“民以食为天,食以安为先”。食物的安全性涉及千家万户,关系人民群众的身体健康和生命安全,是衡量人民生活质量、国家法制建设和社会管理水平的一个重要指标。近年来,随着现代工业科技的发展和生活水平的提高,食品安全问题层出不穷,已经成为了世界性难题[1]。大体上,影响食品安全的风险因子可分为食品添加剂、农兽药、食源性致病菌、生物毒素、重金属离子五大类。传统的检测方法主要利用大型仪器检测,包括气相色谱法、液相色谱法、原子吸收光谱法等,这些方法具有较高的精准度和灵敏度,因此也主要是国家检测标准中首要推荐的方法[2-3]。随着社会的进一步发展,以“可视化快速检测”为主的新检测方法应运而生,利用该方法检测的结果不再是专业人员使用专业仪器分析计算出来,而是以短时间内就能用肉眼观察到的颜色变化作为检测的信号。这种方法大大增加了普适性,使普通老百姓能及时知晓入口食物的安全性,也起到了对食品相关企业的全民监督作用。相比之下,传统检测方法操作复杂、便携性低且耗时耗力等弊端明显不符合可视化快速检测的需求。近来,以荧光法为主的检测技术因具有快速便捷、操作简单、可视化、成本低廉等优势使其在食品安全快速检测中展现出了巨大的潜力[4-6]。荧光探针是快检技术中最重要的技术之一,探针通过识别特定风险因子,从而将识别过程转化为荧光信号[7-9]。常见的荧光探针包括碳量子点荧光探针、金属簇荧光探针、金属配位聚合物荧光探针[10-12]。
本文主要介绍了以镧系配位聚合物(lanthanide coordination polymers,Ln-CPs)为主的荧光探针的荧光特性及检测性能,归纳了其近年来在食品风险因子检测中的应用研究进展,并探讨了在食品分析应用中面临的挑战和未来发展趋势。
Ln-CPs是由镧系金属离子与有机桥联配体组装形成具有尺寸可调、多孔网络结构的纳米材料[13-14]。相对于其他金属离子配位形成的聚合物,镧系金属离子独特的[Xe]4fn电子构型和类似梯形能态使Ln-CPs具有窄发射带、大斯托克斯位移、长激发态寿命及高量子产率的优点。因此,Ln-CPs广泛应用于气体贮存、吸附分离、异相催化、磁学材料、生物成像及光学传感等领域[15-20]。
众所周知,单独的Ln3+由于自身f-f的禁带性质和振动较弱特性,无法实现从基态到激发态4f的跃迁[21-22]。当Ln3+和配体配位形成聚合物后,由配体吸收能量后敏化Ln3+发出其特有的荧光,这一过程也称为“天线敏化”效应[23-24]。具体过程如图1所示:配体吸收紫外光被激发,由单重态S0跃迁到单重激发态S1,激发态的寿命很短,通过非辐射系间窜跃(intersystem crossing,ISC)到三重态T1,再由T1将能量传递给镧系离子的各振动能级,此时,镧系离子的基态电子受激发跃迁到激发态,当电子从激发态回到基态时,便发射镧系金属的特征荧光[25-26]。以镧系配位聚合物作为荧光探针检测目标物时,目标物分子可引起镧系配位聚合物荧光的猝灭(turn-off)或增强(turn-on)。荧光响应机制主要包括内滤效应(internal filtration effect,IFE)、荧光共振能量转移机制(fluorescence resonance energy transfer,FRET)、光诱导电子转移(photoinduced electron transfer,PET)、聚集诱导发光(aggregation-induced luminescence,AIE)等[27-30]。在特异性识别目标物时,配体与目标物之间的相互作用改变配位聚合物分子内的能量传递过程,从而影响配位聚合物的荧光,达到检测的目的[31-32]。镧系配位聚合物具有成本低、易制备、优异的光学性能、良好的生物相容性以及低毒性等优点,逐渐被人们所关注并应用到食品分析检测领域。
图1 镧系配位聚合物分子内能量传递过程示意图[25-26]
Fig.1 Schematic diagram of the intramolecular energy transfer process of lanthanide lanthanide coordination polymers[25-26]
待检目标物的吸收光谱与镧系配位聚合物荧光探针的激发或发射光谱重叠时,产生非辐照能量跃迁,导致镧系配位聚合物荧光猝灭的过程称为IFE[33]。LI等[34]将铕(Eu3+)和石墨烯量子点(Graphene quantum dots,GQDs)的羧基配位,建立镧系配位聚合物复合石墨烯量子点的荧光探针GQDs-Eu用于检测四环素(tetracyc line,TC)。TC由于IFE将探针中GQDs的蓝色荧光猝灭,同时TC与GQDs中羧基偶联显著增强了Eu3+的红色荧光,结果观察到荧光颜色从蓝色变为红色,实现了对TC的比率荧光检测。
待检目标物作为电子供体被激发,激发态的电子供体与镧系配位聚合物电子受体之间发生电子转移,从而导致荧光猝灭的过程叫做PET[35]。HE等[36]使用2,6-吡啶二羧酸(2,6-pyridinedicarboxylic acid,DPA)和铽(Tb3+)与氮掺杂碳点(N-CDs)表面的—NH2和—COOH配位,N-CDs为蓝色荧光,DPA与Tb3+配位结合形成的Tb-DPA呈现绿色荧光,以此获得的具有双荧光的镧系配位聚合物掺杂碳点的纳米探针N-CDs-Tb-DPA用于检测海产品中汞离子(Hg2+)。Hg2+与N-CDs表面含氧官能团之间的PET效应导致N-CDs的荧光猝灭,探针中绿色荧光随着Hg2+浓度的增加逐渐显著,实现了对海产品中Hg2+的高灵敏检测。
待检目标物作为荧光受体的吸收光谱,与镧系配位聚合物作为荧光供体的激发光谱重叠,且两者距离小于10 nm时,导致镧系配位聚合物能量转移到目标物的过程叫做FRET[37]。FU等[38]利用多金属氧酸盐与Eu3+配位结合,制备了镧系配位聚合物K13Eu(SiMoW10O39)2·28H2O(Eu-SiMoW)荧光探针用于抗坏血酸(ascorbic acid,AA)和亚硝酸钠(NaNO2)的检测。基于Eu-SiMoW中变色成分SiMoW与Eu3+之间的FRET过程,淡黄色的Eu-SiMo被AA还原生成蓝色的Eu-SiMoW,并伴随红色荧光猝灭,还原后的EuSiMoW再被NaNO2氧化后恢复到原来的淡黄色,同时红色荧光恢复,通过荧光探针颜色的可逆变化来实现对AA和NaNO2的检测。
待检目标物由于镧系配位聚合物配位结合,导致其距离拉进形成聚集态,由此产生的荧光现象称为AIE[39]。TONG等[40]利用配体鸟苷酸单磷酸盐(guanosine monophosphate,GMP)和鲁米诺(Luminol)与Tb3+配位,GMP由于“天线效应”敏化Tb3+发出绿色荧光,而Luminol与Tb3+配位结合后导致了Luminol的聚集产生了绿色荧光。获得了具有双荧光的镧系配位聚合物Luminol-Tb-GMP用于铜离子(Cu2+)的检测,Cu2+与Luminol和GMP螯合作用既阻断了GMP的敏化作用同时维持了Luminol的AIE效应,因此可以观察到荧光从绿色转变为蓝色,实现了对铜离子的比率型可视化检测。
食品添加剂是用于增强食物色泽饱和度、香味以及改善食物口感的人工合成或天然产生的一种物质[41],如漂白剂、抗氧化剂、发色剂等。而添加剂的过量或违规使用不仅影响食品质量且会诱发某些疾病[42]。ZENG等[43]使用腺苷三磷酸分子(ATP)作为三(羟甲基)氨基甲烷盐酸(Tris-HCl)溶液中铈离子(Ce3+)的生物相容性配体,制备新型铈基配位聚合物纳米颗粒ATP-Ce-Tris用于过氧化氢(H2O2)的检测(图2-a)。H2O2将荧光ATP-Ce(III)-Tris氧化为非荧光ATP-Ce(IV)-Tris CPNs,表现出高灵敏的响应,检测限低至0.6 nmol/L。LI等[44]将镧系离子铽(Tb)偶联到磁性纳米材料二氧化硅包裹的四氧化三铁(Fe3O4@SiO2)上,合成一种新型水分散性绿色荧光探针Fe3O4@SiO2-Tb-DPA,用于亚硝酸盐(NO2-)的检测(图2-b)。在NO2-的存在下,探针的绿色荧光被猝灭,根据淬灭的强度可计算出NO2-的检测限为1.03 μmol/L。
a-ATP-Ce/Tb-Tris 探针检测H2O2和葡萄糖[43];b-Fe3O4@SiO2-Tb DPA探针检测NO2-[44]
图2 镧系配位聚合物在食品添加剂检测中的应用
Fig.2 Application of lanthanide coordination polymers in food additive detection
现代畜牧业中广泛使用农兽药是为预防和控制有害生物、昆虫、杂草等对农林牧业生产的危害[45]。然而,农兽药的过量使用会导致其在环境和食品中残留,进而导致人体内分泌系统和中枢神经系统紊乱,甚至引起癌变[46]。
镧系配位聚合物荧光探针优良的荧光性能、响应速度快等特点可被用于食品中农兽药残留的快速检测。QU等[47]首先利用DPA和GMP双配体,配体与Eu3+配位形成具有红色荧光的GMP/Eu/DPA,进一步与拥有蓝色荧光的配位聚合物GMP/Tb混合,构建了双荧光探针GMP/Tb@GMP/Eu/DPA用于食品和水样品中草甘膦的检测(图3-a)。碱性磷酸水解酶(alkaline phosphatase,ALP)的加入可破坏GMP的磷酸基团,迫使GMP/Tb的荧光淬灭,GMP/Eu/DPA的荧光增强,通过草甘膦对ALP的抑制作用,实现该探针对草甘膦的荧光检测,检测限低至0.007 μg/mL。LIU等[48]将刺激响应发光和模拟氧化酶活性整合到基于镧系金属铈的配位聚合物中,制备铈基配位聚合物的探针Ce(Ⅳ)-ATP-Tris用于马拉硫磷的检测(图3-b)。利用酸性磷酸酶(acid phosphatase,ACP)水解抗坏血酸-2-磷酸(sodium-ascorbyl-2-phosphate,AAP),生成的AA可将Ce(Ⅳ)还原为Ce(III),探针蓝色荧光显著增强,当马拉硫磷存在时,ACP的酶活性受到抑制,AAP水解成AA的过程被阻断,Ce(Ⅳ)-ATP-Tris的荧光被抑制,实现荧光信号“关-开-关”检测,马拉硫磷的检出限为0.046 μg/mL。
a-GMP/Tb@GMP/Eu/DPA探针检测草甘膦[47];b-Ce(Ⅳ)-ATP-Tris探针检测马拉硫磷[48]
图3 镧系配位聚合物在农兽药残留检测中的应用
Fig.3 Application of lanthanide coordination polymers in pesticide and veterinary drug residue detection
重金属离子具有高毒性、易积聚、难降解等特点[49],通过水介质或食物链的方式在人体积累到一定含量时,会引发一系列疾病,严重影响人们身体健康[50-51]。ALEEM等[52]制备含有Eu(Dbm)3Bipy配合物的水溶性多糖纳米颗粒(EIAP 3),用于Cu2+和Fe3+的同时检测(图4-a)。Cu2+快速结合到EIAP 3表面,引起荧光快速猝灭,Fe3+与氧原子的相互作用改变了配体的电子能级,配体与Eu3+离子之间的能量转移效率低下,进一步导致EIAP 3荧光猝灭。该系统可快速识别检测水中的Cu2+和Fe3+,检测限低至1 mg/L。SHU等[53]以均苯三酸(H3BTC)为配体与Eu3+配位合成了红色荧光镧系配位聚合物Eu-BTC,与具有绿色荧光的钙钛矿量子点(CsPbBr3)混合,进一步构建CsPbBr3@Eu-BTC比率荧光体系检测Hg2+(图4-b)。通过CsPbBr3表面配体中的氮元素与Hg2+之间的高配位效应,导致CsPbBr3绿色荧光猝灭,Eu-BTC的红色荧光保持不变,因此实现对Hg2+的比率荧光检测,检测限为100 nmol/L。
a-EIAP探针检测Cu2+和Fe3+[52];b-CsPbBr3@Eu-BTC探针检测Hg2+[53]
图4 镧系配位聚合物在重金属离子检测中的应用
Fig.4 Application of lanthanide coordination polymers in heavy metal ion detection
生物毒素是生物来源中不可自主复制的有毒化学物质,以食品为媒介进入人体后会对人们健康造成极大危害[54-55],因此,开发对生物毒素的检测技术至关重要。白雪欣[56]将镧系元素Eu3+填埋至纳米微粒内,以镧系红色荧光微球作为能量供体,别藻蓝蛋白作为能量受体,制备时间分辨荧光微球,研制出可定量检测蓖麻毒素的镧系免疫层析荧光试纸条(图5-a)。目标毒素与镧系荧光微球标记的检测抗体结合,基于时间分辨荧光共振能量转移原理,微球的荧光被猝灭,接着毒素被捕获抗体所捕获,荧光恢复,检测限为1 ng/mL。TIAN等[57]分别以硝酸铈与柠檬酸为前驱体,采用溶胶-凝胶法和热解法分别制备胶体纳米铈(Nanoceria)和GQD,并构建了用于检测赭曲霉毒素的比率荧光探针DNA1@nanoceria-DNA2@GQD(图5-b)。由于DNA1@nanoceria和DNA2@GQD与赭曲霉毒素适配体互补,产生FRET效应猝灭了GQD的荧光。而赭曲霉毒素与其适配体螯合后,阻止了FRET效应,GQD荧光恢复,此方法检测赭曲霉毒素的检测限为2.5 pg/mL。
a-镧系免疫层析试纸条检测蓖麻毒素[56];b-DNA1@nanoceria和DNA2@GQD探针检测赭曲霉毒素A[57]
图5 镧系配位聚合物在生物毒素检测中的应用
Fig.5 Application of lanthanide coordination polymers in biotoxin detection
食源性致病菌是指以食品为传播媒介的致病性细菌,不仅损害人们的身体健康还会给社会经济造成损失,是影响食品安全的重要因素之一[58]。ZHOU等[59]以氧化锌量子点(ZnO)为内参荧光信号,将Eu3+嫁接在ZnO表面,制备基于ZnO的杂化纳米探针ZnO/Eu,用于炭疽芽孢杆菌孢子生物标志物吡啶二甲酸(DPA)的比率荧光检测(图6-a)。DPA可通过“天线效应”敏化Eu3+发出红色荧光,而ZnO的荧光保持不变,通过荧光颜色的变化,可计算出DPA的检出限低至3 nmol/L。LIU等[60]将镧系离子Tb3+嫁接在碳量子点(CDs)表面,合成了具有双荧光的探针Tb@CDs,用于检测DPA(图6-b)。DPA通过强螯合共轭作用与CDs表面的Tb3+结合敏化并发出明亮的绿色荧光,而CDs的荧光不变,荧光颜色实现从蓝到绿的转变,DPA的检测限为100 pmol/L。
a-ZnO/Eu探针检测DPA[59];b-CDs-Tb探针检测DPA[60]
图6 镧系配位聚合物在食源性致病菌检测中的应用
Fig.6 Application of lanthanide coordination polymer in the detection of foodborne pathogens
本文主要介绍了镧系配位聚合物优良的荧光特性和检测性能,并综述了以镧系配位聚合物为主的荧光探针在食品风险因子检测中的应用研究。与传统的检测方法相比,镧系配位聚合物探针具有合成简单便捷,耗时短等优势。更为重要的是,该类探针实现了可视化检测,使人们用肉眼通过荧光颜色的变化就能辨别食品质量的好坏,在一定程度上提高了实用性。因此,镧系配位聚合物荧光探针在食品快速可视化分析检测领域具有广阔的应用前景。然而,镧系配位聚合物在食品分析检测的实际应用中,还有许多问题需要解决:a)目前的检测方法往往只能检测一种目标物,多目标物的同时快速检测是未来发展的必然趋势;b)单荧光信号的响应容易造成假阳性或假阴性的结果,2种及以上的荧光响应检测方法的开发能通过自校准实现更高的检测精确度,且不同的荧光颜色更利于人眼的识别;c)大型检测仪器的笨重,不便捷的弊端已经严重凸显,开发便携式的检测设备是实现现场可视化快速检测的必要条件。总而言之,未来的研究应是朝着更简捷、更精准、更灵敏、更经济、更高效、更智能的多重检测手段集成发展,只有这样才能在最大程度上缓解食品安全的压力,从而保证食品行业健康发展,保证人们身体的健康。
[1] WANG J,LI D Q,YE Y X,et al.A fluorescent metal-organic framework for food real-time visual monitoring[J].Advanced Materials,2021,33(15):2008020.
[2] 张焕民.食品分析及安全检测方法研究[J].饮食科学,2018(4):9.
ZHANG H M.Study on food analysis and safety detection methods[J].Diet Science,2018(4):9.
[3] 李赟.浅谈食品检测方法及发展趋势[J].食品安全导刊,2019(30):61.
LI Y.Discussion on food detection methods and development trend[J].China Food Safety Magazine,2019(30):61.
[4] COLINO C I,LANAO J M,GUTIERREZ-MILLAN C.Recent advances in functionalized nanomaterials for the diagnosis and treatment of bacterial infections[J].Materials Science and Engineering:C,2021,121:111843.
[5] 刘欢.荧光光谱法在食品品质快速检测中的应用研究与评价[D].北京:中国农业大学,2017.
LIU H.The rapid determination and evaluation of food quality using fluorescence spectroscopy[D].Beijing:China Agricultural University,2017.
[6] 蒋芳.原子荧光检测技术在食品检测中的应用[J].食品安全导刊,2021(21):171-173.
JIANG F.Application of atomic fluorescence detection technology in food detection[J].China Food Safety Magazine,2021(21):171-173.
[7] LI L F,LIN D,XU S H,et al.Ratiometric fluorescent sensor for shutter-speedy and ultra-sensitive monitoring of antibiotic utilizing multiple fluorescent devices[J].Sensors and Actuators B:Chemical,2022,363:131819.
[8] 陈曦,张婷,孙国栋,等.食品安全中荧光碳点合成及碳点荧光探针的研究进展[J].山东化工,2022,51(24):86-90.
CHEN X,ZHANG T,SUN G D,et al.Research progress of fluorescent carbon dot synthesis and fluorescence sensor in food safety[J].Shandong Chemical Industry,2022,51(24):86-90.
[9] ZHANG J L,ZHOU M,LI X,et al.Recent advances of fluorescent sensors for bacteria detection-a review[J].Talanta,2023,254:124133.
[10] YUAN D K,WANG P,YANG L J,et al.Carbon “quantum” dots for bioapplications[J].Experimental Biology and Medicine,2022,247(4):300-309.
[11] ZHAO H L,CUI D X,KOU J N,et al.Axially chiral dodecanuclear lanthanide clusters constructed by “bottom-up” self-assembly for enantioselective sensing[J].Chinese Journal of Chemistry,2022,40(10):1165-1170.
[12] 周兆迪.荧光金属有机配位聚合物的合成及在生物环境污染物检测的研究[D].北京:北京农学院,2022.
ZHOU Z D.Synthesis of Fluorescent Metal Organic Coordination Polymers and Their Application to Detection of Biological Environmental Pollutants[D].Beijing:Beijing University Of Agriculture,2022.
[13] 严静.基于镧系金属有机配位聚合物的抗生素检测方法研究[D].上海:华东师范大学,2022.
YAN J.Study on antibiotic detection methods based on lanthanide metal-organic coordination polymers[D].East China Normal University,2022.
[14] 宋安敏.基于双边配体稀土配位聚合物的重金属离子分析方法研究[D].南昌:南昌大学,2021.
SONG A M.Study on heavy metal ion analysis method based on bilateral ligand rare earth coordination polymer[D].Nanchang:Nanchang University,2021.
[15] YAO X,CORDOVA K E,ZHANG Y B.Flexible metal-organic frameworks as CO2 adsorbents en route to energy-efficient carbon capture[J].Small Structures,2022,3(5):2270019.
[16] LU Y,JIN X N,LI X,et al.Controllable preparation of superparamagnetic Fe3O4@La(OH)3 inorganic polymer for rapid adsorption and separation of phosphate[J].Polymers,2023,15(1):248.
[17] ZHOU J Y,GENG Y J,WANG Z.Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples[J].Methods,2023,210:20-35.
[18] SUN L,WANG Q C,MA M,et al.Etching-assisted synthesis of single atom Ni-tailored Pt nanocatalyst enclosed by high-index facets for active and stable oxygen reduction catalysis[J].Nano Energy,2022,103:107800.
[19] JACINTO M J,FERREIRA L F,SILVA V C.Magnetic materials for photocatalytic applications—a review[J].Journal of Sol-Gel Science and Technology,2020,96(1):1-14.
[20] BEREZHNYTSKA O,SAVCHENKO I,ROHOVTSOV O,et al.Luminescent properties of complexes and polymers of Sm (III)[J].Optical Materials,2021,120:111492.
[21] LI Z,LU S,LI X J,et al.Lanthanide upconversion nanoplatforms for advanced bacteria-targeted detection and therapy[J].Advanced Optical Materials,2023,11(11):2202386.
[22] 吕沛瑶.基于镧系配位聚合物构筑的比率型荧光传感器[D].郑州:郑州大学,2020.
LYU P Y.Ratio fluorescence sensor based on lanthanide coordination polymer[D].Zhengzhou:Zhengzhou University,2020.
[23] 李梦梦,焦静静,杨仕平.镧系发光材料用于生物成像的研究进展[J].上海师范大学学报(自然科学版),2021,50(6):737-744.
LI M M,JIAO J J,YANG S P.Recent advance of lanthanide luminescent materials in biological imaging[J].Journal of Shanghai Normal University (Natural Sciences),2021,50(6):737-744.
[24] XIE X Z,ZHANG Y R,WU Y J,et al.Ligand energy staff gauge for antenna effect study within metal-organic frameworks[J].The Journal of Physical Chemistry C,2023,127(2):1220-1228.
[25] UNGUR L,SZABO B,ALOTHMAN Z A,et al.Mechanisms of luminescence in lanthanide complexes:A crucial role of metal-ligand covalency[J].Inorganic Chemistry,2022,61(16):5972-5976.
[26] ZHU X Y,WANG X H,ZHANG H X,et al.Luminescence lifetime imaging based on lanthanide nanoparticles[J].Angewandte Chemie (International Ed.in English),2022,61(42):e202209378.
[27] 初红涛,尹杰,林清,等.镧系金属-有机框架材料作为荧光探针的研究进展[J].材料导报,2022,36(16):209-216.
CHU H T,YIN J,LIN Q,et al.Research progress of lanthanide metal-organic framework materials as fluorescent probes[J].Materials Reports,2022,36(16):209-216.
[28] KANG H,ZHANG Z,ZHOU W.Detection of antibiotics at in situ temperature by Rhodamine B encapsulated in terbium-based metal-organic frameworks[J].Optical Materials,2023,136:113491.
[29] LIU H Y,LI C Y,LI J,et al.Plasmon-enhanced fluorescence resonance energy transfer in different nanostructures and nanomaterials[J].Applied Materials Today,2023,30:101731.
[30] ZHANG G,ZHANG G G,LAI X C,et al.Polyethyleneimine-induced fluorescence enhancement strategy for AIEgen:The mechanism and application[J].Analytical and Bioanalytical Chemistry,2023,415(7):1347-1355.
[31] LIN T R,WU Y R,LI Z H,et al.Visual monitoring of food spoilage based on hydrolysis-induced silver metallization of Au nanorods[J].Analytical Chemistry,2016,88(22):11022-11027.
[32] LORENZO J M,CACHALDORA A,FONSECA S,et al.Production of biogenic amines “in vitro” in relation to the growth phase by Enterobacteriaceae species isolated from traditional sausages[J].Meat Science,2010,86(3):684-691.
[33] ZHOU Y,CHEN G Q,MA C Q,et al.Nitrogen-doped carbon dots with bright fluorescence for highly sensitive detection of Fe3+ in environmental waters[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,293:122414.
[34] LI W Y,ZHU J C,XIE G C,et al.Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines[J].Analytica Chimica Acta,2018,1022:131-137.
[35] ZHANG J Q,LI Z Y,LEI Q,et al.Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-a under visible light irradiation[J].Science of the Total Environment,2023,870:161804.
[36] HE X,HAN Y,LUO X L,et al.Terbium (III)-referenced N-doped carbon dots for ratiometric fluorescent sensing of mercury (II) in seafood[J].Food Chemistry,2020,320:126624.
[37] SUH J S,KIM T J.A novel DNA double-strand breaks biosensor based on fluorescence resonance energy transfer[J].Biomaterials Research,2023,27(1):15.
[38] FU Z J,GAO W M,YU T,et al.Study of Bi-directional detection for ascorbic acid and sodium nitrite based on Eu-containing luminescent polyoxometalate[J].Talanta,2019,195:463-471.
[39] HU B,WEI T B,CUI Y J,et al.Hg(II) immobilization and detection using gel formation with tetra-(4-pyridylphenyl) ethylene and an aggregation-induced luminescence effect[J].Scientific Reports,2023,13:2135.
[40] TONG Y J,YU L D,WU L L,et al.Ratiometric detection of Cu2+ using a luminol-Tb-GMP nanoprobe with high sensitivity and selectivity[J].ACS Sustainable Chemistry &Engineering,2018,6(7):9333-9341.
[41] 曹琳霞,王喜云.食品添加剂对食品安全的影响[J].食品安全导刊,2021(29):32-34.
CAO L X,WANG X Y.Influence of food additives on food safety China Food Safety Magazine,2021(29):32-34.
[42] 林兆盛.食品添加剂对食品安全的影响[J].食品安全导刊,2023(1):7-9.
LIN Z S.Effects of food additives on food safety[J].China Food Safety Magazine,2023(1):7-9.
[43] ZENG H H,ZHANG L,RONG L Q,et al.A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection[J].Biosensors and Bioelectronics,2017,89:721-727.
[44] LI X Q,WEN Q,CHEN J N,et al.Lanthanide molecular species generated Fe3O4@SiO2-TbDPA nanosphere for the efficient determination of nitrite[J].Molecules,2022,27(14):4431.
[45] 汪海英,刘剀,高立娣,等.基于镧系金属有机框架材料检测水体中酰胺类除草剂残留的可视化技术研究[J].农药学学报,2019,21(4):461-467.
WANG H Y,LIU K,GAO L D,et al.Research on visual detection of the residues of amide herbicides in water using lanthanide metal-organic framework[J].Chinese Journal of Pesticide Science,2019,21(4):461-467.
[46] RONG Y W,HASSAN M M,OUYANG Q,et al.Lanthanide ion (Ln3+)-based upconversion sensor for quantification of food contaminants:A review[J].Comprehensive Reviews in Food Science and Food Safety,2021,20(4):3531-3578.
[47] QU F,WANG H,YOU J M.Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples[J].Food Chemistry,2020,323:126815.
[48] LIU P,ZHAO M H,ZHU H J,et al.Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles[J].Journal of Hazardous Materials,2022,423:127077.
[49] XU Y Y,ZHANG Z Z,LV P Y,et al.Ratiometric fluorescence sensing of Fe2+/3+ by carbon dots doped lanthanide coordination polymers[J].Journal of Luminescence,2019,205:519-524.
[50] 吴倩,毕洪梅,韩晓军.重金属离子的电化学检测研究进展[J].分析化学,2021,49(3):330-340.
WU Q,BI H M,HAN X J.Research progress of electrochemical detection of heavy metal ions[J].Chinese Journal of Analytical Chemistry,2021,49(3):330-340.
[51] XU C,HUANG H P,MA J X,et al.Lanthanide(iii) coordination polymers for luminescence detection of Fe(iii) and picric acid[J].New Journal of Chemistry,2018,42(18):15306-15310.
[52] ALEEM A R,LIU J,WANG J,et al.Selective Sensing of Cu2+ and Fe3+ Ions with Vis-Excitation using Fluorescent Eu3+-Induced Aggregates of Polysaccharides (EIAP) in Mammalian Cells and Aqueous Systems[J].Journal of Hazardous Materials,2020,399:122991.
[53] SHU Y,YE Q Y,DAI T,et al.Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution[J].Journal of Hazardous Materials,2022,430:128360.
[54] AKHGARI F,FATTAHI H,OSKOEI Y M.Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives[J].Sensors and Actuators B:Chemical,2015,221:867-878.
[55] 吴昊,孙旭飞,张蕴哲,等.基于荧光探针检测食品中赭曲霉毒素A的研究进展[J].食品安全质量检测学报,2022,13(1):1-9.
WU H,SUN X F,ZHANG Y Z,et al.Research progress of detection of ochratoxin A in food based on fluorescence sensor[J].Journal of Food Safety &Quality,2022,13(1):1-9.
[56] 白雪欣.基于镧系荧光检测食源性蛋白毒素方法的研究[D].合肥:安徽医科大学,2022.
BAI X X.Study on detection method of food-borne protein toxin based on lanthanide fluorescence[D].Hefei:Anhui Medical University,2022.
[57] TIAN J Y,WEI W Q,WANG J W,et al.Fluorescence resonance energy transfer aptasensor between nanoceria and graphene quantum dots for the determination of ochratoxin A[J].Analytica Chimica Acta,2018,1000:265-272.
[58] YANG Z F,ZHANG W J,YIN Y Q,et al.Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens[J].Food Control,2022,133:108684.
[59] ZHOU Q J,FANG Y J,LI J Y,et al.A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker[J].Talanta,2021,222:121548.
[60] LIU M L,CHEN B B,HE J H,et al.Anthrax biomarker:An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots[J].Talanta,2019,191:443-448.