基于全二维气相色谱-飞行时间质谱法对不同品质酱香型白酒的风味组分差异解析

伍琳1,陈志强1*,江伟2*,刘巍1,张艺骥3,祝家健1

1(聚光科技(杭州)股份有限公司,浙江 杭州,310052)2(中国食品发酵工业研究院有限公司,北京,100015)3(黔韵酒业有限公司,贵州 仁怀,550003)

摘 要 为了保证白酒质量和提高白酒酿造工艺水平,该研究采用顶空固相微萃取结合全二维气相色谱-飞行时间质谱(headspace solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, HS-SPME-GC×GC-TOF-MS)技术对不同品质酱香型白酒进行分析。研究发现,酱香型白酒中检出组分1 063种~1 347种,主要为酯类、酸类、醇类、醛类及酮类等。优质酒A1、A2和杂味酒B1、B2的酯类物质相对含量分别为58.75%、55.47%、42.05%和41.55%;醇类物质相对含量分别为17.14%、16.15%、26.77%和26.92%;酸类物质的相对含量分别为1.47%、2.05%、6.71%和7.69%;优质酒呈现酯高、醇低、酸适中,杂味酒呈现酯低、醇高、酸高等特点;且杂味酒中硫醚类、砜类、硫代酯类、噻吩类等含硫类组分较为突出,而优质酒中则含量很低或未检出。结合主成分分析(principal component analysis, PCA)和正交偏最小二乘判别分析(orthogonal partial least-squares discrimination analysis,OPLS-DA),显示优质酒和杂味酒的风味差异显著,其中变量权重值(variable importance in the projection,VIP)>1的潜在差异风味组分共有85种;筛选出VIP>1且P<0.05的物质绘制热图,结果表明优质酒中丁酸乙酯、己酸乙酯、壬醛、辛醛等含量较高,杂味酒中己酸、乙酸、异丁醇、异戊醇等含量较高。通过感官品评发现,杂质酒中酯香强度较低,高级醇味较强,口感略酸,略有异香,缺乏爽净感等,与杂质酒中组分鉴定的酯低、醇高、酸高以及存在的含硫类物质较多等结果具有一致性。该研究结果表明,HS-SPME-GC×GC-TOF-MS技术可在分子水平对酱香型杂味酒进行探究,为后续酱香型杂味酒的品质提升和工艺控制提供有效的技术支撑。

关键词 酱香型白酒;杂味酒;全二维气相色谱-飞行时间质谱;固相微萃取;风味分析;感官品评

酱香型白酒是消费者最喜爱的白酒类型之一,其特点是以酱香为主,香味细腻、复杂、柔顺,酯香柔雅协调,杯中香气经久不散,空杯留香持久,有“扣杯隔日香”的说法[1]

酱香型白酒的酿造工艺十分复杂,包括碎沙、大曲粉碎、下沙、泼水堆积、蒸粮、摊凉、堆积、发酵、勾兑等环节[2-4]。白酒中低沸点和令人不愉快的挥发性物质通过发酵产生,一些酸类、醇类物质的氧化、酯化和水解等化学反应会促进白酒风味组分的形成[5-7]。如低脂肪酸则通过酶催化与乙醇反应生成酯,当酯化率达到最高时,酯类分解为醇类和酸类,对白酒风味的形成起着重要作用[8]。但由于酱香型白酒的自发开放式发酵过程需要环境中的多种混合微生物高度参与[9-10],工艺细节处理不当可能导致酒体产生不良气味。如白酒中硫含量过高会呈现酸黄瓜味[11],酸含量偏高时,白酒会呈现汗臭味[12-14]。白酒中酸、酯、醇、醛、酮、酚类等风味组分的含量和占比都存在差异,当这些成分无法达到适当的平衡时,白酒会呈现臭、苦、酸、辣、涩、油等杂味[15-16]。目前,针对酱香型白酒中杂味的研究已逐渐展开,如WANG等[17]采用比较香气提取液稀释法研究了具有强烈难闻的酸菜恶臭味酒样,发现甲基-2-甲基-3-呋喃二硫、二甲基三硫、2-呋喃基硫醇、二甲基二硫等是茅香型白酒酸味的主要成因;YAN等[18]基于顶空固相微萃取结合二维气相色谱-飞行时间质谱(headspace solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry, HS-SPME-GC×GC-TOF-MS)的分析方法,表征出酱香型异味白酒中主要含有挥发性硫化物。

考虑到白酒杂味的复杂性和多样性,本研究拟采用具有高分辨率、高灵敏度、高峰容量的HS-SPME-GC×GC-TOFMS技术,结合具有大量吸附能力的箭形固相微萃取前处理方法,结合感官品评专业组结果,对比研究酱香型优质酒与杂味酒中风味组分的特征差异,采用主成分分析(principal component analysis,PCA)结合偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)确定了优质酒与杂味酒的显著性差异风味贡献物质。本研究为深入挖掘酱香型白酒中异杂味物质奠定了基础,为改进酱香型白酒的酿造工艺提供数据支撑。

1 材料与方法

1.1 仪器与试剂

1.1.1 实验样品

实验所用2组酱香型优质成品酒(A1、A2)和2组异杂味酒(B1、B2)样品均采集于贵州省仁怀市黔韵酒业有限公司黔茅酒厂,白酒A1、A2、B1及B2的取样时间分别为2022年12月、2022年11月、2022年12月及2012年12月,酒精度均为53%vol。

1.1.2 实验试剂

NaCl(色谱纯)、C7~C35直链正构烷烃标准溶液(色谱纯-10 mg/L),Sigma-Aldrich公司。

1.1.3 仪器与设备

GC×GC-TOFMS 2000全二维气相色谱-飞行时间质谱和APS-100多功能前处理自动进样系统,聚光科技(杭州)股份有限公司;SPME arrow 1.1 mm 20 mm×120 μm (DVB/CAR/PDMS),瑞士思特斯分析仪器有限公司;一维色谱柱DB-WAX (30 m×250 μm×0.25 μm)、二维色谱柱DB-17MS (2 m×180 μm×0.18 μm),美国安捷伦科技有限公司。

1.2 感官描述方法

通过感官专业队伍,依据GB/T 10220—2012《感官分析方法学总论》的检验步骤和采用符合GB/T 33405—2016《白酒感官品评术语》专业词汇品鉴4种酒样,最终进行描述评价。

1.3 实验方法

1.3.1 实验样品的前处理

用超纯水稀释白酒样品至乙醇体积分数为10%,在20 mL顶空瓶中加入5 mL稀释后的酒样和1.5 g氯化钠至饱和,迅速用带有PTFE硅胶隔垫的空心磁性金属盖密封,用于后续仪器的检测。

1.3.2 HS-SPME

通过多功能全处理自动进样系统,采用DVB/CAR/PDMS固相微萃取头,对顶空瓶中的样品进行顶空萃取;样品在50 ℃下以450 r/min振荡孵化5 min,然后在50 ℃下,以450 r/min振荡萃取40 min,萃取结束后在250 ℃下解吸进样5 min,最后进行GC×GC-TOF-MS分析,每个样品重复测量3次。

1.3.3 GC×GC-TOF-MS

程序升温:初始温度40 ℃保持2 min,以5 ℃/min升至230 ℃,保持5 min;以高纯氦气作为载气,恒流模式,流速为1.0 mL/min;进样温度250 ℃,分流比5∶1;全二维调制器的冷聚焦区温度-50 ℃,热释放区温度进行程序升温,温度始终保持高于柱温箱温度10 ℃;全二维分析调制周期4.0 s,每个调制周期聚焦3 s,释放1 s;色谱质谱接口温度250 ℃,离子源温度250 ℃,TOFMS条件:离子源(electron impact,EI)电压70 eV,温度250 ℃;传输线温度250 ℃;检测器电压-1 800 V;采集质量数范围30~700 amu,采集频率50 谱/s。

1.3.4 GC×GC-TOF-MS的数据处理

采用仪器自带GC2Slover工作站对采集的数据进行分析,自动识别信噪比>10的色谱峰,与NIST 2020谱库进行匹配,筛选出正向和反向匹配度均大于800的组分,同时,结合在相同的色谱条件下测得的C7~C35正构烷烃标准溶液的保留指数(retention index,RI),对风味组分进行对比,筛选RI相差小于50的化合物;综合识别后确定化合物组分,各组分的相对含量通过峰面积归一化法计算。

1.4 统计学分析方法

采用Excel 2019、SPSS27.0、Origin 9.0进行数据处理、绘图和统计分析,实验数据以平均值±标准差形式表示,当P<0.05时表示显著差异;采用Simca14.1软件进行PCA和正交偏最小二乘判别法(orthogonal partial least squares discriminant analysis,OPLS-DA)分析。

2 结果与分析

2.1 酱香型优质酒与杂味酒中风味组分分析

通过HS-SPME-GC×GC-TOFMS分别对酱香型优质酒A1、A2和杂味酒B1、B2进行分析,4种白酒所测组分分别为1 347、1 271、1 095和1 063种,全二维色谱轮廓图见图1。

a-优质酒A1;b-优质酒A2;c-杂质酒B1;d-杂质酒B2
图1 四种酱香型白酒 GC×GC-TOF-MS 色谱图和局部轮廓图
Fig.1 GC×GC-TOF-MS atlas and local profiles a of four kinds of Maotai-flavor Baijiu

优质酒A1和A2整体色谱轮廓图较为类似,杂味酒B1和B2较为类似,从图中框选10~20 min的局部轮廓图和图中右上角显示的组分数量可知优质酒与杂味酒色谱轮廓图在组分数量和峰面积大小均存在明显差异。为分析酱香型优质酒与杂味酒中风味组成差异,将测得物种分为酯类、醇类、酮类等14个类别,如图2所示。优质酒中酯类、酮类、醛类、含氮杂环、含氧杂环、芳香族类及萜烯类等组分的种类明显多于杂味酒,而杂味酒中醇类、酸类、含硫类等组分种类多于优质酒。为进一步分析酒样中各类别组分含量间的差异,采用面积归一化对14个类别组分的峰面积百分比进行对比分析。由图3可知,4种酱酒中酯类含量均最高,其次是醇类,再次是酸类、醛类、酮类、含氧杂环类、含氮杂环类等组分;此外,酚类、含硫类、醚类、芳香族、萜烯类及其他等物质也占有少部分比例,与前人研究的酱香型风味结论较为一致[4,19-21]。对比分析发现,优质酒A1、A2和杂味酒B1、B2的酯类物质相对含量分别为58.75%、55.47%、42.05%和41.55%,酮类物质的相对含量分别为7.27%、8.03%、5.30%和4.48%,表明优质酒中酯类、酮类物质明显高于杂味酒,丰富的酯类和酮类物质对酱酒的品质具有正面促进作用。优质酒A1、A2和杂味酒B1、B2的醇类物质相对含量分别为17.14%、16.15%、26.77%和26.92%,有机酸类物质的相对含量分别为1.47%、2.05%、6.71%和7.69%,表明杂味酒中醇类和酸类物质要明显高于优质酒;适量的醇和酸可促进酒体的甜感、增强后味,但醇和酸过量会出现不愉快的邪杂味、口感粗糙等现象。同时,优质酒A1、A2和杂味酒B1、B2中萜烯类的相对含量分别为2.49%、2.05%、0.39%和0.28%,烷烃类物质的相对含量为0.71%、0.62%、0.15%和0.17%,表明优质酒中萜烯类和烷烃类比杂味酒略高。而优质酒A1、A2和杂味酒B1、B2中含硫化合物的相对含量分别为0.36%、0.28%、1.70%、2.41%,醚类物质的相对含量分别为0.71%、0.77%、1.46%和1.08%,表明杂味酒中含硫化合物和醚类物质比优质酒更高。综上可知,优质酒中酯类、酮类、萜烯类、烷烃类较杂味酒更为丰富,而杂味酒中醇类、酸类、含硫化合物和醚类物质偏高。

图2 四种酱香型白酒风味组分种类分布图
Fig.2 Species of flavor compounds in four kinds of Maotai-flavor Baijiu

图3 四种酱香型白酒风味组分峰面积比例
Fig.3 Peak area of flavor compounds in four kinds of Maotai-flavor Baijiu

2.2 酱香型优质酒与杂味酒中前100种共有风味组分解析

酱酒风味组分复杂繁多,为进一步研究酱酒中优质酒和杂味酒的主要异同之处,根据风味相对含量筛选出前100位的共有风味组分,详见表1。前100种风味组分包括50种酯类、23种醇类、11种酮类、11种醛类、3种酸类和2种吡嗪。共有风味组分中,A1、A2、B1、B2酯类物质由高到低主要有乙酸乙酯、己酸乙酯、棕榈酸乙酯、乳酸乙酯、月桂酸乙酯等,这些酯类分别占各自总酯风味含量的84.47%~89.37%,表明酯类物质在酱酒中的作用较为重要,优质酒中辛酸乙酯、丁酸乙酯、壬酸乙酯等酯类含量比杂味酒中要高,这些的酯类含量高会促使优质酒具有明显花果香;醇类物质由高到低主要有异戊醇、正庚醇、异丁醇、正丙醇等,这些醇类占总醇风味含量的61.09%~62.74%;有机酸类物质由高到低主要有乙酸和辛酸,酸类占总酸风味含量的33.96%~66.06%;适当的醇类和酸类物质对酒体的“丰满感”的作用不可或缺,但当含量过高时,对酒体带来不愉悦的风味和苦涩味等不协调感,杂味酒中异丁醇、异戊醇、己酸等含量较高,因此杂味酒中醇类和酸类物质偏高可能是造成酒体不爽净,口感粗糙的因素之一;酮类物质由高到低主要包括2-十一酮、醋嗡、2-庚酮、2-壬酮等,主要醛类物质由高到低有壬醛、糠醛、苯甲醛、己醛等,醛酮等羰基类化合物在酱酒中的含量比酯类、醇类等物质较少,但低分子醛酮类对酱酒的助香和入口“喷香”作用不可忽视,在杂味酒中,糠醛和醋嗡相对含量较高,这2种物质对酱酒的焦香和糊香具有一定贡献,可能会使杂味酒陈香明显。

表1 四种酱香型白酒共有的重要风味组分
Table 1 The common flavor compounds in four kinds of Maotai-flavor Baijiu

序号组分CAS号一维/min二维/s正向匹配度反向匹配度RINISTRIA1相对含量/%A2相对含量/%B1相对含量/%B2相对含量/%1乙酸乙酯141-78-65.05 2.03 838874902 8887.6087.7427.2547.21822-戊酮107-87-95.49 1.21 813815989 9820.0200.0150.0340.0353仲丁醇78-92-25.78 0.60 8949081 015 1 0250.0520.0380.0100.0104丁酸乙酯105-54-46.00 1.31 8058321 025 1 0352.1492.0570.0330.0205正丙醇71-23-86.05 0.57 8178111 027 1 0360.9181.0260.0460.01262-甲基丁酸乙酯7452-79-16.33 1.45 8208051 040 1 0511.9771.9870.1960.2057异戊酸乙酯108-64-56.73 1.39 8278291 057 1 0682.4862.5850.2340.2458乙酸丁酯123-86-46.79 1.18 8698741 060 1 0740.2790.2320.1150.0249己醛66-25-16.93 1.15 9239321 066 1 0830.3740.4280.4350.17610异丁醇78-83-17.52 0.59 8388741 092 1 0920.9530.8251.9692.17511乙酸异戊酯123-92-27.93 1.36 8138151 109 1 1221.4081.1970.8080.628122-戊醇6032-29-78.03 0.45 8388741 101 1 1190.0060.0060.0070.00813丁酸仲丁酯819-97-68.20 1.71 8428501 120 1 1440.1090.0890.0140.00814戊酸乙酯539-82-28.33 1.48 8138151 125 1 1342.0312.0720.0940.10315正丁醇71-36-38.72 0.61 8258361 140 1 1420.6360.4441.3651.381

续表1

序号组分CAS号一维/min二维/s正向匹配度反向匹配度RINISTRIA1相对含量/%A2相对含量/%B1相对含量/%B2相对含量/%162-庚酮110-43-09.53 1.27 8628691 172 1 1820.2890.2920.5360.150174-甲基戊酸乙酯25415-67-29.80 1.60 9109181 183 1 1900.7140.6950.3020.18618异丁酸异戊酯2050-01-39.87 1.89 8779021 186 1 1890.1240.1290.0430.00819异戊醇123-51-310.39 0.66 8108491 206 12092.6772.7055.0535.06220活性戊醇137-32-610.41 0.70 9319361 210 1 2080.0590.0660.1560.14521丁酸丁酯109-21-710.54 1.67 8188331 211 1 2200.7090.6740.0820.04122己酸乙酯123-66-011.00 1.74 8098101 228 1 2334.1153.9753.7743.706233-辛酮106-68-311.47 1.48 8749201 245 1 2530.1680.1500.0090.01424正戊醇71-41-011.52 0.64 9319361 247 1 2500.1750.1890.7930.62425丁酸异戊酯106-27-411.80 1.80 8568571 258 1 2590.4950.4280.0330.00226乙酸己酯142-92-712.00 1.47 8908901 265 1 2720.2390.2260.0570.01027醋嗡513-86-012.32 0.58 8769111 276 1 2840.1460.1350.5590.55328辛醇124-13-012.40 1.39 9209231 279 1 2890.3260.3380.0580.04829异戊醛590-86-312.85 0.66 8058121 296 1 2990.0300.0240.4890.03730己酸丙酯626-77-713.27 1.74 8488561 312 1 3160.8670.8430.0710.014312-庚醇543-49-713.32 0.77 8788861 314 1 3200.1190.1130.2600.268324-壬酮4485-09-013.40 1.60 9049061 317 1 3570.1550.1530.0100.01633庚酸乙酯106-30-913.67 1.73 8558621 327 1 3311.7362.1010.2280.16034乳酸乙酯97-64-313.85 0.65 8178091 334 1 3490.5670.4192.3222.18535正己醇111-27-314.19 0.68 8558551 347 1 3550.5600.5911.6151.77236正戊酸异戊酯 2050-09-114.41 1.88 8968961 355 1 3500.1550.1510.0180.007372-壬酮821-55-615.06 1.41 8598731 380 1 3900.3041.0800.3060.102382-甲基辛酸甲酯2177-86-815.07 1.74 8178141 381 1 3800.1250.1010.0050.00539壬醛124-19-615.20 1.45 8988991 386 1 3911.0051.0800.0940.10240三甲基吡嗪14667-55-115.53 1.18 8018421 399 1 4020.0760.0700.2960.44641己酸丁酯626-82-415.74 1.86 8228481 407 1 4070.9500.8900.0190.00642辛酸乙酯106-32-116.34 1.72 8478941 430 1 4352.9182.8200.6780.61243糠醛98-01-116.85 0.66 8178041 451 1 4620.2110.3010.8600.833441-庚醇111-70-616.85 0.72 8259011 451 1 4531.1110.9793.1943.12645乙酸64-19-716.91 0.39 8949071 453 1 4490.3040.6551.0640.96146己酸异戊酯2198-61-016.94 1.94 9029351 454 1 4510.4860.4880.2790.18447四甲基吡嗪1124-11-417.33 1.29 8889051 470 1 4690.1340.1160.1810.588487-辛烯酸乙酯35194-38-817.53 1.49 8139351 478 1 4780.1730.1600.0610.07049戊酸己酯1117-59-517.81 2.11 8138301 489 1 4990.0330.0550.0070.00550癸醛112-31-217.87 1.51 9169301 491 1 4980.2670.4050.0410.03451己酸戊酯540-07-818.21 1.91 8138081 504 1 5010.3260.3010.0100.00952苯甲醛100-52-718.39 0.85 8178371 512 1 5200.6320.6471.7971.88753反式-2-壬醛18829-56-618.73 1.22 9139241 526 1 5340.2670.2660.0430.004544-十一酮14476-37-018.74 1.71 8628681 529 1 4970.8500.7510.0150.00555壬酸乙酯123-29-518.80 1.81 8588651 529 1 5312.3022.2610.1270.161562,3-丁二醇(内)19132-06-018.92 0.47 8408571 533 1 5650.0350.0660.1330.20757DL-2-羟基-4-甲基戊酸乙酯10348-47-718.99 0.81 8618611 536 1 5470.5800.4901.8591.70658反式-2-辛烯酸乙酯7367-82-019.20 1.54 8918951 545 1 5400.2440.1530.0130.029591-辛醇111-87-519.39 0.76 8748761 552 1 5570.6070.5711.2701.27060乳酸异戊酯19329-89-619.59 0.77 8098181 560 1 5800.1640.1581.6031.506612,3-丁二醇(左)24347-58-819.78 0.46 8268411 568 1 5560.0280.0410.0680.081621,2-丙二醇57-55-620.12 0.44 8298661 582 1 6000.0240.0540.1970.215632-十一酮112-12-920.27 1.54 8828871 588 1 5980.7580.7430.2350.10664己酸己基酯6378-65-020.61 1.97 8728891 602 1 6020.6060.5280.0150.008652-呋喃羧酸乙酯614-99-320.79 0.83 8818971 611 1 6180.1710.1610.3690.38266苯乙醛122-78-121.19 0.86 8388661 630 1 6400.2650.2180.1860.17567癸酸乙酯110-38-321.27 1.80 8508601 634 1 6382.4462.2750.4320.30068反式-2-癸烯醛3913-81-321.33 1.26 8759071 637 1 6440.1650.1060.0430.07469反式-4-癸酸乙酯76649-16-621.37 1.08 9249251 663 1 6761.8011.5640.0980.14770苯乙酮98-86-221.39 0.90 8568931 640 1 6470.1520.1400.4920.486711-壬醇143-08-821.79 0.82 8708821 659 1 6600.7520.6570.8720.36572苯甲酸乙酯93-89-021.79 1.10 8138101 660 1 6580.4570.4270.5580.42773丁二酸二乙酯123-25-122.06 0.99 8609001 672 1 6800.1320.1181.2551.296744-十一醇4272-06-422.19 1.05 8588641 679 1 6620.2940.2340.2310.151

续表1

序号组分CAS号一维/min二维/s正向匹配度反向匹配度RINISTRIA1相对含量/%A2相对含量/%B1相对含量/%B2相对含量/%752-十一醇1653-30-123.12 1.00 8368921 720 1 7170.2460.2370.0460.12176十一酸乙酯627-90-723.61 1.87 8788961 740 1 7390.4060.3490.0460.06577反-2-十一烯醛2463-77-623.73 1.30 8688961 745 1 7510.1380.1600.0810.081781-癸醇112-30-124.06 0.87 9309361 758 1 7600.2510.2350.1330.11479苯乙酸乙酯101-97-324.46 1.09 8108091 774 1 7830.9710.8561.7761.66980顺-3-癸醇10340-22-424.66 0.83 8578641 782 1 7890.100.070.230.1981反式-2,4-癸二烯醛25152-84-524.99 1.07 8248571 796 1 8110.1970.2030.0600.075822-十三烷酮593-08-825.07 1.59 8748771 799 1 8090.4290.3560.0960.07483乙酸苯乙酯103-45-725.12 1.02 8098191 801 1 8130.3070.2460.4090.25784月桂酸乙酯106-33-225.87 1.93 8468731 836 1 8411.7841.5871.8251.73285苯乙酸丙酯4606-15-926.19 1.15 8409061 852 1 8480.1210.0730.0890.018862-十四烷酮2345-27-926.27 1.65 8208971 855 1 8780.1290.1290.0580.07087己酸142-62-126.31 0.34 8518621 857 1 8460.0490.1822.6832.02388苯甲醇100-51-626.38 0.51 8138421 858 1 8700.0490.1821.3192.02389苯丙酸乙酯2021-28-526.59 1.15 8098171 870 1 8930.7020.6660.5590.60890β-苯乙醇60-12-827.12 0.60 8078571 895 1 9060.4940.4600.0281.08491苯甲酸异戊酯94-46-227.20 1.31 8839461 899 1 9230.1390.1220.0350.00992β-丁酸苯乙酯103-52-628.20 1.24 8398501 945 1 9580.2220.1900.0190.02693十四酸乙酯124-06-130.01 2.11 8218322 034 2 0490.5920.3360.1150.21094辛酸124-07-230.78 0.47 8058462 073 2 0600.1460.0970.6861.68395十五酸乙酯41114-00-532.01 2.25 8248312 137 2 1480.1800.1960.4200.45096棕榈酸乙酯628-97-733.95 2.61 8028182 239 2 2513.0502.7183.4223.59197顺-9-十六碳烯酸乙酯54546-22-434.35 2.43 9009172 260 2 2810.3650.3411.1450.97398硬脂酸乙酯111-61-537.33 1.27 8068182 420 2 4510.0080.0090.0300.03599油酸乙酯111-62-637.90 3.47 8528572 441 2 4710.4400.4291.3791.245100亚油酸乙酯544-35-438.63 3.40 8068492 474 2 5210.1680.1950.4060.566

2.3 酱香型优质酒与杂味酒中显著差异性风味组分解析

为了进一步分析优质酒与杂味酒的差异性风味组分,对杂味酒中显著有和相对含量较高的14种物质进行分析,见表2,杂味酒显著有的物质基本为含硫物质,虽含量较低但仍有检出,优质酒中大部分含硫物质则无检出,虽然含硫组分香气阈值较低,但大部分硫化物都具有让人不愉快的气味,比如二甲基二硫和二甲基三硫具有洋葱、橡胶等刺激性味道,是白酒中异味来源的主要物质、硫代乙酸甲酯具有刺激的洋葱气味,3-甲基噻吩具有塑料橡胶气味、3-甲硫基丙酸乙酯具有甘蓝气味、2-噻吩甲醛具有大蒜、硫化物气味等这些含硫化合物的存在可能是引起杂味酒有盐菜味、油脂味等异味的原因。

表2 四种酱香型白酒差异的风味组分
Table 2 The difference flavor compounds in four kinds of Maotai-flavor Baijiu

序号组分CAS号一维/min二维/s正向匹配度反向匹配度RINISTRIA1相对含量/%A2相对含量/%B1相对含量/%B2相对含量/%1硫代乙酸甲酯1534-08-36.56 1.55 8138091 0451 052N.D.N.D.0.0390.0032二甲基二硫624-92-06.79 0.98 5909051 0581 0770.0360.0350.3800.53733-甲基噻吩616-44-48.18 0.73 8278291 1181 122N.D.N.D.0.0620.0664乙基甲基二硫醚20333-39-58.82 0.51 8138151 1421 155N.D.N.D.0.0620.0355硫代丁酸甲酯2432-51-19.97 1.09 8138091 1891 198N.D.N.D.0.0320.0456二甲基三硫3658-80-814.73 1.28 9009281 3681 3770.0890.0940.1540.1647己酸甲硫醇酯2432-77-115.50 1.28 8138071 4011 412N.D.N.D.0.0090.01082-正戊基噻吩4861-58-916.56 1.16 8138071 4401 452N.D.N.D.0.0740.0169戊基甲基二硫醚72437-68-416.83 1.09 8038071 4501 4540.0020.0030.0620.04710糠基甲基硫醚1438-91-117.35 1.29 8138061 4721 489N.D.N.D.0.0480.046113-甲硫基丙酸乙酯13327-56-519.52 1.03 8178981 5581 5620.0020.0020.0560.094122-甲基-3-甲二硫基呋喃65505-17-121.67 1.68 8108051 6571 667N.D.N.D.0.0750.013132-噻吩甲醛98-03-322.13 1.09 8288821 6751 684N.D.N.D.0.0730.29514邻苯噻吩825-55-831.56 1.40 8108052 1122 124N.D.N.D.0.0110.077

注:“N.D.”表示未检出。

2.4 优质酒与杂味酒 OPLS-DA 模型建立及模型预测与验证

首先采用无监督的多变量统计方法PCA,能在最大程度保留数据原始信息的基础上对样品加以区分,将2组优质酒A1、A2,2组杂味酒B1、B2的风味组分进行PCA(n=7),见图4。杂味酒与优质酒能进行明显区分,2组优质酒无显著差别,无差别原因可能是优质酒相比杂味酒各组分相似度更高,2组杂味酒有明显区别的原因可能是由于B1为新杂味酒,B2为老杂味酒。

图4 四种酱香白酒风味组分的主成分分析得分图
Fig.4 PCA score plot of flavor components of four kinds of Maotai-flavor Baijiu

为了进一步分析寻找4组白酒间差异性标志物,采用有监督的多元统计方法OPLS-DA,该方法能在很大程度上降低了系统噪声干扰,进而提高分类效能[19]。把4组酒样分为两组,优质酒为A组,杂味酒为B组,见图5,A组和B组能明显区分。该模型R2Y(cum)和Q2(cum)分别为0.998和0.985,将该模型经过200次置换检验,如图5-b所示,R2Q2的截距分别为0.246和-0.567,说明模型不存在过拟合,模型验证可靠。

a-OPLS-DA;b-模型交叉验证结果
图5 四种酱香白酒风味组分的的OPLS-DA和模型交叉验证结果
Fig.5 OPLS-DA and permutation test of permutation test of OPLS-DA model of flavor components of four kinds of Maotai-flavor Baijiu

利用OPLS-DA中的VIP值进行差异组分的识别,筛选出VIP值>1的风味组分有85种,其中酯类41种、醇类14种、酸类5种、酮类10种、醛类8种、含氧杂环6种、芳香族1种。

2.5 潜在差异物质的确认

为了分析不同风味组分对区分优质酒和杂味酒的贡献率,根据OPLS-DA分析按照VIP>1的标准筛选出85种组分,选择贡献率较高且P<0.05的前50种显著性差异组分对数据进行归一化处理后制作热图(图6)。

图6 四种酱香型白酒差异风味成分聚类热图
Fig.6 Heatmap of differential flavor components between Maotai-flavor Baijiu

从热图分析的结果可以看出,优质酒和杂味酒间具有显著性差异,在优质酒中,相对含量较高的大多为一些酯类(丁酸乙酯、己酸乙酯、辛酸乙酯、癸酸乙酯等)、醛类(壬醛、辛醛等),在杂味酒中,相对含量较高的大多为酸类(己酸、乙酸、丁酸、辛酸等)、醇类(异丁醇、异戊醇等)、糠醛等,2种优质酒间差异较小,2种杂味酒间有相对差异,造成差异的物质主要是辛酸、异丁醇、2,4-丁二醇(内)、丙酸丁酯、丁酸和乙酸等。

2.6 优质酒与杂味酒的感官品评分析

为了更好地分析优质酒与杂味酒的差异,品评小组对4种酱酒进行感官品评,品评结果如表3所示,整体上酒体呈微黄透明,具有典型或较为典型的酱香型风格。其中,2种优质酒A1、A2的酒体均具有协调、爽净、柔和的特点,A1花果香和曲香明显,A2花果香明显;2种杂味酒B1、B2陈香突出、酒体柔和,但口感较不爽净,均有腌菜味的杂味,且B2的油脂味较为明显。

表3 四种酱香型白酒感官品评结果表
Table 3 Sensory evaluation results of four kinds of Maotai-flavor Baijiu

序号名称品评描述1优质酒A1微黄透明,酱香突出,花果香明显,典型的曲香,酒体协调爽净,较柔和舒适,酱香风格典型2优质酒A2微黄透明,酱香突出,花果香明显,酒体协调爽净、醇甜柔和,酱香风格典型3杂味酒B1微黄透明,酱香突出,陈香、窖香明显,有盐菜味等异味,酒体醇甜柔和,较不爽净,酱香风格较典型4杂味酒B2微黄透明,酱香突出,陈香明显,略有曲香,有盐菜味、油脂味等异味,酒体较柔和,略不爽净,酱香风格较典型

针对每款酒体的嗅觉和味觉品评打分,打分规则为:0分:没有香气/味道;1分:刚能察觉,难以辨识;2分:非常轻;3分:较轻;4~5分:中等;6~7分:较强;8~9分:主导。评分结果如图6和图7所示。由图7的香气评价结果可知,优质酒具有更好的酱香、酯香,而杂味酒中存在较轻异香,结合风味检测结果可知,优质酒中具有较高含量的酯类物质对酯香具有直接贡献,而杂味酒中的异香受腌菜风味的影响产生,可能主要与含硫类物质有关。由图7的口感评价结果,杂味酒的酸味更重,这可能与有酸类含量更高有关;杂味酒中的爽净感偏低,可能与检测的硫醚类、砜类、硫化物、硫代酯类、噻吩类等含硫类组分存在一定的相关性。

a-香气评价雷达图;b-口感评价雷达图
图7 四种酱香白酒风味组分的香气评价雷达图和口感评价雷达图
Fig.7 Flavor fingerprint and taste and mouthfeel fingerprints of flavor components of four kinds of Maotai-flavor Baijiu

3 结论

本文采用HS-SPME-GC×GC-TOFMS对酱香型优质酒和杂味酒的风味组分进行了分析,优质酒A1、A2和杂味酒B1、B2测的风味物种分别有1 347种、1 250种、1 055种和1 023种。分析物种的相对含量可知优质酒中酯高、醇低、酸适中,杂味酒中酯低、醇高、酸高,其中优质酒中酮类、萜烯类、烷烃类较杂味酒更为丰富,而杂味酒中含硫化合物和醚类物质偏高。优质酒和杂味酒前100种共有组分中,优质酒中辛酸乙酯、丁酸乙酯、壬酸乙酯等酯类含量比杂味酒中要高,酯类含量高会促使优质酒具有明显花果香,杂味酒中异丁醇、异戊醇、己酸等含量较高,可能是造成酒体不爽净,口感粗糙的因素之一。差异组分分析中,杂味酒中硫醚类、砜类、硫代酯类、噻吩类等含硫类组分较为突出,而优质酒中含量很低或未检出,这些含硫组分虽然香气阈值较低,但极有可能是引起杂味酒有盐菜味、油脂味等异味的原因。结合PCA和OPLS-DA分析显示出优质酒和杂味酒的风味差异显著,热图显示优质酒以酯类和醛类物种含量更高,杂味酒以酸类和醇类物种含量更高。最后结合感官品评,发现杂质酒中酯香强度较低,高级醇味较强,口感略酸,略有异香,缺乏爽净感等,这与杂质酒中鉴定的酯低、醇高、酸高以及存在的含硫类物质较多等具有一致性。

本研究从不同维度对优质酒与杂味酒的风味组分进行了比较,为后续杂味酒的区分提供了理论参考,由于白酒的风味复杂和多样性,因此在后续的研究中,将进一步引进GC-O和GC-IMS等技术,来为白酒的杂味评定提供更为详细的数据支撑和客观依据。

参考文献

[1] GAN S H, YANG F, SAHU S K, et al.Deciphering the composition and functional profile of the microbial communities in Chinese Moutai liquor starters[J].Frontiers in Microbiology, 2019, 10:1540.

[2] DU H, CHEN B W, FU W B, et al.Composition and function of viruses in sauce-flavor Baijiu fermentation[J].International Journal of Food Microbiology, 2023, 387:110055.

[3] GENG X J, LI Q, WANG X L, et al.Environmental factors induced metabolome shifts during Laobaigan-flavor Baijiu fermentation[J].Journal of Food Composition and Analysis, 2023, 123:105570.

[4] YAN Y, CHEN S, NIE Y, et al.Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC x GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis[J].Food Research International, 2020, 131:109043.

[5] DUAN J W, YANG S Q, LI H H, et al.Why the key aroma compound of soy sauce aroma type baijiu has not been revealed yet?[J].LWT-Food Science and Technology, 2022, 154:112735.

[6] LI Q, XU H Y, YU Y G, et al.Why does distilled liquor has a soft and harmonious flavor after long-time ageing? A thermodynamic analysis[J].Journal of Food Composition and Analysis, 2023, 123:105609.

[7] FAN Q, WANG X L, ZHAO Y F, et al.Characterization of key aroma compounds in Laobaigan Chinese Baijiu by GC×GC-TOF/MS and means of molecular sensory science[J].Flavour and Fragrance Journal, 2019, 34(6):514-525.

[8] XU Y Q, ZHAO J R, LIU X, et al.Flavor mystery of Chinese traditional fermented Baijiu:The great contribution of ester compounds[J].Food Chemistry, 2022, 369:130920.

[9] LI T, WANG J, XU B Z, et al.Comparative analysis of the differences among Langya flavor Baijiu and strong and soy sauce flavor Baijiu by targeted flavor analysis[J].Journal of Food Composition and Analysis, 2023, 122:105479.

[10] ZHU L, SONG X B, LI X, et al.Interactions between kafirin and pickle-like odorants in soy sauce flavor Baijiu:Aroma profile change and binding mechanism[J].Food Chemistry, 2023, 400:133854.

[11] WEI L L, HU J F, PAN C K, et al.Effects of different storage containers on the flavor characteristics of Jiangxiangxing baijiu[J].Food Research International, 2023, 172:113196.

[12] DONG W, SHI K, LIU M, et al.Characterization of 3-methylindole as a source of a “mud”-like off-odor in strong-aroma types of base Baijiu[J].Journal of Agricultural and Food Chemistry, 2018, 66(48):12765-12772.

[13] MU Y, HUANG J, ZHOU R Q, et al.Characterization of the differences in aroma-active compounds in strong-flavor Baijiu induced by bioaugmented Daqu using metabolomics and sensomics approaches[J].Food Chemistry, 2023, 424:136429.

[14] NIU Y W, ZHANG J, XIAO Z B, et al.Evaluation of the perceptual interactions between higher alcohols and off-odor acids in laimao Baijiu by sigma-tau plot and partition coefficient[J].Journal of Agricultural and Food Chemistry, 2020, 68(50):14938-14949.

[15] DENG Y H, XIONG A Y, ZHAO K, et al.Mechanisms of the regulation of ester balance between oxidation and esterification in aged Baijiu[J].Scientific Reports, 2020, 10(1):17169.

[16] YE H, WANG J, SHI J, et al.Automatic and intelligent technologies of solid-state fermentation process of Baijiu production:Applications, challenges, and prospects[J].Foods, 2021, 10(3):680.

[17] WANG L L, FAN S S, YAN Y, et al.Characterization of potent odorants causing a pickle-like off-odor in Moutai-aroma type Baijiu by comparative aroma extract dilution analysis, quantitative measurements, aroma addition, and omission studies[J].Journal of Agricultural and Food Chemistry, 2020, 68(6):1666-1677.

[18] YAN Y, CHEN S, NIE Y, et al.Quantitative analysis of pyrazines and their perceptual interactions in soy sauce aroma type Baijiu[J].Foods, 2021, 10(2):441.

[19] HE X, H H.Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-TOFMS) in conventional and reversed column configuration for the investigation of Baijiu aroma types and regional origin[J].Journal of Chromatography A, 2021, 1636:461774.

[20] YANG L, CHEN R Y, LIU C, et al.Spatiotemporal accumulation differences of volatile compounds and bacteria metabolizing pickle like odor compounds during stacking fermentation of Maotai-flavor Baijiu[J].Food Chemistry, 2023, 426:136668.

[21] WANG L L, GAO M X, LIU Z P, et al.Three extraction methods in combination with GC×GC-TOFMS for the detailed investigation of volatiles in Chinese herbaceous aroma-type Baijiu[J].Molecules, 2020, 25(19):4429.

[22] JIANG X Y, XIE Y Q, WAN D J, et al.GUITAR-enhanced facile discrimination of aged Chinese Baijiu using electrochemical impedance spectroscopy[J].Analytica Chimica Acta, 2019, 1059:36-41.

Analysis of flavor component differences of various qualities Maotai-flavor Baijiu based on comprehensive two-dimensional gas chromatography-time of flight mass spectrometry

WU Lin1, CHEN Zhiqiang1*, JIANG Wei2*, LIU Wei1, ZHANG Yiji3, ZHU Jiajian1

1(Focused Photonics (Hangzhou) Inc., Hangzhou 310052, China)2(China National Institute of Food and Fermentation Industries Co.Ltd., Beijing 100015, China)3(Qianyun Distillery Co.Ltd., Renhuai 550003, China)

ABSTRACT To ensure liquor quality and improve the brewing process, this study employed headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (HS-SPME-GC×GC-TOF-MS) to analyze Maotai-flavor Baijiu of various qualities.It was determined that Maotai-flavor Baijiu contains 1 063-1 347 components, including esters, acids, alcohols, aldehydes, ketones, and sulfur-containing substances.The percentages of esters in high-quality Baijiu A1 and A2, as well as mixed-flavor Baijiu B1 and B2, were 58.75%, 55.47%, 42.05%, and 41.55%, relative contents of alcohols were 17.14%, 16.15%, 26.77%, and 26.92%, respectively.The percentages of acids present were 1.47%, 2.05%, 6.71%, and 7%.69%.High-quality Baijiu exhibited high levels of ester, low alcohol, and moderate acid, while mixed-flavor Baijiu had low ester, high alcohol, and high acid.Sulfur-containing components such as sulfur ethers, sulfones, thioesters, and thiophenes were more prevalent in mixed-flavor Baijiu, whereas they were either negligible or undetectable in high-quality Baijiu.The use of principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) revealed significant variations in flavor between high-quality Baijiu and mixed-flavor Baijiu.A total of 85 potential flavor components were identified, each with a variable importance in the projection (VIP) value >1.Notably, components with VIP>1 and P<0.05 were mapped using a heatmap.The study identified that high-quality Baijiu was characterized by high levels of ethyl butyrate, ethyl caproate, nonanal, and octanal, while mixed-flavor Baijiu had high levels of caproic acid, acetic acid, isobutanol, isoamyl alcohol, etc.The sensory evaluation revealed that the mixed-flavor Baijiu had a lower intensity of ester aroma, a stronger advanced alcohol flavor, a slightly acidic flavor, a slightly unusual aroma, and a lack of crispness, which was consistent with the result of low ester, high alcohol, high acid, and the presence of more sulfur-containing substances.The results of this study indicate that HS-SPME-GC×GC-TOF-MS technology can be used to investigate the Maotai-flavor high-quality Baijiu at the molecular level.This provides effective technical support for the subsequent quality improvement and process control of Maotai mixed-flavor Baijiu.

Key words Maotai-flavor Baijiu; mixed-flavor Baijiu; GC×GC-TOF-MS; SPME; flavor analysis; sensory evaluation

DOI:10.13995/j.cnki.11-1802/ts.038129

引用格式:伍琳,陈志强,江伟,等.基于全二维气相色谱-飞行时间质谱法对不同品质酱香型白酒的风味组分差异解析[J].食品与发酵工业,2024,50(22):339-348.WU Lin,CHEN Zhiqiang,JIANG Wei, et al.Analysis of flavor component differences of various qualities Maotai-flavor Baijiu based on comprehensive two-dimensional gas chromatography-time of flight mass spectrometry[J].Food and Fermentation Industries,2024,50(22):339-348.

第一作者:硕士,助理工程师(陈志强副高级工程师和江伟教授级高级工程师为共同通信作者,E-mail:519100391@qq.com;jiangweigyig@163.com)

收稿日期:2023-12-01,改回日期:2024-01-19