛奶的黏度、抗氧化特性和感官特性,并降低微生物总数[101]

以上研究表明,在食物或者饮料中加入柑橘果皮或其提取物,可以利用柑橘果皮本身的生物活性成分提高食物或者饮料的保健功效,有助于功能性食品的开发。但是目前的实验研究仅证明了柑橘果皮的加入不会对食物或饮料的感官品质产生负面影响,而柑橘果皮自身所含物质成分是否会与食物或饮料中固有成分发生互作反应,是否会影响其原有的营养价值等仍未可知,需要进一步试验研究进行全面评价。

2.3 防腐剂

利用柑橘果皮或果皮精油保存肉类、牛奶、奶制品、香肠和糕点的研究均取得了一定进展[102]。ABD EL-KHALEK等[103]发现柑橘果皮粉结合NaCl可延长肉类的保质期21 d以上。此外,OLD YEROU等[104]还发现,橘子皮可以作为抗菌和抗氧化剂来保存橄榄油和奶油甜点。这些发现为新型绿色防腐剂的开发提供了新的机遇。

2.4 食品包装

柑橘果皮所含精油因其抗菌特性而被用于食品包装。ALPARSLAN等[105]在食用膜中加入柑橘精油,发现该膜能显著抑制虾的脂质氧化和微生物腐败。在另一项研究中,使用柑橘果胶联合海藻酸钠开发微胶囊,采用喷雾干燥技术对香芹醛进行了封装,结果表明,微胶囊为圆形球体,表面光滑,具有较高的保留效率、抗微生物和抗氧化性能[106]。但是,目前基于柑橘果皮提取物的可食用包装材料应用试验产品种类很少,其适用性、安全性还需要进行更广泛的验证。

2.5 动物饲料

柑橘果皮中含有蛋白质、矿物质、维生素等营养成分,可用于动物饲料的生产加工[107]。在小尾寒羊的饲料中加入鲜柑橘果皮渣,可有效增加小尾寒羊的平均日增重,略微增加羊肉营养成分含量,可改善羊肉脂肪酸组成,降低饲料成本,提高经济效益[108]。但是鲜柑橘果皮渣水分含量高,还含有很多糖分,易腐烂变质,不易运输与贮存,因此其利用受到了很大限制。虽然已有学者研究了柑橘果皮渣青贮饲料中微生物生态及其对饲料品质的影响机理[109],但仍缺乏有效办法克服鲜柑橘果皮渣的应用限制。为此,研究者也尝试了将干燥的柑橘果皮渣作为牛、羊等动物的饲料[110],但干燥柑橘果皮渣蛋白质含量相对低、苦麻味明显、口感差,在一定程度上也限制了其在动物饲料中的应用。因此,柑橘果皮渣在动物饲料中的应用还有待更进一步的研究。

2.6 有机肥

柑橘果皮渣中富含较多的有机质和矿质营养,可将其作为制备有机肥的原料。余倩倩等[111]发现柑橘果皮渣可以较好地改善柑橘树体氮、磷、钾营养情况;同时可提高果面亮度和降低酸度,改善果实风味;促进柑橘园高产优质,增加经济效益。卢占军等[112]认为以柑橘果皮渣为主要原料的有机肥特别适合作为柑橘专用生物有机肥,具有促进增产、改善产品品质的作用。然而上述研究的观测期均只有一年左右,时间较短,如果长期使用柑橘果皮渣作为有机肥施用是否会对土壤pH等理化性质产生影响,这些问题还需要开展更为系统的研究进行评估。

2.7 生物燃料

近年来,利用可再生物质生产不可再生资源成为全球的研究热点。柑橘果皮废弃物由于其丰富的有机化合物成分,已经有学者就其作为乙醇、甲烷等生物燃料的生产原料进行了研究[113-114]。在国内,2011年就有学者对柑橘果皮渣生产乙醇的工艺流程及应用前景进行了概述[115-116]。利用柑橘果皮渣转化生物燃料,不仅能解决环境污染、资源浪费等问题,丰富的柑橘果皮也为生物燃料的制备提供了充足的原料,对缓解能源短缺问题有一定助益。但是其生产应用还存在缺乏高新技术的支持、经济成本较高、乙醇脱水浓缩技术要求高、难以工业化应用等问题。

3 未来发展前景

随着全球对加工和包装食品的需求的增加,来自加工业的柑橘果皮废料的数量每年都在增加。随着人口的增加和可居住土地的减少,由于环境污染和对生态系统的威胁,倾倒柑橘废弃物已成为一个巨大的挑战。因此,如何高效利用柑橘果皮尤为重要。由于柑橘果皮富含丰富的黄酮类、柠檬苦素类、生物碱类、精油和果胶等生物活性物质,它们已被用于医药或加工成各种食品或者添加剂。此外,柑橘果皮还被发展成为生产生物燃料和吸附剂等可再生资源。其显著的药用价值也促使人们在各种饮食中添加柑橘果皮。目前,柑橘果皮已经成为许多地区饮食的一部分,并被纳入食品目录中。在食品中加入柑橘果皮粉末或精油,如果添加适量,可以提高产品的质量,而不会对感官属性产生负面影响。食品公司已经利用柑橘果皮来丰富产品,为功能性食品的开发提供了广阔的前景。而柑橘精油在食品保存方面具有巨大的应用潜力。

营养与健康是人们永恒的追求。柑橘果皮丰富的生物活性成分将持续得到研究者的广泛关注。对于柑橘果皮富含的活性成分的研究未来可以重点关注以下3个方面:a)世界上柑橘种质资源非常丰富,应进一步深入探析不同品种柑橘果皮的遗传成分变异和各成分的功能特性,为柑橘品种选育、功能性产品加工应用提供基础数据和材料,促进不同品种柑橘果皮资源的充分利用;b)微波辅助提取、超声波辅助提取、超临界水/二氧化碳提取、脉冲电场提取和高压放电提取,是提取、分离柑橘果皮活性成分的潜在方法,未来可以综合传统提取技术和上述新兴提取技术优劣进行柑橘果皮提取物成分分离、提取、测定和加工技术的改良与创新;c)目前我国生物制药技术已趋于世界领先,可以利用此契机开展更加广泛的基于柑橘果皮提取物的疾病防治临床试验和机理研究。

柑橘果皮富含的生物活性成分使其在医药和工农业生产等领域具备可观的应用价值,目前在药物、食品、添加剂、动物饲料、有机肥等方面的应用取得了一定的进展。但是加工应用中还存在一些问题。首先是加工利用率低。根据调查,目前柑橘果皮仅有少部分经过干燥用于草药、提取果胶、精油,另有少部分作为食品添加剂,其余大部分则是直接丢弃或者填埋处理,实际加工利用率不足30%。利用率低的主要原因就是生物活性成分提取工艺复杂,经济成本高,加工利用的经济效益低下。因此,简化加工利用工艺,降低生产技术门口,节约加工成本等,是实现柑橘果皮大规模加工应用的关键。此外,缺乏完善的柑橘果皮综合利用技术体系。目前,柑橘果皮活性成分提取技术相对先进的沿海地区也仅是部分利用了果皮中的果胶、精油,对其他成分的利用还基本停留在实验室或者初加工阶段,主要表现为提取时能耗高,产品纯度低等,缺乏多级和深加工技术。为了实现柑橘果皮的充分利用,如何连续或分级提取果皮中的各种活性成分,开发具有循环经济理念的工业体系是未来努力的方向。

4 结论

柑橘果皮富含黄酮类、柠檬苦素类、生物碱类、精油和果胶等生物活性成分,具有巨大的利用潜力,对其开发利用可以真正的实现“变废为宝”。值得一提的是,尽管柑橘果皮提取物对人类健康上的促进作用在体外和体内研究中获得了有益进展,但它们仍处于初级阶段,在进行临床试验之前需要进一步的系统研究。为了更好地研究和开发柑橘果皮,应进一步评价不同品种的柑橘果皮的遗传成分变异和功能特性。在食品应用方面,应分析柑橘果皮提取物在体外和体内的安全范围、与食品原材料的相互作用和生物利用度。基于柑橘果皮提取物的可食用包装材料的适用性还需要进行更广泛的验证。此外,还需要开发一个具有循环经济理念的工业体系,以保证柑橘果皮资源的可持续利用。

参考文献

[1] CASQUETE R, CASTRO S M, MARTN A, et al.Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels[J].Innovative Food Science &Emerging Technologies, 2015, 31:37-44.

[2] CUI J F, REN W B, ZHAO C Y, et al.The structure-property relationships of acid-and alkali-extracted grapefruit peel pectins[J].Carbohydrate Polymers, 2020, 229:115524.

[3] LEE G H, PENG C, PARK S A, et al.Citrus peel extract ameliorates high-fat diet-induced NAFLD via activation of AMPK signaling[J].Nutrients, 2020, 12(3):673.

[4] LIU N, LI X, ZHAO P, et al.A review of chemical constituents and health-promoting effects of citrus peels[J].Food Chemistry, 2021, 365:130585.

[5] MITANI R, TASHIRO H, ARITA E, et al.Extraction of nobiletin and tangeretin with antioxidant activity from peels of Citrus poonensis using liquid carbon dioxide and ethanol entrainer[J].Separation Science and Technology, 2021, 56(2):290-300.

[6] TUZ ZOHRA F, TAKEMATSU S, ITAMI Y, et al.Accumulation of polymethoxyflavones and O-methyltransferase gene expression in various Citrus cultivars[J].The Horticulture Journal, 2020,89(3):225-236.

[7] WU C R, LIU Y, YANG Y Y, et al.Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J].Acta Pharmaceutica Sinica B, 2020, 10(5):766-788.

[8] HOU H S, BONKU E M, ZHAI R, et al.Extraction of essential oil from Citrus reticulate Blanco peel and its antibacterial activity against Cutibacterium acnes (formerly Propionibacterium acnes)[J].Heliyon, 2019, 5(12):e02947.

[9] PANCHE A N, DIWAN A D, CHANDRA S R.Flavonoids:An overview[J].Journal of Nutritional Science, 2016, 5:e47.

[10] TRIPOLI E, LA GUARDIA M, GIAMMANCO S, et al.Citrus flavonoids:Molecular structure, biological activity and nutritional properties:A review[J].Food Chemistry, 2007, 104(2):466-479.

[11] ZHANG H J, CUI J F, TIAN G F, et al.Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel[J].Food Chemistry, 2019, 289:340-350.

[12] KAUR J, KAUR G.An insight into the role of citrus bioactives in modulation of colon cancer[J].Journal of Functional Foods, 2015, 13:239-261.

[13] YI L Z, MA S S, REN D B.Phytochemistry and bioactivity of Citrus flavonoids:A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities[J].Phytochemistry Reviews, 2017, 16(3):479-511.

[14] GAO Z, GAO W, ZENG S L, et al.Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones[J].Journal of Functional Foods, 2018, 40:498-509.

[15] WALLE T.Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass?[J].Seminars in Cancer Biology,2007, 17(5):354-362.

[16] GAO Z, WANG Z Y, GUO Y, et al.Enrichment of polymethoxyflavones from Citrus reticulata ‘Chachi’peels and their hypolipidemic effect[J].Journal of Chromatography B, 2019, 1124:226-232.

[17] GUO C, SHAN Y X, YANG Z Q, et al.Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv.Newhall) peel[J].Journal of the Science of Food and Agriculture, 2020, 100(6):2664-2674.

[18] ZENG S L, LI S Z, XIAO P T, et al.Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism[J].Science Advances, 2020, 6(1):eaax6208.

[19] 陈嘉景, 彭昭欣, 石梅艳, 等.柑橘中类黄酮的组成与代谢研究进展[J].园艺学报, 2016, 43(2):384-400.

CHEN J J, PENG Z X, SHI M Y, et al.Advances in on flavonoid composition and metabolism in Citrus[J].Acta Horticulturae Sinica, 2016, 43(2):384-400.

[20] 王凌潇, 李军, 郑姣.生物碱调节血脂的研究进展[J].中国药理学与毒理学杂志, 2021, 35(10):798.

WANG L X, LI J, ZHENG J.Research progress of alkaloids in regulating blood lipid[J].Chinese Journal of Pharmacology and Toxicology, 2021, 35(10):798.

[21] KUSU F, LI X D, TAKAMURA K. Determination of synephrine and N-methyltyramine in Zhishi and Zhike (immature Citrus fruits) by high-performance liquid chromatography with electrochemical detection. Chemical and Pharmaceutical Bulletin, 1992, 40(12):3284-3286.

[22] FU M Q, ZOU B, AN K J, et al.Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’)[J].Food &Function, 2019, 10(2):903-911.

[23] YU X, SUN S, GUO Y Y, et al.Citri Reticulatae Pericarpium (Chenpi):Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine[J].Journal of Ethnopharmacology, 2018, 220:265-282.

[24] 汪洁仪.辛弗林对高脂饮食大鼠肠道菌群及粪便代谢组的影响[D].长沙:湖南大学, 2021.

WANG J Y.Effects of synephrine on gut microbiota and fecal metabonomics in rats fed with high fat diet[D].Changsha: Hunan University, 2021.

[25] 闫晗, 丁之恩, 董敏, 等.柑橘果皮中辛弗林对营养型肥胖大鼠的减肥效果研究[J].食品与生物技术学报, 2017, 36(8):890-895.

YAN H, DING Z E, DONG M, et al.Effects of synephrine from Citrus peel on weight losing of nutritional pinelosis rats[J].Journal of Food Science and Biotechnology, 2017, 36(8):890-895.

[26] STOHS S J, PREUSS H G, SHARA M.The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine[J].Phytotherapy Research, 2011, 25(10):1421-1428.

[27] SEIFERT J G, NELSON A, DEVONISH J, et al.Effect of acute administration of an herbal preparation on blood pressure and heart rate in humans[J].International Journal of Medical Sciences, 2011, 8(3):192.

[28] HUANG S J, LIU X Y, XIONG B, et al.Variation in limonin and nomilin content in citrus fruits of eight varieties determined by modified HPLC[J].Food Science and Biotechnology, 2019, 28(3):641-647.

[29] YAN G Y, LI J, CHEN S S, et al.New limonoids from the fruits of Melia toosendan and their autophagic activities[J].Phytochemistry Letters, 2020, 35:15-22.

[30] 晏敏, 周宇, 贺肖寒, 等.柑橘籽中柠檬苦素及类似物的生物活性研究进展[J].食品与发酵工业, 2018, 44(2):290-296.

YAN M, ZHOU Y, HE X H, et al.Research progress on the bioactivity of limonin and its analogues in citrus[J].Food and Fermentation Industries, 2018, 44(2):290-296.

[31] GUALDANI R, CAVALLUZZI M M, LENTINI G, et al.The chemistry and pharmacology of Citrus limonoids[J].Molecules, 2016, 21(11):1530.

[32] BAUTISTA G F M, VIDALLON M L, SALAMANEZ K, et al.Nanodelivery system based on zein-alginate complexes enhances in vitro chemopreventive activity and bioavailability of pomelo [Citrus maxima (Burm.) Merr.] seed limonoids[J].Journal of Drug Delivery Science and Technology, 2019, 54:101296.

[33] ZHAO X J, XING T T, LI Y F, et al.Efficient analysis of phytochemical constituents in the peel of Chinese wild Citrus Mangshanju (Citrus reticulata Blanco) by ultra high performance liquid chromatography-quadrupole time-of-flight-mass spectrometry[J].Journal of Separation Science, 2018, 41(9):1947-1959.

[34] 黄爽, 陈琛, 黄波.柠檬苦素对营养性肥胖大鼠脂质代谢和肠道菌群的影响[J].吉林大学学报(医学版), 2022, 48(4):858-865. HUANG S, CHEN C, HUANG B.Effects of limonin on lipid metabolism and intestinal flora in nutritionally obese rats[J].Journal of Jilin University (Medicine Edition), 2022, 48(4):858-865.

[35] 张贝, 冯卫华, 曾晓房, 等.柠檬苦素的性质及其生物活性研究进展[J].农产品加工, 2017(18):69-71.

ZHANG B, FENG W H, ZENG X F, et al.Advances on properties and biological activities of limonoids[J].Farm Products Processing, 2017(18):69-71.

[36] GONZLEZ-MAS M C, RAMBLA J L, LPEZ-GRESA M P, et al.Volatile compounds in Citrus essential oils:A comprehensive review[J].Frontiers in Plant Science, 2019, 10:12.

[37] FLAMINI G, TEBANO M, CIONI P L.Volatiles emission patterns of different plant organs and pollen of Citrus limon[J].Analytica Chimica Acta, 2007, 589(1):120-124.

[38] JING L, LEI Z T, ZHANG G W, et al.Metabolite profiles of essential oils in citrus peels and their taxonomic implications[J].Metabolomics, 2015, 11(4):952-963.

[39] FOUAD H A, DA CAMARA C A G.Chemical composition and bioactivity of peel oils from Citrus aurantiifolia and Citrus reticulata and enantiomers of their major constituent against Sitophilus zeamais (Coleoptera:Curculionidae)[J].Journal of Stored Products Research, 2017, 73:30-36.

[40] AMBROSIO C M S, IKEDA N Y, MIANO A C, et al.Unraveling the selective antibacterial activity and chemical composition of citrus essential oils[J].Scientific Reports, 2019, 9:17719.

[41] ANANDAKUMAR P, KAMARAJ S, VANITHA M K.D-limonene:A multifunctional compound with potent therapeutic effects[J].Journal of Food Biochemistry, 2021, 45(1):e13566.

[42] TAO N G, JIA L, ZHOU H E.Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum[J].Food Chemistry, 2014, 153:265-271.

[43] WU T, CHENG D, HE M Y, et al.Antifungal action and inhibitory mechanism of polymethoxylated flavones from Citrus reticulata Blanco peel against Aspergillus niger[J].Food Control, 2014, 35(1):354-359.

[44] YAZGAN H, OZOGUL Y, KULEY E.Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria[J].International Journal of Food Microbiology, 2019, 306:108266.

[45] OKUNOWO W O, OYEDEJI O, AFOLABI L O, et al.Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities[J].American Journal of Plant Sciences, 2013, 4(7):1-9.

[46] YI F P, JIN R Y, SUN J, et al.Evaluation of mechanical-pressed essential oil from Nanfeng mandarin (Citrus reticulata Blanco cv.Kinokuni) as a food preservative based on antimicrobial and antioxidant activities[J].LWT, 2018, 95:346-353.

K, et al.Antifungal activity of selected essential oils against fungi isolated from medicinal plant[J].Industrial Crops and Products, 2014, 55:116-122.

[48] SETTANNI L, PALAZZOLO E, GUARRASI V, et al.Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily[J].Food Control, 2012, 26(2):326-330.

[49] SINGH P, SHUKLA R, PRAKASH B, et al.Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm.and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, dl[J].Food and Chemical Toxicology, 2010, 48(6):134-1740.

[50] SHARMA N, TRIPATHI A.Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghem[J].Microbiological Research, 2008, 163(3):337-344.

[51] VIUDA-MARTOS M, RUIZ-NAVAJAS Y, FERNNDEZ-LPEZ J, et al.Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils[J].Food Control, 2008, 19(12):1130-1138.

[52] CASTRO-LUNA A, GARCIA-DE-LA-GUARDA R.Antifungal effect of Citrus paradisi “grapefruit” on strains of Candida albicans isolated from patients with denture stomatitis Diana Eugenia Churata-Oroya1, Donald Ramos-Perfecto2, Hilda Moromi-Nakata2, Elba Martínez-Cadillo2[J].Revista Estomatológica Herediana, 2016, 26(2):78-84.

[53] OBOH G, OLASEHINDE T A, ADEMOSUN A O.Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon[J].International Journal of Food Properties, 2017, 20(sup1):S586-S594.

[54] ADEMOSUN AYOKUNLE O, GANIYU O, SABINA P, et al.Inhibition of metalloproteinase and proteasome activities in colon cancer cells by citrus peel extracts[J].Journal of Basic and Clinical Physiology and Pharmacology, 2015, 26(5):471-477.

[55] YANG C, CHEN H, CHEN H L, et al.Antioxidant and anticancer activities of essential oil from Gannan navel orange peel[J].Molecules, 2017, 22(8):1391.

[56] TUAN N T, DANG L N, HUONG B T C, et al.One step extraction of essential oils and pectin from pomelo (Citrus grandis) peels[J].Chemical Engineering and Processing-Process Intensification, 2019, 142:107550.

[57] HU W W, CHEN S G, WU D M, et al.Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction[J].International Journal of Biological Macromolecules, 2021, 176:332-341.

[58] YANG J S, MU T H, MA M M.Extraction, structure, and emulsifying properties of pectin from potato pulp[J].Food Chemistry, 2018, 244:197-205.

[59] LOPES L C, SIMAS-TOSIN F F, CIPRIANI T R, et al.Effect of low and high methoxyl citrus pectin on the properties of polypyrrole based electroactive hydrogels[J].Carbohydrate Polymers, 2017, 155:11-18.

[60] DANGI N, YADAV B S.Characterization of partial acid hydrolysates of citrus pectin for their pasting, rheological and thermal properties[J].Journal of Food Science and Technology, 2020, 57(7):2681-2692.

[61] SU D L, LI P J, QUEK S Y, et al.Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process[J].Food Chemistry, 2019, 286:1-7.

[62] COLODEL C, VRIESMANN L C, LUCIA DE OLIVEIRA PETKOWICZ C.Rheological characterization of a pectin extracted from ponkan (Citrus reticulata blanco cv.ponkan) peel[J].Food Hydrocolloids, 2019, 94:326-332.

[63] CIRIMINNA R, CHAVARRA-HERNNDEZ N, INÉS RODRGUEZ HERNNDEZ A, et al.Pectin:A new perspective from the biorefinery standpoint[J].Biofuels, Bioproducts and Biorefining, 2015, 9(4):368-377.

[64] HOU Z Q, CHEN S G, YE X Q.High pressure processing accelarated the release of RG-I pectic polysaccharides from Citrus peel[J].Carbohydrate Polymers, 2021, 263:118005.

[65] SINGH V, YEOH B S, WALKER R E, et al.Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation[J].Gut, 2019, 68(10):1801-1812.

[66] 马文鑫, 贾敏, 李倩, 等.果胶改性的研究进展[J].食品与发酵工业, 2022, 48(9):274-279.

MA W X, JIA M, LI Q, et al.Research progress of pectin modification[J].Food and Fermentation Industries, 2022, 48(9):274-279.

[67] KALLA-BERTHOLDT A M, NGUYEN P V, BAIER A K, et al.Influence of dietary fiber on in-vitro lipid digestion of emulsions prepared with high-intensity ultrasound[J].Innovative Food Science &Emerging Technologies, 2021, 73:102799.

[68] YE S X, SHAH B R, LI J, et al.A critical review on interplay between dietary fibers and gut microbiota[J].Trends in Food Science &Technology, 2022, 124:237-249.

[69] DRZIKOVA B, DONGOWSKI G, GEBHARDT E, et al.The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro[J].Food Chemistry, 2005, 90(1-2):181-192.

[70] GRIGELMO-MIGUEL N, MARTN-BELLOSO O.Characterization of dietary fiber from orange juice extraction[J].Food Research International, 1998, 31(5):355-361.

[71] KUMAR V, KAUR R, AGGARWAL P, et al.Underutilized citrus species:An insight of their nutraceutical potential and importance for the development of functional food[J].Scientia Horticulturae, 2022, 296:110909.

[72] WANG L, XU H G, YUAN F, et al.Physicochemical characterization of five types of citrus dietary fibers[J].Biocatalysis and Agricultural Biotechnology, 2015, 4(2):250-258.

[73] 田婧, 聂晶, 王树林, 等.蒸汽爆破对膳食纤维改性作用的研究进展[J].粮油食品科技, 2022, 30(05):167-171.

TIAN J, NIE J,WANG S L, et al.Research progress of modifying effect of steam blasting on dietary fibre[J].Science and Technology of Cereals, Oils and Foods, 2022, 30(5):167-171.

[74] 陈思妤, 焦叶, 崔波, 等.膳食纤维理化特性及其改性方法研究进展[J].食品与机械, 2022, 38(5):234-240.

CHEN S Y, JIAO Y, CUI B, et al. Research progress in physicochemical properties and modification methods of dietary fiber. Food &Machinery, 2022, 38(5):234-240.

[75] 孙梦嘉, 邓乾春, 全双, 等.类胡萝卜素生物利用率及其乳液递送体系研究进展[J].中国油料作物学报, 2022, 44(1):215-230. SUN M J, DENG Q C, QUAN S, et al.Research progress on carotenoid bioavailability and its emulsion delivery system[J].Chinese Journal of Oil Crop Sciences, 2022, 44(1):215-230.

[76] ZHU K J, CHEN H Y, ZHANG Y Z, et al. Carotenoid Extraction, Detection, and Analysis in Citrus.Carotenoids: Carotenoid and Apocarotenoid Analysis. Amsterdam: Elsevier, 2022:179-212.

[77] 修伟业, 黎晨晨, 遇世友, 等.类胡萝卜素生物学功能及提高其生物利用的研究进展[J].食品工业科技,2023,44(410):406-415.

XIU W Y, LI C C, YU S Y, et al.Research progress on the biological function and bioavailability improvement of carotenoids[J].Science and Technology of Food Industry, 2023,44(410):406-415.

[78] RODRIGUEZ-CONCEPCION M, AVALOS J, BONET M L, et al.A global perspective on carotenoids:Metabolism, biotechnology, and benefits for nutrition and health[J].Progress in Lipid Research, 2018, 70:62-93.

[79] ROUSEFF R, RALEY L, HOFSOMMER H J.Application of diode array detection with a C-30 reversed phase column for the separation and identification of saponified orange juice carotenoids[J].Journal of Agricultural and Food Chemistry, 1996, 44(8):2176-2181.

[80] 陶俊, 张上隆, 徐建国, 等.柑橘果实主要类胡萝卜素成分及含量分析[J].中国农业科学, 2003,36(10):1202-1208.

TAO J, ZHANG S L, XU J G, et al.Analysis of major carotenoid composition and its content in Citrus fruit[J].Scientia Agricultura Sinica, 2003,36(10):1202-1208.

[81] 王伟杰, 徐建国, 徐昌杰.宫内伊予柑果实发育期间色泽和色素的变化[J].园艺学报, 2006,33(3):461-465.

WANG W J, XU J G, XU C J.Developmental changes in external color, pigment content and composition in Citrus iyo fruit[J].Acta Horticulturae Sinica, 2006,33(3):461-465.

[82] ZHU K, WU Q, HUANG Y, et al.Genome-wide characterization of cis-acting elements in the promoters of key carotenoid pathway genes from the main species of genus Citrus[J].Horticultural Plant Journal, 2020, 6(6):385-395.

[83] 黄贝, 王鹏, 温明霞, 等. 柑橘果实色素-类胡萝卜素的研究进展. 果树学报, 2019, 36(6): 793-802.

HUANG B, WANG P, WEN B X, et al. Advance study of pigment-carotenoids in Citrus fruits. Journal of Fruit Science, 2019, 36(6): 793-802.

[84] ZENG S L, LI S Z, LAI C J S, et al.Evaluation of anti-lipase activity and bioactive flavonoids in the Citri reticulatae pericarpium from different harvest time[J].Phytomedicine, 2018, 43:103-109.

[85] ADHIKARI-DEVKOTA A, KURAUCHI Y, YAMADA T, et al.Anti-neuroinflammatory activities of extract and polymethoxyflavonoids from immature fruit peels of Citrus ‘Hebesu’[J].Journal of Food Biochemistry, 2019, 43(6):e12813.

[86] LUO Y, ZENG W, HUANG K E, et al.Discrimination of Citrus reticulata Blanco and Citrus reticulataChachi’as well as the Citrus reticulataChachi’within different storage years using ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach[J].Journal of Pharmaceutical and Biomedical Analysis, 2019, 171:218-231.

[87] LI S M, PAN M H, LO C Y, et al.Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones[J].Journal of Functional Foods, 2009, 1(1):2-12.

[88] ADEMOSUN A O, OBOH G, OLASEHINDE T A, et al.From folk medicine to functional food:A review on the bioactive components and pharmacological properties of citrus peels[J].Oriental Pharmacy and Experimental Medicine, 2018, 18(1):9-20.

[89] NASSAR, ABDEL-HAMIED, EL-NAGGAR.Effect of citrus by-products flour incorporation on chemical, rheological and organolepic characteristics of biscuits[J].World Journal of Agricultural Sciences, 2008, 4(5):612-616.

[90] MAHMOUD M H, ABOU-ARAB A A, ABU-SALEM F M.Preparation of orange peel biscuits enrich with phenolic compounds as natural antioxidants[J].Research Journal of Pharmaceutical Biological and Chemical Sciences, 2017, 8(4).

[91] KHORMAEEPOUR M, VAZIRIZADEH A.Fortification of sponge cake by lemon peel and using of Stevia as a replacement of sugar[J].Journal of food science and technology (Iran), 2019, 16(88):135-145.

[92] ADEMOSUN A O, OBOH G, AJEIGBE O F.Antioxidant activities and glycemic indices of ice creams enriched with orange (Citrus sinensis) and shaddock (Citrus maxima) peels and effects on rat lipid profiles[J].Journal of Food Biochemistry, 2021, 45(7):e13813.

[93] ADEMOSUN A O, OBOH G.Comparison of the inhibition of monoamine oxidase and butyrylcholinesterase activities by infusions from green tea and some citrus peels[J].International Journal of Alzheimer’s Disease, 2014, 2014:1-5.

[94] DEVI M P, SAHOO M R, KUNA A, et al.Effect of gamma irradiation on nutritional properties and antinutrient contents of Citrus jambhiri Lush.Fruits[J].Journal of Pharmacognosy and Phytochemistry, 2018, 7(4):2833-2836.

[95] JITPUKDEEBODINTRA S, JANGWANG A.Instant noodles with pectin for weight reduction[J].International Journal of Food, Agriculture &Environment, 2009, 7(3-4):126-129.

[96] PICOT-ALLAIN M C N, RAMASAWMY B, EMMAMBUX M N.Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits:A review[J].Food Reviews International, 2022, 38(3):282-312.

[97] WEI R J, ZHAO S J, ZHANG L, et al.Upper digestion fate of citrus pectin-stabilized emulsion:An interfacial behavior perspective[J].Carbohydrate Polymers, 2021, 264:118040.

[98] ARIOUI F, AIT SAADA D, CHERIGUENE A.Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis[J].Food science &nutrition, 2016, 5(2):358-364.

[99] 李继伟, 李琳, 周雪婷, 等.柑橘皮膳食纤维面包的开发及其体外消化特性的研究[J].保鲜与加工, 2021, 21(3):85-90.

LI J W, LI L, ZHOU X T, et al.Development of Citrus peel dietary fiber-enriched bread and its in vitro digestion characteristics[J].Storage and Process, 2021, 21(3):85-90.

[100] BOFF C C E, DE MORAES CRIZEL T, DE ARAUJO R R, et al. Desenvolvimento de sorvete de chocolate utilizando fibra de casca de laranja Como substituto de gordura. Ciência Rural, 2013, 43(10):1892-1897.

[101] JALILZADEH-AFSHARI A, FADAEI V.Characterization of flavored milk containing bitter orange peel extract and Gaz-angubin[J].Food Science &Nutrition, 2021, 9(1):164-171.

[102] SAM A D. Prolonged the shelf life of different foods using the Citrus by-products as antimicrobials: A review article. Annals of Agricultural &Crop Sciences, 2019, 4(1): 1039.

[103] ABD EL-KHALEK H H, ZAHRAN D A.Utilization of fruit by-product in ground meat preservation[J].Food Science and Quality Management, 2013, 11:49-60.

[104] OULD YEROU K, IBRI K, BOUHADI D, et al.The use of orange (Citrus sinensis) peel as antimicrobial and anti-oxidant agents[J].Journal of Fundamental and Applied Sciences, 2017, 9(3):1351-1357.

[105] ALPARSLAN Y, BAYGAR T.Effect of chitosan film coating combined with orange peel essential oil on the shelf life of deepwater pink shrimp[J].Food and Bioprocess Technology, 2017, 10(5):842-853.

[106] SUN X X, CAMERON R G, BAI J H.Effect of spray-drying temperature on physicochemical, antioxidant and antimicrobial properties of pectin/sodium alginate microencapsulated carvacrol[J].Food Hydrocolloids, 2020, 100:105420.

[107] CRIBBS J T, BERNHARD B C, YOUNG T R, et al.Dehydrated citrus pulp alters feedlot performance of crossbred heifers during the receiving period and modulates serum metabolite concentrations before and after an endotoxin challenge[J].Journal of Animal Science, 2015, 93(12):5791-5800.

[108] 丁倩, 殷钟意, 郑旭煦, 等.柑橘皮渣青贮试验及其在小尾寒羊饲喂中的应用研究[J].云南农业大学学报(自然科学), 2020, 35(2):262-268.

DING Q, YIN Z Y, ZHENG X X, et al.Silage experiment of Citrus peel residue and its application in feeding small-tailed Han sheep[J].Journal of Yunnan Agricultural University (Natural Science), 2020, 35(2):262-268.

[109] 周月明.柑橘皮渣青贮饲料中微生物生态及其对饲料品质的影响机理研究[D].重庆:重庆大学, 2019.

ZHOU Y M.Research on microbial ecology and its effect mechanism on silage quality during Citrus waste ensiling[D].Chongqing: Chongqing University, 2019.

[110] 罗巧慧, 黄艳玲, 肖芳, 等.柑橘皮渣在动物饲料中应用的研究进展[J].动物营养学报, 2018, 30(3):874-880.

LUO Q H, HUANG Y L, XIAO F, et al.Research progress of application of Citrus pulp in animal feed[J].Chinese Journal of Animal Nutrition, 2018, 30(3):874-880.

[111] 余倩倩, 李文涛, 邓烈, 等.柑橘皮渣有机肥对特洛维塔甜橙树体营养、果实品质和经济效益的影响[J].西南大学学报(自然科学版), 2017, 39(10):20-26.

YU Q Q, LI W T, DENG L, et al.Effect of Citrus peel residue-based organic fertilizer (COF) on leaf nutrition, fruit quality and economic benefit of terovita orange[J].Journal of Southwest University(Natural Science Edition), 2017, 39(10):20-26.

[112] 卢占军, 钟八莲, 易龙, 等.利用柑橘皮渣为主要原料制备生物有机肥的研究[J].安徽农业科学, 2011, 39(20):12176-12178. LU Z J, ZHONG B L, YI L, et al.Production of bio-organic fertilizer by bio-fermentation of Citrus residue[J].Journal of Anhui Agricultural Sciences, 2011, 39(20):12176-12178.

[113] DE LA TORRE I, MARTIN-DOMINGUEZ V, ACEDOS M G, et al.Utilisation/upgrading of orange peel waste from a biological biorefinery perspective[J].Applied Microbiology and Biotechnology, 2019, 103(15):5975-5991.

[114] FAZZINO F, MAURIELLO F, PAONE E, et al.Integral valorization of orange peel waste through optimized ensiling:Lactic acid and bioethanol production[J].Chemosphere, 2021, 271:129602.

[115] 陈海桂, 顾楠, 刘美艳, 等.柑橘皮渣生物转化燃料乙醇的研究进展[J].食品与发酵工业, 2011, 37(2):130-133.

CHEN H G, GU N, LIU M Y, et al.Progress on fuel ethanol production from Citrus peels by biotransformation[J].Food and Fermentation Industries, 2011, 37(2):130-133.

[116] 杨丽, 周心智, 郭爱民, 等.柑橘皮渣生产乙醇工艺流程及前景展望[J].西南农业学报, 2012, 25(2):736-739.

YANG L, ZHOU X Z, GUO A M, et al.Process and prospect of ethanol production from Citrus peel waste[J].Southwest China Journal of Agricultural Sciences, 2012, 25(2):736-739.

Research progress on important components of citrus peel and their application

LIU Xuefeng1, YANG Mei1, XIANG Pingwei1, MA Xiaoli1, HU Deyu2, YANG Maosheng3, YUAN Xiangcheng1*

1(Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404155, China) 2(Chongqing Wanzhou Economic Crop Development Center, Chongqing 404120, China) 3(Chongqing Fuling Economic Crop Development Center, Chongqing 408099, China)

ABSTRACT Citrus peel is rich in bioactive substances and has important nutritional, health and medical value. The research progress of important bioactive components, bioactivity, and processing and application of citrus peel in recent years was systematically summarized. The bioactive substances rich in citrus peel mainly include flavonoids, alkaloids, volatile oils, limonin, pectin, dietary fiber, and carotenoids, which have antioxidant activity, antibacterial and anti-inflammatory activity, anti-diabetes activity, anti-obesity activity, anti-cardiovascular and anti-cerebrovascular disease activity, and anti-cancer activity. Different kinds of citrus peel have been used in the production of drugs, food or food additives, food packaging, and biofuels. The prospect of further exploration and comprehensive utilization of the active ingredients in citrus peel is presented to provide a reference for the rational development and comprehensive application of citrus peel in food, medicine, and other fields.

Key words citrus; peel; active ingredients; processing and application

DOI:10.13995/j.cnki.11-1802/ts.033939

引用格式:刘雪峰,杨梅,向苹苇,等.柑橘果皮重要成分及其应用研究进展[J].食品与发酵工业,2024,50(2):379-388.LIU Xuefeng,YANG Mei,XIANG Pingwei, et al.Research progress on important components of citrus peel and their application[J].Food and Fermentation Industries,2024,50(2):379-388.

第一作者:硕士,农艺师(袁项成正高级农艺师为通信作者, E-mail:yxcheng226@163.com)

基金项目:国家重大水利工程建设基金项目(5001012022FA00001)

收稿日期:2022-10-12,改回日期:2022-11-24