米粉源自中国,最早出现于西晋时期,又称为米粉、米丝或米面,是以大米为主要原料的条状米制品[1]。米粉富含淀粉,是一种无麸质低过敏性主食,深受消费者喜爱。米粉通常是将大米经过清洗除杂、浸泡磨浆/沥干粉碎、熟化、挤压/切粉、冷却、包装等工序加工而成。根据其生产工艺,米粉可分为榨粉(挤压型)和蒸粉(切条成型),产品截面分别呈圆形和矩形;依据产品含水量,米粉可分为湿米粉、半干米粉和干米粉。米粉品质的评价指标现主要集中在蒸煮品质(蒸煮损失小、断条率低、吸水率适中)、感官品质(弹/韧性好、不黏连、有嚼劲)、质构特性(硬度适中、弹性/咀嚼性/拉伸性强)和营养品质(消化率低、富含膳食纤维等)4个方面。大米原料成分、辅料、加工工艺条件等均是影响米粉品质的关键性因素。成品易断条、易糊汤、黏弹性差、口感粗糙、没有嚼劲是当前米粉产品普遍存在的问题,其中干、湿米粉还分别存在复水性差、储存过程品质易劣变(如硬度上升、韧性下降、口感变差)等缺陷。改善米粉的品质对米粉产业具有非常重要的意义,其中加入品质改良剂是最简便、最经济、操作最容易的方式之一。为进一步推动我国米粉产业高质量发展,本文在广泛查阅文献的基础上,对各类米粉品质改良剂的实际效果(蒸煮、质构和感官品质)、作用机理、未来发展方向进行系统梳理和探讨,供工业界和学术界参考。
米粉淀粉基改良剂主要包括各类天然淀粉、富含淀粉食物原料及变性淀粉三大类。表1归纳罗列出了淀粉基改良剂对米粉品质的改良效果。目前报道可以作为米粉品质改良剂的天然淀粉包括玉米淀粉、大米淀粉、马铃薯淀粉、木薯淀粉、绿豆淀粉、豌豆淀粉、美人蕉淀粉、芭蕉芋淀粉等。
表1 淀粉及富含淀粉的辅料对米粉品质的影响
Table 1 Effect of starch and starchy excipients on quality of rice noodles
淀粉/辅料-米粉DHSCStRclRbRwaSs文献芭蕉芋淀粉-215↑13.1↑9.1↑33.8-↓37.8↓29.3×↑4.25[2]大米淀粉-2150↑41.7×↑82.7↑90.5-×-×[3]大米淀粉-2230--↑12.0×↓18.9×-×[4]绿豆淀粉-135↑7.5↑6.8↑24.6×↓37.8↓14.3×↑17.20[5]马铃薯淀粉-113↑12.6×↑7.0↑15.5↓18.9×↓6.9×[6]马铃薯淀粉-1115××××↓13.7×↑12.7×[7]马铃薯淀粉-2315↓39.5↓17.0↓50.9×-×↑3.4×[8]美人蕉淀粉-2120×××↑22.9↑23.1×↑19.5×[9]木薯淀粉-1115××××↓2.7×↑4.4×[7]
续表1
淀粉/辅料-米粉DHSCStRclRbRwaSs文献豌豆淀粉-1125↑71.8↑7.5↑83.3×↓54.5×↓24.3×[10]豌豆淀粉-2220↑13.2↑2.7↑22.6×↓61.6--×[11]玉米淀粉-111××↑11.2↑2.9↓2.0×××[12]玉米淀粉-214×↑2.7×××↓36.4×↑7.9[13]交联美人蕉淀粉-2120×××↑39.5↑15.4×↑17.3×[9]马铃薯变性淀粉-112××↑13.2↑10.6↓12.0×××[12]马铃薯酯化淀粉-122×↑4.1×××↓48.5×↑3.6[13]木薯醋酸酯化淀粉-1115↓15.0↑1.6-×↓19.9↓33.3↑7.5↑6.5[14]羟丙基淀粉-125↑4.54-××-↓17.6××[15]羟丙基淀粉-213↓7.0↑8.0×↓13.3↓31.7↓83.9↑32.3×[16]湿热大米淀粉-2150↑57.7×-↑129.8↓57.3×-×[3]退火大米淀粉-1140↑11.5↑2.1-×↓51.3↓62.8×↑14.3[17]退火大米淀粉-2150↑55.1×-↑53.6-×-×[3]茯苓粉-2120↓8.7↓5.7↓29.2×××↓10.5↑140.0[18]高粱粉-1325---×↑16.9↑25.2××[19]红茉莉米-2175↓11.7--↑22.5↑71.9×↑33.9×[20]绿豆粉-1325↓7.22--×↑23.3↑50.2××[19]莲子粉-2130↑58.7↑27.1↑96.9×××↓19.2↑170.0[18]马铃薯雪花粉-1140××××↓30.6↓57.1↑7.3↑9.3[21]马铃薯粉-1230↓30.1-↓68.2-↑16.2↑7.1××[22]木薯浆-2120×××↓17.9↑15.4×↑23.5×[23]荞麦粉-1130↑21.9↑1.9××↓23.1↓35.3××[24]荞麦粉-1325---×↑18.9↑25.2××[19]芡实粉-2120---×××↓15.4↑170.0[18]山药粉-2130↑34.8↑15.7↑66.2×××↓24.1↑90.0[18]豌豆粉-233↑29.2↑0.8↑25.0↓17.2↑125.0×↓26.2↓15.8[25]薏米粉-1325↓43.3-↓52.8×↑60.7↑75.2××[19]银杏粉-1330↓14.3↓5.2↓24.3×↑38.0↑122.8↑20.0×[26]薏苡粉-1120××××↑8.7↑50.0×↓10.9[27]穇粉-2320↑21.9--×↓40.3↓40.0×↑28.6[28]预糊化红薯粉-1125××××↓22.1×↑22.7×[7]
注:米粉代号中第一位数字为1代表挤压米粉,为2代表蒸粉;第二位数字为1表示干米粉,为2表示湿米粉,为3表示半干米粉;米粉品种中D表述为改良剂添加量(质量分数,%),H为硬度(hardness),S为弹性(springiness),C为咀嚼性(chewiness),St为拉伸性(stretchability),Rcl为蒸煮损失率(rate of cooking loss),Rb为断条率(rate of breaking),Rwa为吸水率(rate of water absorption),Ss为感官评分(sensory score);↑表示该指标随辅料添加而升高;↓表示该指标随辅料添加而降低;-表示辅料对该指标无显著影响;×表示文中未涉及该指标;↑和↓后的数值表示相较于对照组升高或降低的百分比(%),是从论文数据直接计算或估计而得(下同)。
由表1可以看出,大多数情况下,天然淀粉的加入能显著提升米粉的硬度、弹性、咀嚼性、拉伸性、吸水率和感官评分,同时降低其断条率和蒸煮损失率。淀粉添加对米粉品质的影响与外源淀粉的直链淀粉含量、总淀粉含量、链长分布和淀粉精细结构等有关。添加淀粉导致直链淀粉含量的增加通常被认为是外源淀粉影响米粉品质的关键机制[5]。直链淀粉含量较高时(>22%),米粉具有较高的凝胶强度和较低的蒸煮损失率[29]。直链淀粉含量的增加能降低米粉的溶解度和溶胀力,使其形成更致密凝胶网络结构,从而赋予米粉更优良的黏弹性和耐烹饪性。此外,外源淀粉的链长分布也会影响米粉的品质。GENG等[4]的研究发现相比分支密度更高的玉米淀粉,分支密度较低的大米淀粉能使米粉形成更稳定、更致密的凝胶结构,表现出更好的质构及蒸煮品质。与添加淀粉类似,向米粉中添加富含淀粉的粮谷类粉末也有改善米粉品质的潜能,如荞麦粉、穇粉、马铃薯雪花粉、莲子粉、山药粉等。这些富含淀粉的辅料同时还可以丰富米粉的营养成分[18,21,24,28]。但必须指出,研究发现添加高粱粉、木薯浆等会对米粉质地和蒸煮品质有较小的影响[19,23],甚至有部分富含淀粉辅料(绿豆粉、马铃薯粉、薏苡粉、薏米粉、银杏粉等)的添加会降低米粉的食用品质[19,22,26-27]。究其原因,与纯淀粉相比,这些食物粉料中含有数量可观的蛋白质、脂肪、膳食纤维等物质,它们会干扰米粉凝胶网络的形成。
特定变性淀粉已被证实是良好的米粉品质改良剂,包括化学变性淀粉(交联、醚化、酯化淀粉等)与物理变性淀粉(湿热、退火和预糊化淀粉等)。但与添加淀粉和富含淀粉食物的原料不同,不同变性淀粉对米粉品质改良的机理各不相同。交联淀粉可通过磷酸酯键增强淀粉分子之间的结合,促进淀粉颗粒的溶胀和糊化,形成由交联键稳定的均匀混合物从而提高米粉的质构品质,但它可能会使米粉的蒸煮损失率增加[9]。羟丙基淀粉具有很强的水合能力,能促进米粉形成致密的凝胶网络结构并抑制支链淀粉的重结晶,从而赋予米粉良好吸水性和抗老化能力[15-16]。酯化淀粉具有很好的糊黏度、透明度和稳定性,能改善米粉的弹性和蒸煮品质[14, 30]。湿热/退火处理淀粉具有更高的糊化温度和糊稳定性,其添加能改善米粉的硬度、拉伸性和耐烹饪性[3]。预糊化粮谷类粉末形成的凝胶具有更好的吸水能力和膨胀能力,使米粉形成更均匀、更具有黏结力的弹性结构,蒸煮品质更好[7]。
食用胶属于亲水性聚合物,常具有很好的增稠性和凝胶性,可作为液态、半固态或固态食品的质构调节剂。截至目前,包括瓜尔胶、黄原胶、羧甲基纤维素、海藻酸钠、刺槐豆胶、可得然胶、阿拉伯胶等胶体已被作为品质调节剂开发高质量米粉。表2给出了这些食用胶对米线品质的影响。
表2 食用胶改良剂对米粉品质的影响
Table 2 Effect of edible gum improver on quality of rice noodles
食用胶-米粉DHSCStRclRbRwaSs文献阿拉伯胶-211.5↓8.7×××↑193.1×↑11.5×[31]刺槐豆胶-213×××↑9.1-×××[32]瓜尔胶-110.2××↑12.7↑1.2↓20.0×××[12]瓜尔胶-120.3×↑30.7×××↓59.3×↑2.2[13]瓜尔胶-210.2↑15.6↑13.2↑19.7↑42.1↓44.4×↑46.6↑28.1[33]瓜尔胶-210.05↑11.8×××↓14.2×↑4.9×[34]黄原胶-210.05-×××↓12.3×↑2.1×[34]黄原胶-210.2↑7.2↑13.2↑13.7↑37.5↓36.8×↑51.9↑22.9[33]黄原胶-213×××-↓6.4×××[32]黄原胶-220.5--↑29.6×××××[35]海藻酸钠-110.4××↑2.4↑1.2↓10.0×××[12]海藻酸钠-120.3×↑20.0×××↓32.6×↑0.9[13]可得然胶-111.0↑13.8↑1.4↑21.4×↓24.3↓51.1-↑8.1[14]可得然胶-210.6↑26.9↑22.2↑18.2×↓48.1↓82.2××[36]羧甲基纤维素-210.05-×××↓22.6×↑8.7×[34]羧甲基纤维素-210.2↑13.7-↑15.5↑41.1↓23.1×↑37.3↑24.3[33]
除阿拉伯胶之外,其他食用胶都能显著改善米粉的质构品质(硬度、弹性、咀嚼性和拉伸性提升)、蒸煮品质(断条率和蒸煮损失率降低)和感官品质(感官评分提高),但它们的改善幅度有差异。食用胶改善米粉品质的机制主要有以下几点:1)通过增稠作用增加连续相中直链淀粉的有效浓度,加速淀粉短期回生;2)抑制直链淀粉结晶以及直链淀粉和支链淀粉共结晶,延缓淀粉长期回生[37];3)与淀粉相互作用形成复合凝胶骨架,使米粉结构更致密[35]。BAE等[31]的研究数据显示添加阿拉伯胶会导致米粉质构品质劣化(硬度和内聚性下降),其主要原因可能是本研究中使用的是高直链淀粉大米原料(直链淀粉含量27.9%),而不是常用的早籼米(直链淀粉含量通常<25.0%)。由此可见,食用胶对米粉品质的改良不仅与其自身的种类和性质密切相关,还高度依赖于米粉的原料属性。
酶经常被用作食品的质构和风味改良剂使用。就米粉而言,有研究利用α-淀粉酶、β-淀粉酶、麦芽糖淀粉酶、普鲁兰酶、1,4-α-葡聚糖分支酶和谷氨酰胺转氨酶等改善其品质(图1)。但就效果来看,α-淀粉酶、β-淀粉酶和麦芽糖淀粉酶的使用会损伤米粉的质构特性(硬度和咀嚼性下降)和蒸煮特性(断条率增大),但会延缓米粉的老化[38-39]。这主要归功于这些酶对淀粉的水解作用,分子质量的降低使形成凝胶的机械性能降低,而产生的大量糊精能抑制淀粉的老化[40]。汪霞丽[38]认为麦芽糖淀粉酶对米粉的抗老化效果最佳。普鲁兰酶能使支链淀粉发生脱支作用,增加表观直链淀粉含量,增加米粉凝胶强度,从而降低米粉的断条率[41]。谷氨酰胺转移酶能催化米粉中蛋白质分子之间的交联,强化米粉中的淀粉凝胶强度,从而降低米粉的断条率和蒸煮损失率[30,32]。1,4-葡聚糖分支酶能裂解淀粉长链,并将裂解链通过α-1,6-糖苷键重新结合形成分支度更高、分支链更短的淀粉新结构,赋予米粉更优良的弹性和拉伸性[42]。但总的来看,研究开发米粉酶改良剂的研究报道相对较少。
图1 酶改良剂对米粉品质的影响
Fig.1 Effect of enzyme improver on quality of rice noodles
注:↑表示酶的添加提高了相应指标;↓表示酶的添加降低了相应指标。
试验作为米粉品质改良剂的无机盐主要包NaCl、KCl、CaCl2、焦磷酸钠等。低剂量无机盐的添加(<3.0%,质量分数,下同)能显著改善米粉的质构特性(硬度、弹性、咀嚼性和拉伸性上升)、蒸煮品质(蒸煮损失和断条率下降)和感官品质(感官评分升高)。同时发现此时米粉表面更光滑。但更高质量分数的NaCl(>4.0%),会使米粉的质构特性(硬度、咀嚼性、拉伸性下降)和蒸煮品质(蒸煮损失大幅度上升)受损[43-44](表3)。
表3 无机盐及乳化剂改良剂对米粉品质的影响
Table 3 Effect of inorganic salt and emulsifier improver on quality of rice noodles
无机盐/乳化剂-米粉DHSCStRclRbRwaSs文献复合磷酸盐-110.60××↑15.5↑10.1↓12.0×××[12]焦磷酸钠-110.25↑26.5↑1.4↑35.5×↓17.2↓28.9↑4.3↑8.9[14]焦磷酸钠-110.60××↑11.0↑7.1↓32.0×××[12]CaCl2-120.75×↑4.1×××↓31.2×↑3.0[13]KCl-120.75×↑2.1×××↓19.3×↑3.4[13]NaCl-113.00↑66.7-↑59.6↑194.3↓42.3↓65.0↑163.2↑10.2[45]NaCl-120.75×↑2.8×××↓23.9×↑5.0[13]NaCl-124.00↓11.6↑2.2↓8.4×↓49.2↓39.7××[43]NaCl-215.00×××↓10.5↑245.3×-×[44]单甘酯-111.00↓39.1×××↓57.7×↑78.5×[45]没食子酸十二酯-220.50↑15.2-↑11.5-××××[35]硬脂酰乳酸钙钠-110.40↓16.1×↓20.0↓23.8↓20.0×↓5.6×[46]蔗糖酯-110.40↓23.2×↓25.0↓25.6↓20.0×↓6.5×[46]
低浓度盐对米粉品质的改良主要是因为其能促进米粉中蛋白质溶出而形成蛋白质网络,使米粉形成更为致密的凝胶网络结构[45]。而高浓度盐对米粉品质的劣化作用主要是归结于高浓度离子会阻断淀粉的老化回生,形成的米粉凝胶结构不够紧密而变得更加柔软[44]。除盐浓度之外,盐的种类对米粉品质的改良也有重要影响。曹世阳[13]研究发现CaCl2、KCl分别在改善大米淀粉凝胶的质构品质、感官时效果最好,NaCl最能改善米粉的食用品质。TORRES等[47]也发现在改善米粉质构特性方面二价盐(CaCl2)比单价盐(NaCl/KCl)更有效,而单价盐中离子半径越大改善效果越好。磷酸盐改善米粉品质主要是因为:1)增加米粉水合能力;2)加强米粉中淀粉与蛋白质的相互作用,形成更致密的凝胶结构;3)使淀粉发生酯化和架桥作用,延长碳链,从而提高米粉的黏弹性[48-49]。
被尝试作为米粉品质改良剂的乳化剂包括单甘脂、蔗糖酯、硬脂酰乳酸钙钠、没食子酸十二酯等。表3显示除没食子酸十二酯外,在大多数情况下乳化剂的使用都会损害米粉的质构品质(硬度、弹性、咀嚼性和拉伸性下降),其主要原因是乳化剂与直链淀粉形成脂质-淀粉复合物抑制了米粉凝胶老化,使其结构形成受阻[50]。而没食子酸十二酯对米粉质构特性的改善主要源于其中的没食子酸上的羟基,其能通过氢键与淀粉分子发生相互作用,从而加固米粉中的大米淀粉凝胶网络[35]。与对米粉质构特性的影响不同,乳化剂对米粉的蒸煮品质均表现出改善作用(蒸煮损失率和断条率下降),这一方面主要是乳化剂在米粉外表层形成保护层,阻止了蒸煮过程淀粉的溶出;另一方面是乳化剂抑制淀粉老化和米粉蒸煮过程的吸水,使其保持良好的黏弹结构[51]。
除上述改良剂外,也有研究将蛋白质、单糖、低聚糖、糖醇、多糖、富含膳食纤维食品加工剩余物作为米粉品质改良剂。具体情况见表4。
表4 蛋白质及其它改良剂对米粉品质的影响
Table 4 Effect of protein and the rest improver on quality of rice noodles
蛋白质/其他-米粉DHSCStRclRbRwaSs文献大豆7S蛋白-119.0↓48.8-↓46.9×↑68.4↑44.4-↓16.3[52]大豆分离蛋白-124.0↑26.7×××↓29.6↓63.3××[53]大豆分离蛋白-224.0↑22.7×↑34.7×××↑37.5×[54]大米蛋白-115.0↓14.8××↓19.0↓34.3×↓4.1↑28.1[55]蛋清蛋白-1115.0×××↑58.5↓46.7×↑6.9×[7]面筋蛋白-1115.0×××↑20.4↓59.5×↑13.1×[7]海藻糖-135.0↓30.6××↑40.8↓6.5××↑6.9[56]海藻糖-222.0↓15.9↑25.5↓23.1×↑5.8↑25.0×↑3.0[57]木糖醇-222.0↓4.0↑8.8↓15.0×↑9.7↑28.0×↑9.1[57]葡萄糖-222.0↓97.0↑26.7-×↑29.1↑23.8×↑28.8[57]蔗糖-222.0↓6.4↑26.0↑21.3×↑13.6↑48.8×↑15.2[57]豆渣-2110.0↑6.35×××↑12.1×↓6.2×[58]秸秆微晶纤维素-222.0××××↓38.5↓57.1×↑12.4[59]米糠膳食纤维-221.0↑128.7××↑25.7-↓60.4×-[60]脱脂大豆粉-1110↑50.8××-↑23.3×↓6.3×[61]香菇β-葡聚糖-1112.0↑16.4××↑20.8↓15.6×××[62]柚子皮-2110.0×××↓52.9↑76.9×↑32.5×[23]
在测试的蛋白质中,大豆分离蛋白、蛋清蛋白和面筋蛋白能起到改良米粉品质的作用,使其硬度和/或拉伸性提升,蒸煮损失或断条率下降,这是由于此类蛋白质能与淀粉发生良好的相互作用,二者协同形成更紧密的凝胶网络结构,从而提高米粉的硬度、拉伸性和烹饪性[7, 53-54];大米蛋白虽能改善米粉的蒸煮损失率和感官评分,但使其硬度和拉伸性降低,此种蛋白质与大米淀粉相互作用较弱,易在米粉体系中发生相分离,抑制大米淀粉之间的相互作用,使米粉形成更弱的凝胶网络结构[55];大豆7S蛋白则使米线质构特性(硬度和咀嚼性降低)、蒸煮品质(蒸煮损失率和断条率升高)和感官评分(感官评分下降)全面受损,主要因其极强的水分结合力,使淀粉水合不完全而导致糊化不彻底,影响了米粉凝胶网络结构导致品质下降[52]。由此可见,蛋白质对米粉品质的改良与蛋白质的种类及性质密切相关。
针对其他改良剂对米粉品质调节的研究发现,低分子质量糖类中除5%的海藻糖能降低米粉的蒸煮损失率之外,葡萄糖、蔗糖、海藻糖和木糖醇等对米粉品质的改良表现出相同的规律:改善米粉的弹性和感官评分,但损害其硬度和蒸煮品质(蒸煮损失率和断条率增大)[56-57]。究其原因是这些低分子质量糖能抑制淀粉分子之间的相互作用,延缓米粉老化,使其不易形成足够强度的凝胶结构[57]。在研究的2种多糖改良剂中,总体来看微晶纤维素对米粉品质的改良效果优于香菇β-葡聚糖[59, 62]。对于富含膳食纤维食品的加工剩余物,其添加对米粉的质构或蒸煮品质不利,但可以从膳食纤维的角度提升米粉的营养价值[23, 58, 61]。
综上所述,选择合适的改良剂是提升米粉品质可行而有效的途径。改良剂对米粉品质的改良效果不仅与改良剂的种类、物化性质和添加量相关,还依赖于米粉的品种和原料特性。良好的米粉改良剂至少应具备以下特征之一:1)能提升米粉的直链淀粉含量或表观直链淀粉含量;2)能与米粉中的淀粉发生良好的相互作用,协同形成结构更致密的凝胶网络结构;3)能加强米粉中淀粉分子之间的相互作用;4)能抑制米粉中淀粉老化或提升米粉的保水能力;5)能使米粉中蛋白质发生交联而加固米粉的凝胶网络;6)能提升米粉的膳食纤维含量。必须要指出的是,几乎不存在完全满足上述所有条件的米粉品质改良剂,每一种改良剂都有其优点和缺点,应根据需要选择使用。
虽然米粉品质改良剂得到了广泛研究,在实践中也已有部分应用,但米粉品质改良剂的开发还有许多理论和实际问题需要进一步深入研究。比如,当前大多数研究只对改良剂的效果进行了评价,而对其深层的工作机制揭示不够;不同的改良剂对米粉品质影响的角度不同,如何合理复配使用发挥协同效应值得关注;明确改良剂作为客体与米粉原料大米主体性质、加工方式以及成品状态之间互配关系。上述问题的解决可为个性化米粉产品品质调节剂的选择使用提供依据。
[1] LI C M, YOU Y X, CHEN D, et al.A systematic review of rice noodles:Raw material, processing method and quality improvement[J].Trends in Food Science &Technology, 2021, 107:389-400.
[2] 孟亚萍, 吴凤凤, 徐学明.芭蕉芋淀粉对米粉理化性质及粉丝品质的影响[J].食品科学, 2015, 36(9):33-38.
MENG Y P, WU F F, XU X M.Effects of Canna edulis Ker starch on physicochemical properties of rice flour and quality of rice noodles[J].Food Science, 2015, 36(9):33-38.
[3] HORMDOK R, NOOMHORM A.Hydrothermal treatments of rice starch for improvement of rice noodle quality[J].LWT-Food Science and Technology, 2007, 40(10):1723-1731.
[4] GENG D H, TANG N, ZHANG X J, et al.Insights into the textural properties and starch digestibility on rice noodles as affected by the addition of maize starch and rice starch[J].LWT, 2023, 173:114265.
[5] WU F F, MENG Y P, YANG N, et al.Effects of mung bean starch on quality of rice noodles made by direct dry flour extrusion[J].LWT-Food Science and Technology, 2015, 63(2):1199-1205.
[6] 邓宏凯. 马铃薯淀粉对米粉品质改良效果研究[J].食品安全导刊, 2016(21):138-139.
DENG H K.Study on the effect of potato starch on improving the quality of rice flour[J].China Food Safety Magazine, 2016(21):138-139.
[7] RUNGSARDTHONG V, WUTTHISILANON S, THONGKUM T, et al.Quality assessment of rice spaghetti made from jasmine rice flour and sweet potato flour supplemented with protein sources by direct extrusion[J].Journal of Food Processing and Preservation, 2021, 45(5):e15450.
[8] CHEN J, YANG S, ZHANG M N, et al.Effects of potato starch on the characteristics, microstructures and quality attributes of indica rice flour and instant rice noodles[J].International Journal of Food Science &Technology, 2022, 57(4):2285-2297.
[9] WANDEE Y, UTTAPAP D, PUNCHA-ARNON S, et al.Quality assessment of noodles made from blends of rice flour and canna starch[J].Food Chemistry, 2015, 179:85-93.
[10] JIAO A Q, YANG Y Y, LI Y, et al.Structural properties of rice flour as affected by the addition of pea starch and its effects on textural properties of extruded rice noodles[J].International Journal of Food Properties, 2020, 23(1):809-819.
[11] GENG D H, ZHANG X J, GAN J, et al.Understanding the texture and digestibility attributes of rice noodles supplemented with common vetch starch[J].International Journal of Biological Macromolecules, 2022, 222:772-782.
[12] 陈洁, 张玮, 蔡永艳, 等.米粉食用品质改良的研究[J].食品科技, 2018, 43(11):178-184.
CHEN J, ZHANG W, CAI Y Y, et al.Effect of food additives on quality of rice noodles[J].Food Science and Technology, 2018, 43(11):178-184.
[13] 曹世阳. 影响大米淀粉凝胶品质的因素及其对鲜湿米粉食用品质影响的研究[D].南宁:广西大学, 2017.
CAO S Y.Study on the factors affecting the gel quality of rice starch and its influence on the edible quality of fresh wet rice flour[D].Nanning:Guangxi University, 2017.
[14] 陆雨. 干制方便米线品质改良的研究[D].南昌:南昌大学, 2015.
LU Y.Study on quality improvement of dried instant rice noodles[D].Nanchang:Nanchang University, 2015.
[15] 卢斌, 李才明, 顾正彪, 等.羟丙基淀粉对鲜湿米粉贮藏品质的影响及其作用机理分析[J].河南工业大学学报(自然科学版), 2022, 43(2):16-22.
LU B, LI C M, GU Z B, et al.Effect of hydroxypropyl starch on storage quality of fresh rice noodles and its mechanism analysis[J].Journal of Henan University of Technology (Natural Science Edition), 2022, 43(2):16-22.
[16] JIA Y Z, ZHANG Z, LI M, et al.The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles[J].Food Research International, 2022, 162:111922.
[17] WANG L, ZHANG C N, CHEN Z X, et al.Effect of annealing on the physico-chemical properties of rice starch and the quality of rice noodles[J].Journal of Cereal Science, 2018, 84:125-131.
[18] 张静瑶, 谭稳根, 范郁冰, 等.基于传统健脾食疗名方的复合米粉研制及品质评价[J].食品与机械, 2020, 36(8):166-170; 177.
ZHANG J Y, TAN W G, FAN Y B, et al.Development and quality evaluation of compound rice noodles based on traditional recipe for strengthening spleen diet[J].Food &Machinery, 2020, 36(8):166-170; 177.
[19] 王佳玉, 陈碧莹, 陈凤莲, 等.不同杂粮添加对籼米粉粉质特性及挤压米粉品质特性的影响[J].食品工业科技, 2019, 40(8):66-72.
WANG J Y, CHEN B Y, CHEN F L, et al.Effects of different types of coarse cereals on the flour properties of rice and quality characteristics of extruded noodle[J].Science and Technology of Food Industry, 2019, 40(8):66-72.
[20] KRAITHONG S, LEE S Y, RAWDKUEN S.Effect of red Jasmine rice replacement on rice flour properties and noodle qualities[J].Food Science and Biotechnology, 2019, 28(1):25-34.
[21] 刘嘉, 吕都, 唐健波, 等.马铃薯米粉与纯米粉品质的分析比较[J].现代食品科技, 2018, 34(1):45-51.
LIU J, LV D, TANG J B, et al.Comparison of quality of potato rice noodles with rice noodles[J].Modern Food Science and Technology, 2018, 34(1):45-51.
[22] 卫萍, 张雅媛, 游向荣, 等.马铃薯-籼米粉特性及其挤压成型品质[J].中国粮油学报, 2020, 35(4):113-120.
WEI P, ZHANG Y Y, YOU X R, et al.Properties of potato-indica rice blend and its extruding quality[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(4):113-120.
[23] WANDEE Y, UTTAPAP D, PUNCHA-ARNON S, et al.Enrichment of rice noodles with fibre-rich fractions derived from cassava pulp and pomelo peel[J].International Journal of Food Science &Technology, 2014, 49(11):2348-2355.
[24] FU M X, SUN X Y, WU D, et al.Effect of partial substitution of buckwheat on cooking characteristics, nutritional composition, and in vitro starch digestibility of extruded gluten-free rice noodles[J].LWT, 2020, 126:109332.
[25] 丁岚, 王丽丽, 佟立涛, 等.豌豆粉添加对米粉品质特性的影响[J].核农学报, 2021, 35(6):1385-1393.
DING L, WANG L L, TONG L T, et al.Effects of pea flour addition on the quality of rice noodles[J].Journal of Nuclear Agricultural Sciences, 2021, 35(6):1385-1393.
[26] 高利, 于晨, 高成成, 等.银杏-籼米粉特性及其挤压粉丝的品质研究[J].中国粮油学报, 2019, 34(2):1-7.
GAO L, YU C, GAO C C, et al.Properties of rice-ginkgo blends and the quality properties of extruded rice noodles[J].Journal of the Chinese Cereals and Oils Association, 2019, 34(2):1-7.
[27] 董楠, 吕都, 唐健波, 等.薏苡米粉营养成分的分析及其食用品质的评价[J].粮食与油脂, 2020, 33(9):52-55.
DONG N, LV D, TANG J B, et al.Analysis of nutritional components and evaluation of eating quality of coix rice noodles[J].Cereals &Oils, 2020, 33(9):52-55.
[28] CHEN J L, WANG L, XIAO P F, et al.Informative title:Incorporation of finger millet affects in vitro starch digestion, nutritional, antioxidative and sensory properties of rice noodles[J].LWT, 2021, 151:112145.
[29] LU Z H, SASAKI T, LI Y Y, et al.Effect of amylose content and rice type on dynamic viscoelasticity of a composite rice starch gel[J].Food Hydrocolloids, 2009, 23(7):1712-1719.
[30] 占柳菁. 品质改良剂对鲜湿方便米粉储藏品质的影响[D].南昌:南昌大学, 2016.
ZHAN L J.Effect of quality improvers on the storage quality of instant fresh rice noodle[D].Nanchang:Nanchang University, 2016.
[31] BAE I Y, OH I K, JUNG D S, et al.Influence of Arabic gum on in vitro starch digestibility and noodle-making quality of Segoami[J].International Journal of Biological Macromolecules, 2019, 125:668-673.
[32] YALCIN S, BASMAN A.Effects of gelatinisation level, gum and transglutaminase on the quality characteristics of rice noodle[J].International Journal of Food Science &Technology, 2008, 43(9):1637-1644.
[33] KRAITHONG S, LEE S Y, RAWDKUEN S.The influence of hydrocolloids on the properties organic red jasmine rice noodles, namely on antioxidant activity, cooking, texture, and sensory properties[J].Starch-Stärke, 2019, 71(1-2):1800145.
[34] SRIKAEO K, LAOTHONGSAN P, LERDLUKSAMEE C.Effects of gums on physical properties, microstructure and starch digestibility of dried-natural fermented rice noodles[J].International Journal of Biological Macromolecules, 2018, 109:517-523.
[35] HUANG S X, CHI C D, LI X X, et al.Understanding the structure, digestibility, texture and flavor attributes of rice noodles complexation with xanthan and dodecyl gallate[J].Food Hydrocolloids, 2022, 127:107538.
[36] 李才明, 陈荻, 陆瑞琪, 等.可得然胶对米粉加工及食用品质的影响[J].食品科学, 2021, 42(16):23-28.
LI C M, CHEN D, LU R Q, et al.Effect of curdlan on processing and eating quality of rice noodles[J].Food Science, 2021, 42(16):23-28.
[37] FUNAMI T, KATAOKA Y, OMOTO T, et al.Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch[J].Food Hydrocolloids, 2005, 19(1):1-13.
[38] 汪霞丽. 方便湿米粉的抗老化研究[D].长沙:长沙理工大学, 2012.
WANG X L.Study on anti-aging of instant wet rice noodles[D].Changsha:Changsha University of Science &Technology, 2012.
[39] 王月慧, 丁文平.品质改良剂对鲜湿米线储藏品质影响的研究[J].粮食与饲料工业, 2005(2):20-21.
WANG Y H, DING W P.Effects of modifier on the storage properties of the instant wet rice noodles[J].Cereal &Feed Industry, 2005(2):20-21.
[40] 周云, 张守文.面包生产中应用的新型酶制剂[J].哈尔滨商业大学学报(自然科学版), 2002, 18(2):205-210.
ZHOU Y, ZHANG S W.New enzyme preparations applied in bread[J].Journal of Heilongjiang Commercial College (Natural Sciences Edition), 2002, 18(2):205-210.
[41] 王志兴, 邢文君, 张淼.复合辅料对方便米粉品质特性的影响及降低GI值研究[J].食品科技, 2022, 47(10):183-190.
WANG Z X, XING W J, ZHANG M.Effect of compound excipients on the quality characteristics of instant rice noodles and reducing glycemic index[J].Food Science and Technology, 2022, 47(10):183-190.
[42] ZHANG J Y, KONG H C, LI C M, et al.Highly branched starch accelerates the restoration of edible quality of dried rice noodles during rehydration[J].Carbohydrate Polymers, 2022, 292:119612.
[43] 杜琼媛, 王晓彬, 胡云峰, 等.食盐对鲜湿米线品质改良技术研究[J].农学学报, 2020, 10(10):76-82.
DU Q Y, WANG X B, HU Y F, et al.Quality improvement of fresh rice noodles by salt[J].Journal of Agriculture, 2020, 10(10):76-82.
[44] SANGPRING Y, FUKUOKA M, RATANASUMAWONG S.The effect of sodium chloride on microstructure, water migration, and texture of rice noodle[J].LWT-Food Science and Technology, 2015, 64(2):1107-1113.
[45] 周游, 张运辰, 冯红, 等.食盐改善挤压糙米米线食用品质研究[J].食品科技, 2022, 47(5):196-201.
ZHOU Y, ZHANG Y C, FENG H, et al.Study on improving quality of extruded brown rice noodles by adding salt[J].Food Science and Technology, 2022, 47(5):196-201.
[46] 蔡永艳. 米粉干法生产工艺及品质改良的研究[D].郑州:河南工业大学, 2011.
CAI Y Y.Studies on drying technology and quality improving of rice noodles[D].Zhengzhou:Henan University of Technology, 2011.
[47] TORRES M D, RAYMUNDO A, SOUSA I.Influence of Na+, K+ and Ca2+ on mechanical and structural properties of gels from chestnut and rice flours[J].Carbohydrate Polymers, 2014, 102:30-37.
[48] 严勇强. 湿态方便河粉品质改良以及保鲜技术研究[D].广州:华南理工大学, 2013.
YAN Y Q.Study on the quality improvement and preservation technology of wet and ready-to-eat Hefen[D].Guangzhou:South China University of Technology, 2013.
[49] 韩敏义, 李巧玲, 陈红叶.复合磷酸盐在食品中的应用[J].中国食品添加剂, 2004(3):93-96.
HAN M Y, LI Q L, CHEN H Y.The compound phosphates’ application in food[J].China Food Additives, 2004(3):93-96.
[50] BANCHATHANAKIJ R, SUPHANTHARIKA M.Effect of different β-glucans on the gelatinisation and retrogradation of rice starch[J].Food Chemistry, 2009, 114(1):5-14.
[51] 孙庆杰. 米粉加工原理与技术[M].北京:中国轻工业出版社, 2006.
SUN Q J.Principle and Technology of Rice Noodle Processing[M].Beijing:China Light Industry Press, 2006.
[52] QIAO F, WANG L, GUAN C M, et al.Effects of soybean 7S protein on the quality and digestibility of dry rice noodles under twin-screw extrusion process[J].International Journal of Food Science &Technology, 2023, 58(1):463-472.
[53] 胡秀婷, 占柳菁, 刘成梅, 等.大豆分离蛋白对湿米粉储藏品质的影响[J].中国粮油学报, 2018, 33(4):38-42.
HU X T, ZHAN L J, LIU C M, et al.Effect of soy isolate protein on storage quality of wet rice noodles[J].Journal of the Chinese Cereals and Oils Association, 2018, 33(4):38-42.
[54] 徐丽, 刘艳兰, 蔡吉祥, 等.大豆分离蛋白提升鲜湿米粉凝胶品质的研究[J].中国粮油学报, 2022, 37(9):54-60.
XU L, LIU Y L, CAI J X, et al.Soy protein isolate improving gel quality of fresh rice noodles[J].Journal of the Chinese Cereals and Oils Association, 2022, 37(9):54-60.
[55] DETCHEWA P, PRASAJAK P, PHUNGAMNGOEN C, et al.Substitution of rice flour with rice protein improved quality of gluten-free rice spaghetti processed using single screw extrusion[J].LWT, 2022, 153:112512.
[56] 胡云峰, 王晓彬, 魏增宇, 等.海藻糖对米线品质改良技术研究[J].中国食品添加剂, 2018(10):132-139.
HU Y F, WANG X B, WEI Z Y, et al.Study of trehalose on the quality improvement of rice noodle[J].China Food Additives, 2018(10):132-139.
[57] 汪佳文. 糖及其衍生物对大米原料特性及鲜湿米粉品质的影响[D].长沙:湖南农业大学, 2019.
WANG J W.Effect of sugar and its derivatives on the properties of rice and the quality of fresh rice noodles[D].Changsha:Hunan Agricultural University, 2019.
[58] KANG M J, BAE I Y, LEE H G.Rice noodle enriched with okara:Cooking property, texture, and in vitro starch digestibility[J].Food Bioscience, 2018, 22:178-183.
[59] 崔少宁, 朱永军, 杨鹏, 等.微晶纤维素对鲜湿米粉性质的影响[J].粮食与油脂, 2019, 32(6):41-44.
CUI S N, ZHU Y J, YANG P, et al.Effect of microcrystalline cellulose on the quality of fresh wet rice noodle[J].Cereals &Oils, 2019, 32(6):41-44.
[60] 向忠琪, 刘曼, 周文化, 等.米糠膳食纤维对鲜湿米粉食用品质的影响[J].粮食与油脂, 2016, 29(11):58-61.
XIANG Z Q, LIU M, ZHOU W H, et al.Effect of dietary fiber from rice bran on the edible quality of fresh rice noodles[J].Cereals &Oils, 2016, 29(11):58-61.
[61] SEREEWAT P, SUTHIPINITTHAM C, SUMATHALUK S, et al.Cooking properties and sensory acceptability of spaghetti made from rice flour and defatted soy flour[J].LWT-Food Science and Technology, 2015, 60(2):1061-1067.
[62] HEO S, JEON S, LEE S Y.Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles[J].LWT-Food Science and Technology, 2014, 55(2):627-631.