植物酵素功能与安全性研究进展

檀茜倩,程笑笑,周振彧,崔方超,吕欣然,李学鹏,励建荣*

(渤海大学 食品科学与工程学院,辽宁 锦州,121013)

摘 要 植物酵素是以水果和蔬菜为原料,经微生物发酵制备的含有特定功能成分的产品,近年广受消费者关注,有较高的市场价值。目前已有关于植物酵素的大量研究报道,但缺少关于植物酵素制作、成分、功效以及不安全因素等的综合性分析。因此,该文针对不同种类的植物酵素,对其主要含有的活性成分、风味和形成机制、功能、可能存在的不安全因素及控制方法等展开综述。植物酵素中含有益生菌、酶、有机酸、氨基酸、多酚等生物活性化合物,共同形成了植物酵素特殊的风味;植物酵素在抗氧化、治疗慢性疾病、调节肠道菌群、抑菌抗炎、减轻肥胖症及保护肝脏等方面具有重要作用;其不安全因素包括食源性致病菌、甲醇、生物胺等,可以通过适当杀菌以及对发酵过程的控制减小危害。该文为植物酵素产品的开发提供了一定的借鉴和参考。

关键词 植物酵素;益生菌;发酵;风味;营养功效

根据中华人民共和国工业和信息化部2018年发布的QB/T 5323—2018《酵素产品分类导则》规定,食用植物酵素是以可用于食品加工的以植物为原料,添加或不添加辅料,经微生物发酵制得的含有特定生物活性成分可供人类食用的产品。经微生物发酵后,不仅能最大程度保留原料中的营养成分,而且在乳酸菌、醋酸菌和酵母菌等益生菌代谢活动影响下,食品基质发生降解,更多营养物质得到释放,增加了酵素中酚类、类黄酮、有机酸、维生素、矿物质等活性物质的含量,同时也提高了人体对生物活性物质的利用率[1]。目前市场上植物酵素产品种类很多,按照产品形态分,酵素产品可分为液态酵素(如酵素原液)、半固态酵素(酵素膏、酵素果冻)及固态酵素(酵素粉),根据原料类型主要包括果蔬酵素(以苹果、梨、蓝莓、火龙果、胡萝卜、西蓝花等为原料)、谷物酵素(以糙米、玉米、燕麦仁、黄豆、黑豆等为原料)和药食同源酵素(以黄芪、三七等为原料)[2]等。

植物酵素不仅口感清爽、营养丰富,而且还具有抗氧化、治疗慢性疾病、调节肠道菌群、抑菌抗炎等功效,因此广受消费者欢迎,占有了一定的市场份额。目前国内外已有学者整理了酵素定义、分类、制作工艺、酵素发酵过程中的菌株、酵素制作的原材料以及不同酵素的基本功效等相关研究进展[2-4],但是缺乏关于对植物酵素主要成分、风味、功效及不安全因素等相关研究的总结,因此,本文以植物酵素的主要成分、风味及形成机制、功效,尤其是酵素产中存在的食源性致病菌、甲醇和生物胺等不安全因素及可采取的控制措施等为主题,分析和总结了近年来相关研究以及市场部分植物酵素产品,为消费者对酵素产品的选择以及酵素产业的发展提供借鉴和参考。

1 植物酵素的主要成分

植物酵素含有活性酶、益生菌、有机酸、多酚类、氨基酸、酯类及醇类等多种生物活性物质,在改善风味、抗氧化、抗炎、调节免疫力等方面具有重要作用(图1)。

图1 植物酵素主要功能成分及功效
Fig.1 The predominant functional compositions of plant Jiaosu and their functions

1.1 酶

酶是酵素的主要成分之一,酵素中的主要功效酶包括超氧化物歧化酶(superoxide dismutase, SOD)、蛋白酶、脂肪酶。SOD是一种抗氧化金属酶,能够抑制邻苯三酚的自氧化,在化妆品的应用中具有抗衰效果[5]。蛋白酶是催化蛋白质肽链水解的一类酶,加入化妆品使用,能够帮助去除皮肤角质,促进细胞新陈代谢,达到焕肤美白的效果[6]。脂肪酶属于羧基酯水解酶类,能够逐步将甘油三酯水解成甘油和脂肪酸,催化油脂水解,也可应用在减肥产品中[7]

1.2 益生菌

益生菌是酵素的另一类重要组成,表1列举了部分植物酵素中存在的益生菌以及其所产生的功能物质类型。植物酵素中含有的主要益生菌有乳酸菌(嗜酸乳杆菌、植物乳杆菌、双歧乳杆菌),醋酸菌(巴氏醋酸杆菌、酮酸杆菌、木醋杆菌),酵母菌(假丝酵母菌、酿酒酵母、毕赤酵母)等[3],在调节菌群失调、提高机体免疫力、修复肠道屏障等方面发挥重要作用[8-9]。酵素中含有的益生菌种类与原料种类、是否接种发酵剂及发酵时间有关。在自然发酵的树莓酵素中优势菌为鲁氏酵母菌[10];对自然发酵条件获得的杨梅酵素菌群组成分析发现主要优势菌株为酿酒酵母(Saccharomyces cerevisiae)、接合酵母、耐热克鲁维酵母、毕赤酵母、汉逊酵母等;酵素中的微生物群在发酵过程中也会发生转变,此项研究还发现在发酵的第一阶段到第二阶段过程中,优势真菌逐渐由Saccharomycetales fam Incertae sedis转变为S.cerevisiae[11]。而对自然发酵和接种植物乳杆菌及肠膜明串珠菌发酵的杏鲍菇酵素在发酵的12 d期间的菌群分析发现,乳酸菌活菌数在第1天最高,随后逐渐减少;酵母菌则在发酵第4天和第7天活菌数最高,随后呈下降趋势[12]

表1 不同植物酵素产品中益生菌和活性物质类型
Table 1 The probiotics and bioactive substances in different plant Jiaosu products

酵素名称益生菌主要活性物质参考文献发酵羽衣甘蓝汁乳酸菌、肠球菌、酵母菌酚类物质[13]发酵混合果蔬汁开菲尔粒有机酸、总酚[14]诺丽果汁短乳杆菌酚类、黄酮类[15]发酵南瓜汁球形红杆菌辅酶Q10[16]发酵蓝莓汁干酪乳杆菌、植物乳杆菌花青素、多酚[17]发酵竹叶汁嗜热链球菌多糖、总酚、黄酮[18]

1.3 有机酸

有机酸也是酵素中的主要成分之一,具有拮抗病原菌、促进肠道蠕动、增强自由基清除能力、发挥抑菌、抗炎、抗氧化等功效。酵素的有机酸含量及种类受其原料和菌种影响,其中乳酸在发酵中普遍存在。在谷物饮料发酵方面,在以乳酸菌(发酵乳杆菌MINF99、融合魏斯氏菌MINF8、植物乳杆菌MINF277、短乳杆菌MINF226、副干酪乳杆菌MINF98)为发酵剂发酵高粱面粉中检测到的主要有机酸有乳酸、琥珀酸、丙酮酸、DL-焦谷氨酸、甲酸和柠檬酸,其中琥珀酸含量最高[19];在以薏苡仁、藜麦、小米和糙米为原料,利用罗伊氏乳杆菌发酵的饮料中检测到乳酸、乙酸、己酸、辛酸和壬酸,其中乳酸和乙酸为主要有机酸[20];在果蔬饮料发酵方面,利用类球红细菌发酵后的南瓜汁中甲酸、乙酸、乳酸、酒石酸和苹果酸含量显著升高[16];利用植物乳杆菌和发酵乳杆菌发酵蓝莓汁中的主要有机酸有乳酸、草酸、酒石酸、奎宁酸、柠檬酸、丙酮酸、苹果酸、莽草酸、柠檬酸和琥珀酸[21]

1.4 多酚

多酚广泛存在于植物中,具有抗氧化等作用。红曲霉能够水解海藻的细胞壁,从而释放出海藻中的多酚和类黄酮,提高发酵海藻的总酚和类黄酮含量[22]。发酵后的柠檬汁中阿魏酸、丁香酸、对香豆酸等酚酸及橙皮苷、熊果苷儿茶素、表儿茶素等黄酮类化合物含量增加[23]。果蔬中的多酚和黄酮大多以结合态或游离态形式存在,发酵可以将复杂的活性物质水解,在提高活性成分利用率的同时,也能够增加其含量[24]

1.5 氨基酸

氨基酸含量也是评价酵素品质的一项可参考指标。有研究表明,在乳酸菌发酵中,转氨酶和脱羧酶会分解代谢氨基酸,对氨基酸含量产生影响。在柑橘汁发酵期间,共检测到脯氨酸、苏氨酸、丝氨酸、甘氨酸、缬氨酸、亮氨酸和赖氨酸等16种氨基酸,副干酪乳杆菌502发酵能够增加其苏氨酸和亮氨酸含量[25];在枸杞汁发酵前后检测到天冬氨酸、谷氨酸、丝氨酸、苏氨酸、精氨酸等19种氨基酸,经植物乳杆菌发酵后虽然部分氨基酸的含量发生减少,但谷氨酸、缬氨酸和γ-氨基丁酸(γ-aminobutyric acid, GABA)的含量等含量增加[26]。这说明氨基酸的含量变化会受菌株不同影响。

1.6 醇类和酯类

醇类和酯类也是酵素中重要成分。在发酵苹果汁中到苯乙醇、正乙醇、2-甲基丁醇、6-甲基-5-庚烯-2-醇、3-甲硫基丙醇等11种醇和丁酸甲酯、丁酸乙酯、2-甲基丁酸乙酯、癸酸乙酯等19种酯类,其中正乙醇与甜味相关,乙酸丁酯具有愉悦的水果香,丁酸甲酯具有奶酪香、香蕉和波罗丁香气[27]。在以薏苡仁、藜麦、小米和糙米为原料发酵饮料中检测到己醇、辛醇、庚醇、苯甲醇、芳樟醇及苯乙醇等21种醇类,丁酸甲酯、丁酸乙酯、己酸乙酯、辛酸甲酯和乙酸乙酯等8种酯类[20],其中丁酸乙酯具有香蕉和菠萝香,苯乙醇具有玫瑰和蜂蜜香。这说明醇和酯可以赋予酵素不同的香气,与其风味密切相关。

2 植物酵素的风味和形成机制

酵素的芳香味道主要来源于酯类和醇类,有机酸和氨基酸也能产生一定影响。酵素中的酯类可增加水果和发酵食品的花香和果香。经乳酸菌发酵乙酰辅酶A和醇通过乙酰转移酶合成乙酸乙酯,增加制品果香味和甜味[28]。在发酵苹果汁中检测到的梨醇酯、2-甲基丁酸乙酯和乙酸异丁酯等低支链酯,其与氨基酸经转氨酶形成支链酮酸,再经脱羧或脱氢反应生成支链醇和酰基辅酶A,最后通过相关酶催化有关[27,29]。醇类是微生物代谢葡萄糖和氨基酸的产物,适量醇类的存在可以赋予酵素独特香气。葡萄糖和果糖通过糖酵解和乙醛途径代谢能够生成乙醇,赋予酵素酒香[30]。酵素中有机酸和氨基酸则会赋予酵素一定酸甜味及鲜味。植物乳杆菌SI-1和戊糖乳杆菌MU-1可通过苹果酸-乳酸发酵途径使L-苹果酸脱羧基生成L-乳酸[31];副干酪乳杆菌可利用糖作为碳源,经糖酵解途径,生成乳酸和乙酸[32];经由三羧酸循环和苹果酸-乳酸途径可能会出现琥珀酸含量增加或苹果酸和柠檬酸含量下降现象[21,28]。此外,乳酸菌可以也通过特定酶分解代谢氨基酸,产生特定风味。比如在以乳酸菌为主的发酵果汁中,乳酸菌可以通过谷氨酸脱羧酶(glutamate decarboxylase, GAD)和谷氨酸脱氢酶(glutamate dehydrogenase, GDH)分解谷氨酸,增加酵素鲜味和香气[33]。由此可见酵素风味的产生比较复杂,是微生物分解底物产生的物质以及微生物代谢物综合产生的结果。

3 植物酵素的功效

3.1 抗氧化

植物酵素富含多酚、有机酸、黄酮类化合物等活性成分,可通过降低体系pH值、清除体内自由基、阻断氧化、保护细胞免受自由基破坏等途径增强其抗氧化能力。DPPH自由基和羟自由基是一种相对稳定的自由基,根据对其的清除能力可以判断其抗氧化活性[34]。利用2株约氏乳杆菌发酵制备的胡椒饮料富含γ-氨基丁酸、多酚和类黄酮等活性成分,在质量浓度为50 mg/mL时,其DPPH自由基清除能力和羟自由基清除能力分别可达为74.6%和90.8%,有望开发为具有天然抗氧化能力的新型食品[35]。发酵后的黑莓可以通过清除皮肤中由紫外线诱导产生的活性氧自由基(reactive oxide species, ROS)、增加皮肤中的谷胱甘肽(glutathione, GSH)和超氧化物歧化酶抗氧化成分含量等方式来减缓人体皮肤的衰老和光老化[36]

3.2 治疗慢性疾病

近年来以高血压、高血脂、高血糖为代表的“三高”慢性疾病发病率逐渐上升,其受饮食、运动习惯等诸多因素影响。血管紧张素转化酶(angiotensin converting enzyme, ACE)是一种重要的心血管酶,它可通过将血管紧张素-Ⅰ转化为血管紧张素-Ⅱ,抑制ACE活力可以降低血管紧张素-Ⅱ浓度,避免血压升高[37]。研究发现由乳酸菌和酵母菌发酵得到的植物基制品对ACE的抑制活性达到61.4%,在抗高血压方面具有一定作用[38]。总胆固醇(total cholesterol, TC)和低密度脂蛋白胆固醇(low density lipoprotein cholesterin, LDL-c)的升高是心血管疾病的主要危险因素[39]。研究发现患有轻度高胆固醇症的患者在持续8周食用发酵植物提取物后,其TC和LDL-c水平显著降低,这项研究证实了发酵植物提取物可以通过降低TC和LDL-c含量调节血脂水平[40]。还有学者研究了发酵胡萝卜汁对Ⅱ型糖尿病的治疗作用,将小鼠分为正常标准饲料喂养组(NC)、高脂饲料喂养组(DC)、高脂饲料与未发酵胡萝卜汁喂养组(DNF)及高脂饲料与发酵胡萝卜汁喂养组(DFC),经6周培养后发现DC组血糖显著高于NC组,DFC组血糖较DNF组显著降低,这表明发酵胡萝卜汁对降低血糖有显著作用[41](图2)。

图2 发酵胡萝卜汁调节大鼠肠道菌群减轻Ⅱ型糖尿病[41]
Fig.2 Fermented carrot juice attenuates type Ⅱ diabetes by mediating gut microbiota in rats[41]

注:↑表示促进,↓表示抑制(下同)。

3.3 调节肠道菌群

植物酵素中含有丰富的益生菌,具有调节肠道菌群的作用,可改变菌群结构,增加有益菌数量,减少肠道中的有害细菌所占的比例。采用发酵甜菜汁喂养小鼠,与未进食发酵甜菜汁的小鼠相比,进食发酵甜菜汁小鼠肠道中的乳酸菌-肠球菌数量由7.02 lg CFU/g增加到7.56 lg CFU/g,拟杆菌-普雷沃氏菌的数量也高于未进食发酵甜菜汁组[42]。对食用植物发酵提取物8周后的志愿者肠道菌群研究发现,其体内的双歧杆菌、乳杆菌数量呈指数趋势改善,同时大肠杆菌、产气荚膜梭状芽孢杆菌有害菌数量显著减少[41]

3.4 抑菌抗炎

酵素可以通过有机酸释放H+创造的低pH环境,发挥抑菌作用。在植物发酵饮料研究中,发现其抑菌活性主要取决于其总酸度,且抑菌活性与总酸度含量呈正相关[43]。在利用植物乳杆菌LS5发酵制备的柠檬汁中发现,与未发酵的柠檬汁相比,发酵后的柠檬汁pH下降了0.7,且发酵后的柠檬汁对鼠伤寒沙门菌和大肠杆菌O157:H7表现出更强的抑菌效果[44]。另一方面,酵素也可以利用天然多酚通过对某些关键通路的抑制发挥抗炎作用。信号传导及转录激活蛋白3(signal transducer and activator of transcription 3, STAT3)介导的通路和丝裂原活化蛋白激酶(mitogen activated protein kinase, MAKP)通路和炎症相关,发酵后的蓝莓能够阻断STAT3信号通路和激活MAKP通路,发挥抗炎作用[45]

3.5 缓解肥胖

酵素中含有乙酸、丙酸和丁酸等短链脂肪酸,研究表明丁酸可以防止饮食引起的肥胖,丙酸也被证明可以抑制食欲,这2种短链脂肪酸均可调节饮食诱导的肥胖,且研究发现丁酸和丙酸比乙酸的效果更为明显[46]。过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma, PPARγ)、过氧化物酶体增殖物启动受体α、CCAAT增强子结合蛋白α(CEBPalpha, C/EBPα)和胆固醇调节元件结合蛋白-1c(sterol regulatory element binding protein-1c, SREBP-1c)是脂肪生成主要转录因子,PPARγ、C/EBPα和SREBP-1c的下调可以抑制脂肪生成,PPARα则相反。食用发酵秋子梨提取物能够显著下调PPARγ、C/EBPα和SREBP-1c,说明发酵秋子梨提取物具有抗肥胖的作用[47]。白细胞介素-27是一种异二聚体细胞因子,可直接靶向脂肪细胞激活p38MAPK-PGC-1α信号转导并刺激UCP1的产生,从而上调PPARα表达,促进脂肪氧化(图3)。在进食明日叶酵素(angelica keiskei, FAK)的小鼠中发现,FAK能够增加小鼠中IL-27的血清水平,表明FAK可以促进脂肪燃烧、减轻肥胖症[48]

图3 FAK改善高脂肪饮食诱导肥胖的潜在机制[48]
Fig.3 Potential mechanisms by which FAK ameliorates high-fat diet-induced obesity [48]

3.6 保护肝脏

肝脏是体内代谢平衡的重要枢纽,具有维持代谢平衡、免疫系统支持、稳态调节和解毒等功能,血清丙氨酸氨基转移酶(alanine aminotransferase, ALT)和天冬氨酸氨基转移酶(aspartate transaminase, AST)是2个反映肝损伤程度的重要指标[49]。IGAMI等[50]对比研究了发酵红参和发酵人参对对乙酰氨基酚诱导小鼠肝损伤的保护作用,结果表明与对照组相比,进食发酵人参能够显著降低ALT和AST水平,说明发酵人参对对乙酰氨基酚所致小鼠肝损伤具有强有效保护作用。白细胞介素-6、白细胞介素-12、肿瘤坏死因子-α和干扰素-γ大小能够反映肝脏炎症水平,有研究发现白牡丹(发酵茶花)多酚提取物对IL-6、IL-12、TNF-α和IFN-γ具有降低作用,可缓解肝脏损伤[51]

3.7 其他作用

除此之外,酵素还有一些其他作用,比如降低胃肠疾病的患病风险[52],抗过敏[38]、抗肿瘤[53]、改善睡眠质量[54]等。

4 植物酵素中的不安全因素

在关注酵素健康益处的同时,其可能存在的安全问题也不容忽视。首先是微生物安全性,酵素尤其是家庭自制酵素中可能由于原料杀菌不彻底,或者因为污染杂菌等问题,有存在食源性致病菌的风险,如霉菌、大肠杆菌、腐生葡萄球菌等。何曼等[55]对来自6个家庭自制水果酵素的微生物状况进行检测,结果表明其感官评价和大肠菌群数符合国家标准,但菌落总数均超标,且菌落总数随着存放时间延长数量增长,霉菌和酵母菌总数检测结果也存在超标现象。在对市售的3种酵素产品的菌群结构分析中发现了致病菌苍白杆菌、脓肿分枝杆菌、腐生葡萄球菌、鲁氏不动杆菌的存在[56]。采用适当菌株发酵可以控制有害微生物的生长繁殖,有研究发现植物乳杆菌可控制发酵柠檬汁中大肠杆菌的生长[44]

另一方面,发酵过程中可能会产生甲醇和生物胺,对人体健康存在潜在威胁。植物酵素中的甲醇来源于果胶和果胶酶的相互作用在发酵中微生物代谢产生的果胶甲酯酶等果胶酶,果胶在果胶酶的作用下去甲基化生成甲醇[57]。急性甲醇中毒会引起头疼、呕吐恶心、视力模糊等症状,危害健康。植物中果胶含量丰富,因此可以通过降低原料中的果胶含量抑制甲醇的产生。比如通过高静水压力利用非共价键(氢键、离子键和疏水键)改变果胶结构,降解果胶[58]。此外,超声处理也广泛应用于果胶的改性和降解中[59]

生物胺主要由微生物氨基酸脱羧酶参与的氨基酸脱羧作用产生,高浓度生物胺的存在会对人体健康产生不利影响,例如酪胺中毒会导致血压升高、心悸、头痛等症状[60]。选择具有分解生物胺能力的菌株进行发酵是控制酵素产品中生物胺含量的一种有效手段。例如植物乳杆菌对香肠中的生物胺表现出一定的降解能力[61];短乳杆菌对泡菜中酪胺的降解效果在66%以上[62]

除此之外,还可以选择合适的包装方式或杀菌方式,比如气调包装,不仅可以延长食品保质期,而且能够抑制霉菌的生长[63];辐照杀菌可以降低食品中生物胺的含量[64]

5 结论与展望

植物酵素含有丰富的酶、益生菌、有机酸、多酚和氨基酸等生物活性成分及营养物质,具有抗氧化、治疗慢性疾病、调节肠道菌群、抑菌抗炎、保护肝脏等有益作用。未来对植物酵素的研究可以更充分地考虑:各种药食同源植物资源,开发功效更为显著和明确的新型酵素;对天然酵素中存在的益生菌菌株资源进行发掘,对其功效进行分析;研究酵素基质、菌群和风味之间的互作关系;对酵素的安全性进行控制,制定相关的安全性评价标准,开发更合理有效的方法来保证酵素的安全性。

参考文献

[1] LEONARD W, ZHANG P Z, YING D Y, et al. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods[J]. Biotechnology Advances, 2021, 49:107763.

[2] 朱政, 周常义, 曾磊, 等. 酵素产品的研究进展及问题探究[J]. 中国酿造, 2019, 38(3):10-13.ZHU Z, ZHOU C Y, ZENG L, et al. Research progress and problems exploring of ferment products[J]. China Brewing, 2019, 38(3):10-13.

[3] 张红艳, 韩姗姗, 冉淦侨, 等. 食用酵素的营养功效及研究进展[J]. 食品与发酵科技, 2021, 57(1):107-110.ZHANG H Y, HAN S S, RAN G Q, et al. Nutritional efficacy and research progress of edible enzymes[J]. Food and Fermentation Sciences &Technology, 2021, 57(1):107-110.

[4] 饶智, 陈彦坤, 刘斌, 等. “药食同源” 植物酵素研究进展[J]. 食品与发酵工业, 2020, 46(9):290-294.RAO Z, CHEN Y K, LIU B, et al. Research progress on “herb-food homology” plant Jiaosu[J]. Food and Fermentation Industries, 2020, 46(9):290-294.

[5] 于晓艳, 任清, 卢舒娴, 等. 微生物酵素主要功效酶活力的测定[J]. 食品科技, 2008, 33(7):193-196.YU X Y, REN Q, LU S X, et al. Mensuration of main efficacy enzyme activity in microbial ferment[J]. Food Science and Technology, 2008, 33(7):193-196.

[6] 杨跃飞. 一种含纳米超临界蜂胶美白淡斑精华素及其制备方法[J]. 中国蜂业, 2013, 64(21):47-48.YANG Y F. Whitening and freckle-removing essence containing nano supercritical Propolis and preparation method thereof[J]. Apiculture of China, 2013, 64(21):47-48.

[7] 李玲, 过证核, 杨子婵, 等. 天然来源减肥用脂肪酶抑制剂的研究进展[J]. 现代化工, 2023, 43(2):51-55.LI L, GUO Z H, YANG Z C, et al. Research progress on lipase inhibitors for weight loss from natural sources[J]. Modern Chemical Industry, 2023, 43(2):51-55.

[8] LIU Q Q, TIAN H X, KANG Y B, et al. Probiotics alleviate autoimmune hepatitis in mice through modulation of gut microbiota and intestinal permeability[J]. The Journal of Nutritional Biochemistry, 2021, 98:108863.

[9] GU Y X, LI X, CHEN H R, et al. Antidiabetic effects of multi-species probiotic and its fermented milk in mice via restoring gut microbiota and intestinal barrier[J]. Food Bioscience, 2022, 47:101619.

[10] 王珍珍, 沙如意, 蔡成岗, 等. 树莓酵素中耐高渗酵母菌的分离鉴定及生长特性研究[J]. 食品工业科技, 2017, 38(8):178-182; 188.WANG Z Z, SHA R Y, CAI C G, et al. Screening, identification and properties of osmophilic yeast from raspberry Jiaosu during natural fermentation process[J]. Science and Technology of Food Industry, 2017, 38(8):178-182; 188.

[11] FANG S, JIN Z N, XU Y S, et al. Chinese bayberry Jiaosu fermentation-changes of mycobiota composition and antioxidant properties[J]. International Journal of Food Engineering, 2021, 17(6):455-463.

[12] JIANG J K, LI W X, YU S P. The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus planetarium on the quality of Pleurotus eryngii Jiaosu[J]. LWT, 2022, 163:113445.

[13] SZUTOWSKA J, RYBICKA I, K, et al. Spontaneously fermented curly kale juice: Microbiological quality, nutritional composition, antioxidant, and antimicrobial properties[J]. Journal of Food Science, 2020, 85(4):1248-1255.

[14] PAREDES J L, ESCUDERO-GILETE M L, VICARIO I M. A new functional kefir fermented beverage obtained from fruit and vegetable juice: Development and characterization[J]. LWT, 2022, 154:112728.

[15] ZHANG C, CHEN X A, GUO X X, et al. A novel strategy for improving the antioxidant, iridoid, and flavor properties of Noni (Morinda citrifolia L.) fruit juice by lactic acid bacteria fermentation[J]. LWT, 2023, 184:115075.

[16] WANG Y Q, FAN L J, HUANG J T, et al. Evaluation of chemical composition, antioxidant activity, and gut microbiota associated with pumpkin juice fermented by Rhodobacter sphaeroides[J]. Food Chemistry, 2023, 401:134122.

[17] LI B, LI H K, SONG B G, et al. Protective effects of fermented blueberry juice with probiotics on alcohol-induced stomach mucosa injury in rats[J]. Food Bioscience, 2023, 55:102974.

[18] FEI Z Q, XIE D C, WANG M, et al. Enhanced biotransformation of bioactive components and volatile compounds of bamboo (Phyllostachys glauca McClure) leaf juice fermented by probiotic Streptococcus thermophiles[J]. LWT, 2023, 173:114363.

[19] MUYANJA C M B K, NARVHUS J A, LANGSRUD T. Organic acids and volatile organic compounds produced during traditional and starter culture fermentation ofBushera, a Ugandan fermented cereal beverage[J]. Food Biotechnology, 2012, 26(1):1-28.

[20] YANG Z J, ZHU X L, WEN A Y, et al. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri[J]. Food Science &Nutrition, 2022, 10(9):3143-3153.

[21] LI S J, TAO Y, LI D D, et al. Fermentation of blueberry juices using autochthonous lactic acid bacteria isolated from fruit environment: Fermentation characteristics and evolution of phenolic profiles[J]. Chemosphere, 2021, 276:130090.

[22] SURAIYA S, LEE J M, CHO H J, et al. Monascus spp. fermented brown seaweeds extracts enhance bio-functional activities[J]. Food Bioscience, 2018, 21:90-99.

[23] LIU B, YUAN D X, LI Q Y, et al. Changes in organic acids, phenolic compounds, and antioxidant activities of lemon juice fermented by Issatchenkia terricola[J]. Molecules, 2021, 26(21):6712.

[24] ISAS A S, MARIOTTI CELIS M S, PÉREZ CORREA J R, et al. Functional fermented cherimoya (Annona cherimola Mill.) juice using autochthonous lactic acid bacteria[J]. Food Research International, 2020, 138:109729.

[25] XU H Y, FENG L X, DENG Y, et al. Change of phytochemicals and bioactive substances in Lactobacillus fermented Citrus juice during the fermentation process[J]. Lwt, 2023, 180:114715.

[26] XIE H, GAO P Y, LU Z M, et al. Changes in physicochemical characteristics and metabolites in the fermentation of goji juice by Lactiplantibacillus plantarum[J]. Food Bioscience, 2023, 54:102881.

[27] JI G Y, LIU G P, LI B, et al. Influence on the aroma substances and functional ingredients of apple juice by lactic acid bacteria fermentation[J]. Food Bioscience, 2023, 51:102337.

[28] LI T L, JIANG T, LIU N, et al. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria[J]. Food Chemistry, 2021, 339:127859.

[29] ZOHRE D E, ERTEN H. The influence of Kloeckera apiculata and Candida pulcherrima yeasts on wine fermentation[J]. Process Biochemistry, 2002, 38(3):319-324.

[30] AL DACCACHE M, KOUBAA M, MAROUN R G, et al. Impact of the physicochemical composition and microbial diversity in apple juice fermentation process: A review[J]. Molecules, 2020, 25(16):3698.

[31] YUASA M, SHIMADA A, MATSUZAKI A, et al. Chemical composition and sensory properties of fermented Citrus juice using probiotic lactic acid bacteria[J]. Food Bioscience, 2021, 39:100810.

[32] MARNPAE M, CHUSAK C, BALMORI V, et al. Probiotic Gac fruit beverage fermented with Lactobacillus paracasei: Physiochemical properties, phytochemicals, antioxidant activities, functional properties, and volatile flavor compounds[J]. LWT, 2022, 169:113986.

[33] SEVINDIK O, GUCLU G, AGIRMAN B, et al. Impacts of selected lactic acid bacteria strains on the aroma and bioactive compositions of fermented gilaburu (Viburnum opulus) juices[J]. Food Chemistry, 2022, 378:132079.

[34] D, WENTA W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk[J]. Acta Scientiarum Polonorum. Technologia Alimentaria, 2012, 11(1):83-89.

[35] SONG Y R, SHIN N S, BAIK S H. Physicochemical and functional characteristics of a novel fermented pepper (Capsiccum annuum L.) leaves-based beverage using lactic acid bacteria[J]. Food Science and Biotechnology, 2014, 23(1):187-194.

[36] KIM H R, JEONG D H, KIM S, et al. Fermentation of blackberry with L. plantarum JBMI F5 enhance the protection effect on UVB-mediated photoaging in human foreskin fibroblast and hairless mice through regulation of MAPK/NF-κB signaling[J]. Nutrients, 2019, 11(10):2429.

[37] BHATTI M S, ASIRI Y I, UDDIN J, et al. Repurposing of pharmaceutical drugs by high-throughput approach for antihypertensive activity as inhibitors of angiotensin-converting enzyme (ACE) using HPLC-ESI-MS/MS method[J]. Arabian Journal of Chemistry, 2021, 14(8):103279.

[38] KUWAKI S, NAKAJIMA N, TANAKA H, et al. Plant-based paste fermented by lactic acid bacteria and yeast: Functional analysis and possibility of application to functional foods[J]. Biochemistry Insights, 2012, 5:21-29.

[39] MOTTA M, GIUGNO I, BOSCO S, et al. Serum lipoprotein(a) changes in acute myocardial infarction[J]. Panminerva Medica, 2001, 43(2):77-80.

[40] CHIU H F, CHEN Y J, LU Y Y, et al. Regulatory efficacy of fermented plant extract on the intestinal microflora and lipid profile in mildly hypercholesterolemic individuals[J]. Journal of Food and Drug Analysis, 2017, 25(4):819-827.

[41] HU R K, ZENG F, WU L X, et al. Fermented carrot juice attenuates type 2 diabetes by mediating gut microbiota in rats[J]. Food &Function, 2019, 10(5):2935-2946.

[42] KLEWICKA E, J, et al. Effects of lactofermented beetroot juice alone or with N-nitroso-N-methylurea on selected metabolic parameters, composition of the microbiota adhering to the gut epithelium and antioxidant status of rats[J]. Nutrients, 2015, 7(7):5905-5915.

[43] KANTACHOTE D, CHARERNJIR W, UMSAKUL K. Antibacterial activities of fermented plant beverages collected in southern Thailand[J]. Journal of Biological Sciences, 2008, 8(8):1280-1288.

[44] HASHEMI S M B, MOUSAVI KHANEGHAH A, BARBA F J, et al. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities[J]. Journal of Functional Foods, 2017, 38:409-414.

[45] VUONG T, MALLET J F, OUZOUNOVA M, et al. Role of a polyphenol-enriched preparation on chemoprevention of mammary carcinoma through cancer stem cells and inflammatory pathways modulation[J]. Journal of Translational Medicine, 2016, 14:13.

[46] LIN H V, FRASSETTO A, KOWALIK E J Jr, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One, 2012, 7(4): e35240.

[47] BOBY N, ABBAS M A, LEE E B, et al. Microbiota modulation and anti-obesity effects of fermented Pyrus ussuriensis Maxim extract against high-fat diet-induced obesity in rats[J]. Biomedicine &Pharmacotherapy, 2022, 154:113629.

[48] FU K L, GAO X, HUA P Y, et al. Anti-obesity effect of Angelica keiskei Jiaosu prepared by yeast fermentation on high-fat diet-fed mice[J]. Frontiers in Nutrition, 2023, 9:1079784.

[49] 帕成周, 邬善敏. 肝功能评价指标的临床应用进展[J]. 疑难病杂志, 2020, 19(6):640-643.PA C Z, WU S M. Progress in clinical application of liver function evaluation indexes[J]. Chinese Journal of Difficult and Complicated Cases, 2020, 19(6):640-643.

[50] IGAMI K, SHIMOJO Y, ITO H, et al. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury[J]. Journal of Pharmacy and Pharmacology, 2015, 67(4):565-572.

[51] ZHOU Y L, TAN F, LI C, et al. White peony (fermented Camellia sinensis) polyphenols help prevent alcoholic liver injury via antioxidation[J]. Antioxidants, 2019, 8(11):524.

[52] S VALLABHA V, INDIRA T N, JYOTHI LAKSHMI A, et al. Enzymatic process of rice bran: A stabilized functional food with nutraceuticals and nutrients[J]. Journal of Food Science and Technology, 2015, 52(12):8252-8259.

[53] 陆雨, 江石平, 孙冬雪, 等. 诺丽酵素化学成分及其抗肿瘤活性研究[J]. 中国药学杂志, 2018, 53(18):1552-1556.LU Y, JIANG S P, SUN D X, et al. Chemical constituents from noni enzyme and their antitumor activities[J]. Chinese Pharmaceutical Journal, 2018, 53(18):1552-1556.

[54] BYUN J I, SHIN Y Y, CHUNG S E, et al. Safety and efficacy of gamma-aminobutyric acid from fermented rice germ in patients with insomnia symptoms: A randomized, double-blind trial[J]. Journal of Clinical Neurology, 2018, 14(3):291-295.

[55] 何曼, 李松, 仇雨, 等. 家庭自制酵素中的微生物污染检测[J]. 食品安全导刊, 2021(26):108-110.HE M, LI S, QIU Y, et al. Detection of microbial contamination in home-made enzymes[J]. China Food Safety Magazine, 2021(26):108-110.

[56] MA D, HE Q W, DING J, et al. Bacterial microbiota composition of fermented fruit and vegetable juices (jiaosu) analyzed by single-molecule, real-time (SMRT) sequencing[J]. CyTA-Journal of Food, 2018, 16(1):950-956.

[57] HAN Y Y, DU J H. Relationship of the methanol production, pectin and pectinase activity during apple wine fermentation and aging[J]. Food Research International, 2022, 159:111645.

[58] MOZHAEV V V, HEREMANS K, FRANK J, et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications[J]. Trends in Biotechnology, 1994, 12(12):493-501.

[59] WANG W J, CHEN W J, ZOU M M, et al. Applications of power ultrasound in oriented modification and degradation of pectin: A review[J]. Journal of Food Engineering, 2018, 234:98-107.

[60] DALA-PAULA B M, CUSTDIO F B, GLORIA M B. Health concerns associated with biogenic amines in food and interaction with amine oxidase drugs[J]. Current Opinion in Food Science, 2023, 54:101090.

[61] CHEN Y Q, WU C L, XU W Y, et al. Evaluation of degradation capability of nitrite and biogenic amines of lactic acid bacteria isolated from pickles and potential in sausage fermentation[J]. Journal of Food Processing and Preservation, 2022, 46(1): e16141.

[62] LEE J S, JIN Y H, PAWLUK A M, et al. Reduction in biogenic amine content in Baechu (napa cabbage) kimchi by biogenic amine-degrading lactic acid bacteria[J]. Microorganisms, 2021, 9(12):2570.

[63] ATALLAH A A, EL-DEEB A M, MOHAMED E N. Shelf-life of Domiati cheese under modified atmosphere packaging[J]. Journal of Dairy Science, 2021, 104(8):8568-8581.

[64] RABIE M A, SILIHA H, EL-SAIDY S, et al. Effects of γ-irradiation upon biogenic amine formation in Egyptian ripened sausages during storage[J]. Innovative Food Science &Emerging Technologies, 2010, 11(4):661-665.

Research progress on function and safety issues of plant Jiaosu

TAN Xiqian, CHENG Xiaoxiao, ZHOU Zhenyu, CUI Fangchao, LYU Xinran, LI Xuepeng, LI Jianrong*

(College of Food Science and Engineering, Bohai University, Jinzhou 121013, China)

ABSTRACT Plant Jiaosu is a product obtained by fermenting fruits and vegetables under microorganisms.They have garnered considerable consumer interest in recent years owing to their substantial market worth.Although there has been various research on plant Jiaosu, analyzing its manufacturing process, composition, function, potential safety hazards, and controlling strategies was still needed.Hence, this review aimed to demonstrate the categories of plant Jiaosu, their primary active substances, flavor, production methods, functions, potential safety risks, and improvement strategies.Plant Jiaosu comprised probiotics, enzymes, organic acids, amino acids, and polyphenols.These chemicals contributed to the distinctive flavor of the plant Jiaosu.Plant Jiaosu had many functions, such as enhancing antioxidant capabilities, treating chronic illnesses, regulating gut microbiota, antibacterial/anti-inflammatory activities, mitigating obesity, and protecting the liver.Nevertheless, foodborne pathogens, methanol, and biogenic amines in plant Jiaosu raised safety issues.These issues can be reduced by using appropriate sterilization methods and designed fermentation processes.This research provides significant insights on the development of plant enzyme products.

Key words plant Jiaosu; probiotics; fermentation; flavor; nutritional benefits

DOI:10.13995/j.cnki.11-1802/ts.038316

引用格式:檀茜倩,程笑笑,周振彧,等.植物酵素功能与安全性研究进展[J].食品与发酵工业,2024,50(20):393-399.TAN Xiqian,CHENG Xiaoxiao,ZHOU Zhenyu, et al.Research progress on function and safety issues of plant Jiaosu[J].Food and Fermentation Industries,2024,50(20):393-399.

第一作者:博士,讲师(励建荣教授为通信作者,E-mail:lijr6491@163.com)

基金项目:萝卜精深加工项目(2021)

收稿日期:2023-12-20,改回日期:2024-02-06