藤茶学名显齿蛇葡萄(Ampelopsis grossedentata),是一种源于葡萄科蛇葡萄属植物的嫩枝叶,因其独特的化学成分和生物活性而受到广泛关注。藤茶常见于中国南方,其干燥的茎、叶和根被用作传统中草药,用于治疗感冒、痢疾和疮疡等疾病[1]。近年来,因其抗氧化、抗炎、抗菌和抗肿瘤等功效,藤茶成为现代药理学研究的热点。藤茶中含有多种活性成分,包括类黄酮、酚类、多糖、蛋白质、类固醇、萜类化合物和挥发性物质等[2],这些成分的相互作用不仅赋予藤茶独特的口感和香气,也增强了其生物活性。
在藤茶的众多功能性成分中,黄酮类物质的含量最高,种类也最为丰富,其生物活性与分子结构密切相关[3]。黄酮通常具有基本的C6-C3-C6骨架结构,即由2个苯环通过1个三碳桥连接而成,这一结构将直接影响黄酮的抗氧化、抗炎、抗肿瘤等生物活性[4]。苯环结构上往往含有多个羟基基团,它赋予了黄酮显著的抗氧化性能,这主要源于其能够捐赠氢原子或电子,清除体内过量自由基,进而中断氧化反应链,保护细胞免受氧化损伤,降低心血管疾病、糖尿病及神经退行性疾病的风险,从而有助于延缓衰老并预防多种慢性疾病的发生与发展[5]。此外,黄酮还能通过多途径机制抑制肿瘤细胞的生长,调节多种炎症相关信号通路,有效降低癌症和与炎症相关疾病的发生率[6-9]。作为天然提取物,藤茶黄酮在改善食品品质、递送体系设计、食品包装及延长保质期等方面展现出独特的应用潜力。食品加工过程中可能生成有毒污染物,黄酮的应用在抑制有害物质生成的同时,还提升了食品营养价值,从而改善食品的感官质量与整体品质。在食品包装应用方面,藤茶黄酮的抗氧化与抗菌特性可融入包装材料中,使其具备抗氧化与抗菌能力,延长食品贮藏期。通过缓释机制,黄酮类物质能持续释放有效成分,抑制食品氧化、腐败及微生物生长,尤其适用于果蔬、肉类和乳制品等易腐食品。藤茶黄酮的加入可以显著减缓食品在贮存过程中的变质与微生物污染,延长货架期。
综上,藤茶黄酮在生物活性方面的突出表现,让其在食品中的应用得到了越来越多研究者的关注。鉴于此,本文总结了藤茶中黄酮的种类及其主要成分的分布情况,详细介绍了其生物活性,并综述了藤茶中黄酮化合物在食品中的应用情况,旨在为藤茶黄酮的成分、生物活性及其在食品领域的潜在应用提供参考,为后续开发藤茶相关的功能性食品提供理论依据。
藤茶中的黄酮类化合物具有不同的化学结构特征,主要种类及成分的生物活性见图1。根据C环的氧化程度和取代基的不同,黄酮类化合物可分为黄酮、黄酮醇、二氢黄酮醇、黄酮苷和黄烷酮等类型[10]。在藤茶中,杨梅素、山奈酚、槲皮素(属于黄酮醇类)以及二氢杨梅素、二氢槲皮素(属于二氢黄酮醇类)是较为主要的黄酮类成分,其主要分布在藤茶的茎叶和嫩茎叶部位,其中二氢杨梅素的含量最高,通常为37.4%~38.5%[2]。二氢杨梅素的分子式为C15H12O8,具有2个苯环和1个饱和C环,C环结构中不含双键,因此被称为“二氢”。该化合物富含酚羟基,赋予其强抗氧化性,但水溶性较差,需要通过升高温度提高其溶解度[11-12]。值得注意的是,二氢杨梅素与杨梅素结构相似,区别仅在于杨梅素比二氢杨梅素多出1个双键结构,即二氢杨梅素是杨梅素的二氢衍生物[13]。二氢杨梅素因其抗氧化、抗炎、保肝解酒、调节神经系统和延缓衰老等功能而受到关注,在预防酒精性肝损伤、认知障碍等方面具有潜在应用[14-15];而杨梅素也因其优异的自由基清除能力、抗病毒、抗菌和抗肿瘤功能被广泛研究,并在心血管和血糖调节领域展现了良好的前景[16-17]。除此之外,山奈酚和槲皮素也是藤茶中常见的黄酮类化合物,具有相似的分子结构和生物活性。山奈酚的分子式为C15H10O6,结构特征表现为由1个芳香苯环与1个含氧的吡喃环(C环)共同构成骨架,并连接1个具有羟基取代的苯环[18]。槲皮素的分子式为C15H10O7,其结构与山奈酚相近。在槲皮素分子中,苯环的羟基取代度高,酚羟基的数量多,进而在清除自由基及抗氧化能力方面表现得更为显著,汪光华等[19]的研究也报道了这一结果。在功能活性方面,山奈酚展现出抗氧化、抗癌、抗炎、抗菌以及对心血管的保护作用等多种功效[20];而槲皮素则以其较强的抗氧化、抗炎、抗病毒、抗过敏和抗肿瘤等生物活性著称,同时在维护心血管健康、延缓衰老以及提升免疫力等方面也具有积极影响[21]。二者均在多种植物中广泛存在,对机体健康具有多方面益处,受到了食药领域的广泛关注。
图1 藤茶中黄酮的主要种类及成分的生物活性
Fig.1 Main types of flavonoids in Ampelopsis grossedentata and bioactivities of the components
芦丁是藤茶中的黄酮糖苷化合物,其结构主要由黄酮骨架和葡萄糖分子组成。具体而言,黄酮骨架由2个苯环和1个含氧结构相连而成,葡萄糖分子则通过糖苷键与黄酮骨架的C3位紧密相连。芦丁的健康功效主要表现为抗氧化、抗炎、抗过敏和抗血栓等。它能够有效清除体内的自由基,减缓细胞氧化损伤,保护心血管健康,改善微血管循环功能,并有效抑制血小板聚集,降低血栓形成的风险。此外,在传统医学领域,芦丁能够增强毛细血管弹性,缓解静脉曲张以及减轻水肿等症状。在黄酮糖苷类中,杨梅苷是由杨梅素与鼠李糖或吡喃木糖结合形成的黄酮苷,主要集中在藤茶的叶和茎叶中。此外,槲皮素与山奈酚等化合物也能衍生出如二氢槲皮素、芦丁、二氢山奈酚和紫云英苷等黄酮物质[22]。
总体而言,黄酮类物质的活性与其化学结构紧密相关。值得注意的是,黄酮类物质的羟基数量越多,其疏水性通常越低,这可能会影响其在生物体内的吸收和利用。尽管增加羟基数量会降低疏水性,但同时也增加了C3位置的电荷密度,赋予黄酮化合物更多生物活性[23]。从结构来看,藤茶中的黄酮化合物通常含有羟基,这是其发挥如抗氧化作用等生物活性的核心和结构基础。藤茶中黄酮类成分含量最高的二氢杨梅素结构中有6个羟基,这也是其水溶性和脂溶性较低的原因。目前已知25 ℃时二氢杨梅素在水中的溶解度仅为 0.2 mg/mL [24]。而良好的溶解性是药物被吸收和利用的前提条件之一,溶解性差会减少药物在肠道等吸收部位的有效浓度,降低细胞膜透过率,从而影响吸收效果。提高二氢杨梅素生物利用度的方法主要包括改善其吸收、延缓代谢过程和增强其在体内的稳定性。例如,采用纳米技术将二氢杨梅素制成纳米颗粒,或将其作为微纳米固体粒子用于稳定Pickering乳液,这些方法能够增强其分散程度、溶解性和稳定性,提高通过肠道的吸收率。此外,利用载体系统,如脂质体或微粒载体,可以改善其亲水性差、难以穿透细胞膜的问题,从而提高生物利用度;通过与其他物质,如环糊精结合,也能够增加二氢杨梅素的溶解性,进一步提高其吸收效率[25]。
炎症是机体对外界病原体入侵或内部免疫与代谢异常所产生的一种复杂的生物反应。藤茶黄酮抗炎作用机制见图2。藤茶中的黄酮能借助多种机制发挥抗炎作用,减轻机体的炎症水平。黄酮主要是通过抑制促炎因子,如肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-1(interleukin-1,IL-1)和白细胞介素-6(interleukin-6,IL-6)的生成与释放,进而阻断炎症信号的扩散,减轻组织损伤[26]。此外,藤茶黄酮还可通过调节PI3K/AKT和NF-κB等信号通路,抑制炎症相关基因的转录,进而抑制炎症反应的启动[27]。例如,抑制溃疡性结肠炎(ulcerative colitis,UC)等慢性炎症肠道疾病。SHU等[28]研究发现,藤茶中的黄酮类成分(二氢杨梅素、槲皮素、山奈酚和橙皮苷),能够通过调节PI3K/AKT通路缓解UC。这些黄酮不仅能保护肠道黏膜屏障,还能使结肠长度恢复至正常水平。同时,其降低了血清中促炎因子TNF-α和白细胞介素-1β(interleukin-1 β,IL-1β)的水平,增强了结肠组织中紧密连接蛋白和闭合蛋白的表达。另外,藤茶黄酮还能通过抑制中性粒细胞中PI3K-AKT-mTOR信号通路的表达,减少结肠组织中性粒细胞胞外诱捕网(neutrophil extracellular traps,NETs)的释放,增强结肠组织中的自噬,从而达到治疗UC的作用。因此,藤茶黄酮类物质通过调节免疫细胞的功能,促进抗炎因子的表达,缓解因炎症引起的多种疾病。
图2 藤茶黄酮主要抗炎机制示意图
Fig.2 Schematic diagram of the main anti-inflammatory mechanism of Ampelopsis grossedentata flavonoids
注:YTH N6-甲基腺苷 RNA 结合蛋白 2(YTH N6-methyladenosine RNA binding protein F2,YTHDF2);过氧化物酶体增殖激活受体-γ 辅激活因子-1α(peroxisome proliferator-activated receptor γ coactivator 1-alpha,PGC-1α);沉默信息调节因子2相关酶3(silent mating type information regulation2 homolog-3,SIRT3);磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K);蛋白激酶B(protein kinase B,Akt);丝氨酸/苏氨酸激酶位于哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)。
炎症属于诱发并加剧酒精性肝病(alcoholic liver disease,ALD)的核心因素,随着炎症反应的持续,肝脏的正常结构被破坏,纤维组织积累,引发更为严重的肝脏功能损害,形成恶性循环。炎症不仅是酒精引起肝脏损伤的表现,也是导致肝脏长期损害和纤维化的主要机制[29]。藤茶黄酮类物质(主要包括二氢杨梅素、杨梅素、二氢槲皮素、槲皮素和根皮苷等成分)通过调节YTHDF2/PGC-1α/SIRT3信号轴,有助于改善ALD[14]。受藤茶黄酮干预影响,YTHDF2的表达水平被抑制,进而增强了PGC-1α和SIRT3的表达,恢复了线粒体中超氧化物歧化酶2基因(superoxide dismutase 2,SOD2)和呼吸链复合物I的表达水平,抑制了ALD引起的氧化应激,降低炎症因子水平,减轻氧化应激和脂质沉积对线粒体的损伤,以缓解肝脂肪变性和炎症反应。QI等[30]还报道了藤茶中二氢杨梅素通过抑制NF-κB信号通路及活性氧(reactive oxygen species,ROS)介导的PI3K/Akt信号通路,能够对脂多糖刺激的RAW264.7巨噬细胞炎症反应发挥抑制作用。二氢杨梅素降低了促炎细胞因子TNF-α、IL-1β、IL-6和促炎介质一氧化氮(nitric oxide,NO)的释放。综上,藤茶中的黄酮通过综合抑制炎性信号通路、抗氧化应激、调控免疫和维持细胞稳态等多环节,共同实现其抗炎作用。
藤茶中的黄酮类化合物具有强大的抗氧化活性,这使其能够有效清除自由基,减少氧化应激。ZHANG等[31]研究发现,藤茶中黄酮化合物的抗氧化活性随着收获时间的不同而变化,抗氧化活性强弱依次为:7月>维生素C>4月>8月>5月>6月。其中,7月份收获的藤茶提取物表现出最强的自由基清除能力,甚至在0.1 mg/mL时,抗氧化活性超过了维生素C,这可能与二氢杨梅素或杨梅素的峰值含量有关。此外,嫩尖叶制成的藤茶具有比嫩绿叶和老绿叶更强的抗氧化活性[32]。
氧化应激是许多疾病的根本原因,过量的ROS和自由基积累超出了机体的清除或修复能力,导致细胞结构和功能受损[33]。与氧化应激相关的信号通路涉及NF-κB通路[34]、MAPK通路[35]、PI3K/AKT通路[36]、Nrf2/ARE通路[37]和JAK/STAT通路[38]等,其在细胞的抗氧化反应中发挥着重要作用。WANG等[32]证实了富含黄酮的藤茶提取物对甲萘醌诱导的斑马鱼细胞损伤和死亡的保护作用,但目前的分子机制尚不明确,这可能与抑制ROS的产生并抑制细胞损伤,或消除ROS并阻断与细胞凋亡途径相关蛋白表达以及减少由ROS造成的DNA损伤和细胞凋亡有关。HOU等[5]首次报道了藤茶中的二氢杨梅素通过调节线粒体途径来保护内皮细胞。二氢杨梅素能够通过抑制抑癌基因p53的激活,调节凋亡相关基因B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)和Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)的表达,进而抑制细胞色素c的释放、含半胱氨酸的天冬氨酸蛋白水解酶9(cysteinyl aspartate specific proteinase 9,caspase-9)的裂解和含半胱氨酸的天冬氨酸蛋白水解酶3(cysteinyl aspartate specific proteinase 3,caspase-3)的激活,最终减少聚腺苷二磷酸-核糖聚合酶的裂解。这一机制有效保护了人脐静脉内皮细胞免受氧化应激的伤害,增加NO的产生,并抑制了ROS的过量生成。高血糖同样可以通过多种途径诱导体内ROS的生成,这些ROS进一步增加了细胞氧化应激和炎症反应,从而导致多种病理变化。WEN等[39]已报道了取自藤茶的二氢杨梅素可以通过激活PI3K/AKT/MAPK信号通路来增强葡萄糖代谢并治疗2型糖尿病。不仅如此,GUAN等[40]还证实了二氢杨梅素与桑枝总生物碱的联合疗法能够协同作用于该信号通路的下游,能够有效降低体内ROS的生成,使得降血糖效果更佳。
癌症是多种因素长期共同作用引发细胞基因水平发生异常的恶性疾病。藤茶中的黄酮类化合物已展示出优秀的抗肿瘤活性[41]。黄酮的抗肿瘤机制较为复杂,涉及多个方面,如调控细胞凋亡相关信号通路(PI3K/Akt/p53 信号通路、MAPK 信号通路等)、抑制肿瘤血管生成以及癌细胞增殖、诱导细胞周期阻滞,具体机制详见图3。在非小细胞肺癌中经常观察到表皮生长因子受体(epidermal growth factor receptor,EGFR)信号转导失调,二氢杨梅素通过下调EGFR/Akt/survivin信号通路抑制非小细胞肺癌生长,其中主要依靠抑制EGFR磷酸化和下游靶分子减少以激活内在凋亡途径,促进凋亡抑制基因(survivin)泛素化降解,诱导肿瘤细胞凋亡[42]。针对前列腺癌细胞,藤茶中的二氢杨梅素在体外实验中展现出显著抑制作用。其作用机制主要包括:下调Bcl-2表达,诱导癌细胞凋亡,调节周期蛋白依赖性激酶(cyclin-dependent kinases,CDK)表达,显著抑制其增殖,并可下调趋化因子受体(C X C chemokine receptor 4,CXCR4)表达,抑制前列腺癌细胞的迁移和侵袭。同时,二氢杨梅素也能抑制血管内皮生长因子(vascular endothelial growth factor,VEGF)分泌,从而具有抗肿瘤血管生成活性。二氢杨梅素通过诱导前列腺癌细胞凋亡、抑制前列腺癌细胞增殖和减少前列腺肿瘤血管生成,显著降低了肿瘤重量,抑制肿瘤肺转移[43]。骨肉瘤是儿童和青少年最常见的原发性恶性骨肿瘤,ZHAO等[44]报道了藤茶中二氢杨梅素的抗肿瘤潜力与p38丝裂原活化蛋白激酶 (p38 mitogen-activated protein kinase,p38 MAPK)和AMPKα-GSK3β-Sox2信号通路相关,二氢杨梅素通过下调Sox2表达来降低骨肉瘤中的干细胞数量和球体形成能力,此外,激活p38 MAPK并促进caspase-3表达也能发挥潜在的抗肿瘤作用。藤茶中黄酮物质还能干扰肿瘤细胞的信号传导,阻止细胞周期的进展,抑制肿瘤细胞的增殖并诱导细胞凋亡。在多种黄酮成分协同抗肿瘤方面,ZHAO等[45]评价了藤茶预防和治疗黑色素瘤的潜在机制,确定了藤茶中二氢杨梅素和杨梅苷能发挥协同作用,针对抑癌蛋白(Tumor Protein P53,TP53)、TNF和酪氨酸酶等关键靶点来抑制小鼠皮肤黑色素瘤细胞B16F10细胞的增殖,对黑色素瘤进行预防和治疗。
图3 藤茶黄酮的抗肿瘤机制示意图
Fig.3 Schematic diagram of the anti-tumor mechanism of Ampelopsis grossedentata flavonoids
藤茶中的黄酮类化合物通过多方面机制展现其抑菌作用。其主要通过破坏细菌细胞膜的完整性,导致细胞内容物的渗漏和细菌的死亡。此外,黄酮类化合物能够干扰细菌的代谢过程和酶活性,抑制其生长繁殖[46]。LIANG等[47]研究表明,藤茶提取物和二氢杨梅素纯品对金黄色葡萄球菌具有抑制作用,二者的最小抑菌浓度分别为6.3 mg/mL和1.25 mg/mL。相比于二氢杨梅素,藤茶提取物对细菌膜完整性、通透性、能量代谢酶活性以及蛋白质合成影响更显著,具体表现在影响能量代谢酶苹果酸脱氢酶、琥珀酸脱氢酶和总ATP酶以及总蛋白表达上,同时显著诱导胞外碱性磷酸酶与β-半乳糖苷酶的泄露。二氢杨梅素的抑菌作用则主要通过其化学结构中的羟基与DNA碱基形成氢键或嵌入碱基,来抑制DNA功能和合成。对于革兰氏阴性菌大肠杆菌,藤茶提取物和二氢杨梅素纯品的最低杀菌浓度为3.2 mg/mL和1.25 mg/mL,并呈剂量依赖性[48]。前者更侧重于破坏膜完整性,而后者通过改变膜脂质组成来影响膜流动性。总体而言,藤茶中的黄酮成分通过多靶点机制(如膜损伤、代谢抑制、DNA结合)展现出广谱抗菌作用。这些成分主要通过破坏细胞膜和细胞壁的完整性,导致细胞代谢相关酶类(如碱性磷酸酶、谷草转氨酶、丙氨酸氨基转移酶和电解质)泄漏,从而诱导细菌的干瘪、聚集和黏附。然而,不同菌种的特性以及黄酮成分的协同效应会影响其抗菌效果。
藤茶中的黄酮类化合物还具有多种生物活性[49-50],如抗病毒、降血脂、免疫调节等。此外,藤茶黄酮能够改善血管内皮细胞的功能,促进血管舒张、调节血脂水平,降低血压并减少血栓形成,从而降低心血管疾病的风险[51]。针对藤茶黄酮对心血管的保护作用,HUANG等[52]报道了源自藤茶的二氢杨梅素可通过诱导孤儿核受体(orphan nuclear receptor TR3,TR3),显著减轻颈动脉新内膜形成,并介导平滑肌细胞表型的转换。另外,藤茶中的黄酮类物质,包括二氢杨梅素、异二氢杨梅素、杨梅苷、二氢槲皮素和杨梅素,已被证实能作为人儿茶酚-O-甲基转移酶(human catechol-O-methyltransferase,hCOMT)的抑制剂,进而增强相关药物的治疗效果[53]。而hCOMT是参与多巴胺代谢和儿茶酚类药物的代谢进程的一种关键酶,这些药物常用于治疗高血压、哮喘和帕金森病等疾病[54]。藤茶中的黄酮类成分通过与hCOMT活性位点结合,特别是杨梅素与关键催化残基赖氨酸(Lys144)的相互作用,以混合型抑制方式阻断hCOMT的催化过程,从而在对抗帕金森病和阿尔茨海默病等神经退行性疾病方面发挥潜在作用。不仅如此,QI等[55]报道了富含黄酮的藤茶水提物具有抗疲劳作用,可通过促进糖原储备、调节能量代谢及抑制潜在肌肉损伤机制来缓解运动性疲劳并增强肌肉耐力。其作用机制涉及对AMPK、JAK/STAT、PI3K-AKT及FoxO信号通路的调节,进而激活肝糖原与肌糖原代谢通路,增加骨骼肌质量并优化肌肉功能。藤茶的这些生物活性使其在天然保健和疾病预防领域受到关注。
蛋白质食品在热处理过程中,会形成杂环芳香胺(heterocyclic aromatic amines,HAAs)[56]。以肉制品为例,苯丙氨酸热降解形成苯乙醛,之后与肌酐和氨基发生反应生成HAA[57]。藤茶黄酮成分中的—OH和—COOH基团可以通过减少自由基来干扰这些有害物质的生成[58]。不仅如此,黄酮类化合物还能通过捕获苯乙醛及其他反应的中间体来抑制HAA的形成,并非单一凭借抗氧化作用[59]。例如,在烤牛肉饼中使用槲皮素、山奈酚、芹菜素、木犀草素、根皮苷等多种黄酮化合物能有效降低苯乙醛含量[60]。在高温条件下,美拉德反应会产生有毒的丙烯酰胺污染食物。有研究表明,藤茶中黄酮类物质可以有效减少美拉德反应中间体的生成[61]。例如,MA等[62]在制作面包时向面团添加低剂量含有黄酮的藤茶提取物(1.25 g/kg)可显著降低焙烤后面包中的丙烯酰胺含量。类似地,在饼干模型中,TENG等[63]发现添加二氢杨梅素和橙皮素等黄酮类化合物能最大程度地削弱烘烤过程中的脂质和蛋白质氧化程度,降低有毒有害物质的生成。除此之外,在发酵乳制品中添加黄酮物质不仅有助于提升产品品质,而且迎合了消费者对健康管理的需求,在改善发酵产品品质的同时保护益生菌的活力。藤茶提取物中的二氢杨梅素对嗜酸乳杆菌、德氏乳杆菌保加利亚亚种和唾液链球菌亚种3种乳酸菌的生长和菌液活菌数量具有显著提高和促进作用,能够用于开发一种新型的活性酸奶[64]。
由于黄酮化合物的溶解度和生物利用度低,Pickering乳液是目前食品工业中最热门的递送体系之一。目前关于借助Pickering乳液体系提高黄酮化合物的溶解度可通过将黄酮化合物与多糖、蛋白质等非共价键或共价键连接,形成复合颗粒并用于稳定Pickering乳液,或将黄酮化合物负载于油相中,稳定乳化体系,制备Pickering乳液。乳液载体能够提高黄酮等功能性成分的生物可及性,如鱼骨胶原蛋白肽和藤茶多糖复合颗粒稳定的乳液能提高二氢杨梅素的生物可及性[65];二氢杨梅素和高直链玉米淀粉复合颗粒稳定的乳液能提高β-胡萝卜素的生物可及性,并降低血糖活性[66]。此外,提高乳液油相比例后制备的高内相乳液凝胶还能代替传统脂肪,制备健康的油脂产品[67]。例如,芦丁与草鱼肌原纤维蛋白复合物与鱼油形成的高内相乳液能强化鱼糜凝胶质量,代替传统脂肪,制备功能性鱼糜产品[68]。
藤茶中的黄酮成分因其优异的抗菌和抗氧化活性,在材料包装方面拥有更多应用可能,可作为添加剂直接加入食品体系、掺入包装材料中用以封装、或作为附着于食品表面的可食用薄膜和涂层[69]。黄酮能够通过清除食品表面和包装环境中的自由基,降低氧化应激对食品的影响,防止食品色泽的褐变和风味的劣变。有研究表明,将含有二氢杨梅素的乳液与明胶混合后,能够制备出抑制多种细菌的活性食用薄膜[70]。同样,将不同浓度的二氢杨梅素掺入魔芋葡甘露聚糖/结冷胶基质中,制备的复合薄膜在抑制细菌生长方面效果显著[71]。添加黄酮化合物的可食用薄膜或涂层通常具有优异的紫外线阻隔能力、高透明度、良好的耐水性和机械性能。在食品包装应用中,这些活性包装膜能够有效抑制贮存期的氧化反应和微生物生长,保持食品的颜色和风味,延长贮存期。
藤茶中的黄酮类化合物能够延长食品的贮藏期,主要得益于其强大的抗氧化和抗菌作用。黄酮类物质具有稳定的分子结构,可以有效中和食品中的自由基,减缓氧化反应的发生。此外,藤茶中的黄酮还具有抑制微生物生长的功能,可以有效地防止细菌和霉菌的滋生,减少食品的细菌污染,从而保持食品的新鲜和质量[72]。例如ZHANG等[73]向混合肉饼中添加了含有黄酮的藤茶提取物,不仅能够抑制肉饼中的脂质和蛋白质氧化,还能有效改善其感官特性和品质特性,延长肉制品的保质期。此外,藤茶中黄酮物质还在果蔬采后处理中得到应用[74],主要体现在延缓衰老、抑制病原微生物生长和保持营养与色泽等方面。LIANG等[75]确定了藤茶黄酮物质在抗褐变方面的潜在价值,将二氢杨梅素与抗坏血酸联合使用,发挥协同抗褐变作用,能够用于抑制鲜切苹果片的酶促褐变,延长其货架期。藤茶黄酮作为天然抗氧化剂,能够有效清除食品中由于应激而产生的活性氧自由基,从分子水平上减缓膜脂过氧化,稳定细胞结构,延缓食品的变质和腐败。同时,其对多种真菌和细菌具有广谱抑制作用,可减少食品贮藏过程中的常见污染。因此,藤茶黄酮作为一种绿色安全的生物活性成分,在食品中的应用不仅有助于延长贮存期,还可提高商品价值和减少保鲜过程对合成化学剂的依赖。藤茶提取物在食品中的其他应用研究见表1。
表1 藤茶中黄酮化合物在食品中的应用
Table 1 Flavonoid compounds in Ampelopsis grossedentata and their applications in food
食品体系添加的黄酮成分对体系的影响参考文献菜籽油、葵花籽油(抗氧化剂)含黄酮的藤茶叶和果实提取物藤茶叶提取物的抗氧化效果最出众,果实提取物可与抗氧化剂2,6-二叔丁基对甲酚相媲美[76]菜籽油、葵花籽油(抗氧化剂)含黄酮的藤茶红、绿色的幼叶、老叶提取物绿叶提取物的抗氧化作用强于红叶,红叶在油脂体系中的抗氧化能力与2,6-二叔丁基对甲酚相当[77]大豆油、煮熟碎牛肉(抗氧化剂)二氢杨梅素、含黄酮的藤茶提取物煮熟碎牛肉体系中二氢杨梅素的抗氧化效果稍逊于丁基羟基茴香醚,大豆油中二氢杨梅素比藤茶提取物的抗氧化效果更显著[78]鱼油(抗氧化剂)含黄酮的藤茶提取物延缓鱼油的氧化,与其他抗氧化剂复配后效果更佳[79]壳聚糖、海藻酸钠(新型可食用薄膜)二氢杨梅素抑制金黄色葡萄球菌生长,减缓炸肉丸的氧化程度[80]壳聚糖、普鲁蓝多糖(新型可食用薄膜)二氢杨梅素抑制广式香肠的脂质氧化,在28 d贮存期间保持颜色和风味[81]明胶、玉米醇溶蛋白(静电纺丝纳米纤维)二氢杨梅素具有与封装丁香酚的纳米纤维相当的抗氧化效果和抗菌活性[82]大麦素、壳聚糖(静电纺丝纳米纤维)槲皮素静电纺丝薄膜延迟了鲜切苹果和马铃薯表面的酶促褐变速率[83]
藤茶是一种药食同源的植物资源,作为保健茶饮,除了具备良好的风味,其丰富的活性成分和多种药理作用也备受关注。二氢杨梅素是藤茶中黄酮的关键成分,已有众多研究关注其功能活性与其在食品领域中的实际应用。近年来,随着藤茶产业不断发展,研究者们也不断深入探索藤茶黄酮的结构、活性和应用。目前有关藤茶的开发研究仍面临一些问题:一是大部分研究都集中在藤茶的特征性成分二氢杨梅素上,其他黄酮化合物如杨梅素、杨梅苷以及槲皮素等的研究较少。二是基于当前的研究现状,未来在厘清黄酮生物活性和开发藤茶相关产品时,应该注重于考虑其他多种成分之间存在的协同增进或拮抗抑制作用,明确构效关系与活性机制,从而更好地开发和利用藤茶资源,以期拓展藤茶在食品、医药等健康领域的应用前景。
[1] 郭海姣, 刘云, 刘进宝, 等 藤茶的化学成分及药理活性研究进展[J]. 中成药, 2022, 44(8): 2595-2601.GUO H J, LIU Y, LIU J B, et al. Research progress on the chemical composition and pharmacological activity of vine tea[J]. Chinese Traditional Patent Medicine, 2022, 44(8):2595-2601.
[2] WU R R, LI X, CAO Y H, et al. China medicinal plants of the Ampelopsis grossedentata: A review of their botanical characteristics, use, phytochemistry, active pharmacological components, and toxicology[J]. Molecules, 2023, 28(20):7145.
[3] KOU X J, CHEN N. Pharmacological potential of ampelopsin in Rattan tea[J]. Food Science and Human Wellness, 2012, 1(1):14-18.
[4] ZARAGOZ
C, VILLAESCUSA L, MONSERRAT J, et al. Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols[J]. Molecules, 2020, 25(4):1017.
[5] HOU X L, TONG Q, WANG W Q, et al. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways[J]. Life Sciences, 2015, 130:38-46.
[6] 刘相海, 李琦, 刘群. 藏药秦艽花黄酮体外诱导肿瘤细胞凋亡的研究[J]. 动物医学进展, 2021, 42(1):88-93.LIU X H, LI Q, LIU Q. Experimental study of Tibetan medicine Gentiana macrophylla flower flavonoids inducing tumor cell apoptosis in vitro[J]. Progress in Veterinary Medicine, 2021, 42(1):88-93.
[7] 雷秋琪, 叶诗洁, 黄永康, 等. 菱角壳黄酮提取工艺优化及抑肿瘤细胞增殖活性作用[J]. 食品工业科技, 2022, 43(14):224-232.LEI Q Q, YE S J, HUANG Y K, et al. Optimization of extraction process of flavonoids from water chestnut shell and effect on anti-tumor cell proliferation activity[J]. Science and Technology of Food Industry, 2022, 43(14):224-232.
[8] 周慧娴. 基于AGEs/RAGE/NF-κB途径的玳玳花柚皮素对AGEs及其细胞炎性损伤的抑制作用与机制研究[D]. 南昌:江西中医药大学,2024.ZHOU H X. Study on the inhibitory effect and mechanism of naringenin from flowers of Citrus aurantium L. var. amara Engl. on the formation of advanced glycation end products (AGEs) and AGEs-induced inflammatory injury of cell based on AGEs/RAGE/NF-κB pathway [D]. Nanchang: Jiangxi University of Chinese Medicine, 2024.
[9] 刁磊, 陈惠杰, 盛尊来, 等. 杨树花总黄酮的提取工艺优化与抗炎活性研究[J]. 中国兽医科学, 2019, 49(4):522-530.DIAO L, CHEN H J, SHENG Z L, et al. Optimization of extraction process and anti-inflammatory activity of total flavonoids from Flos Populi[J]. Chinese Veterinary Science, 2019, 49(4):522-530.
[10] 赵雪巍, 刘培玉, 刘丹, 等. 黄酮类化合物的构效关系研究进展[J]. 中草药, 2015, 46(21):3264-3271.ZHAO X W, LIU P Y, LIU D, et al. Research progress in structure-activity relationship of flavoniods[J]. Chinese Traditional and Herbal Drugs, 2015, 46(21):3264-3271.
[11] 吴聪, 王文茂, 彭彩云, 等. 二氢杨梅素结构修饰及生物活性研究进展[J]. 天然产物研究与开发, 2024, 36(3):540-553.WU C, WANG W M, PENG C Y, et al. Research advances of the structural modification and biological activity of dihydromyricetin[J]. Natural Product Research and Development, 2024, 36(3):540-553.
[12] 苏晨帆. 二氢杨梅素的结构与活性研究及应用 [D]. 福州:福建农林大学 2013.SU F C. The structure and activity research of dihydromyricetin and appolication [D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
[13] 汤萌, 阿布里孜·阿不都热合曼, 阿达来提·阿布都热西提, 等. 杨梅素和二氢杨梅素对α-葡萄糖苷酶的抑制作用及机理研究[J]. 化学研究, 2025, 36(1):57-64.TANG M, ABDURAHMAN A, ABUDUREXITI A, et al. Inhibition effects and mechanisms of myricetin and dihydromyricetin on α-amylase[J]. Chemical Research, 2025, 36(1): 57-64.
[14] LUO Q H, QIU J, CHEN M X, et al. Vine tea (Ampelopsis grossedentata) ameliorates chronic alcohol-induced hepatic steatosis, oxidative stress, and inflammation via YTHDF2/PGC-1α/SIRT3 axis[J]. Food Research International, 2025, 209:116321.
[15] LI H X, YU F, SUN X Y, et al. Dihydromyricetin ameliorates memory impairment induced by acute sleep deprivation[J]. European Journal of Pharmacology, 2019, 853:220-228.
[16] UPADHYAY M, HOSUR R V, JHA A, et al. Myricetin encapsulated chitosan nanoformulation for management of type 2 diabetes: Preparation, optimization, characterization and in vivo activity[J]. Biomaterials Advances, 2023, 153:213542.
[17] NIE N, LI Z L, LI W H, et al. Myricetin ameliorates experimental autoimmune myocarditis in mice by modulating immune response and inhibiting MCP-1 expression[J]. European Journal of Pharmacology, 2023, 942:175549.
[18] 汪博宇. 破囊壶藻藻油及山奈酚对抑郁症的影响及其机理研究[D]. 武汉:武汉轻工大学,2024.WANG B Y. Study on the effects and mechanisms of Aurantiochytrium oil and kaempferol on depression [D].Wuhan: Wuhan Polytechnic University, 2024.
[19] 汪光华, 唐树平, 彭名军, 等. 高良姜中4种黄酮化合物的体外抗氧化能力及抑菌活性研究[J]. 食品与机械, 2017, 33(5):168-172.WANG G H, TANG S P, PENG M J, et al. Study on the antioxidant and antimicrobial activities of four flavonol compounds from Alpinia officinarum Hance rhizomein vitro[J]. Food &Machinery, 2017, 33(5):168-172.
[20] CALABRESE E J, PRESSMAN P, HAYES A W, et al. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes[J]. Mechanisms of Ageing and Development, 2025, 225:112065.
[21] 冯亚莉, 李浩, 刘娟, 等. 槲皮素研究进展[J]. 中国中药杂志, 2021, 46(20):5185-5193.FENG Y L, LI H, LIU J, et al. Research progress on therapeutic potential of quercetin[J]. China Journal of Chinese Materia Medica, 2021, 46(20):5185-5193.
[22] ZHANG Q L, ZHAO Y F, ZHANG M Y, et al. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds[J]. Journal of Pharmaceutical Analysis, 2021, 11(5):555-563.
[23] WANG T Y, LI Q, BI K S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate[J]. Asian Journal of Pharmaceutical Sciences, 2018, 13(1):12-23.
[24] YAN Q H, LI M Q, DONG L Y, et al. Preparation, characterization and protective effect of chitosan-Tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatin[J]. International Journal of Biological Macromolecules, 2023, 245:125569.
[25] HOU G Q, XU C F, CHENG K X, et al. Metabolic mechanisms of Dihydromyricetin and strategies for enhancing its bioavailability: A recent review[J]. Food Chemistry, 2025, 485:144470.
[26] 丁锦屏. 藤茶提取物和二氢杨梅素抗炎功能评估及机理研究 [D].长沙:中南林业科技大学,2021.DING J P. Evaluation of anti-inflammatory function and mechanism of vine tea extract and dihydromyricetin [D]. Changsha: Central South University of Forestry and Technology, 2021.
[27] CHENG Y, WU J H, GAO Y Q, et al. Hydroxylation of dihydromyricetin via Beauveria bassiana fermentation enhances its efficacy in improving insulin signaling: Insights into inflammation, oxidative stress, and endoplasmic reticulum stress[J]. Food Research International, 2025, 204:115940.
[28] SHU Y Q, YANG R, WEN H J, et al. Total flavonoid of vine tea reduces neutrophil extracellular traps release by inhibiting PI3K-AKT-mTOR signaling pathway to treat ulcerative colitis[J]. Journal of Functional Foods, 2025, 128:106807.
[29] LIU S Y, TSAI I T, HSU Y C. Alcohol-related liver disease: Basic mechanisms and clinical perspectives[J]. International Journal of Molecular Sciences, 2021, 22(10):5170.
[30] QI S M, XIN Y Q, GUO Y T, et al. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways[J]. International Immunopharmacology, 2012, 12(1):278-287.
[31] ZHANG L L, ZHANG Z X, HOU Y Z, et al. Evaluation of changes in chemical composition and antioxidant activities from vine tea at different harvest times based on LC-MS, GC-MS, and data fusion algorithms[J]. Food Chemistry: X, 2025, 27:102363.
[32] WANG H J, LI J X, ZHANG C Y, et al. Metabolomics approach, in vitro and in vivo antioxidant activity assay provide insights into impact of multiple variations on the vine tea (Ampelopsis grossedentata)[J]. LWT, 2023, 177:114578.
[33] CHEN K, QIN C R, JI C F, et al. Astragalus polysaccharide alleviates oxidative stress and senescence in chondrocytes in osteoarthritis via GCN2/ATF4/TXN axis[J]. International Journal of Biological Macromolecules, 2025, 310:143285.
[34] FAN Y W, YU Y K, YAN P. The protective effects of tectoridin on bone fractures against oxidative stress via the inhibition of NF-κB and apoptotic pathways in ovariectomized rats[J]. Toxicology and Applied Pharmacology, 2025, 500:117345.
[35] SONG B B, WANG G, WANG Z, et al. Ceramides from sea red rice bran ameliorate oxidative stress and lifespan in Caenorhabditis elegans by activating the p38/MAPK signaling pathway and regulating the gut microbiota[J]. Journal of Functional Foods, 2024, 116:106205.
[36] GUO Z K, LIU H, ZHAO D F, et al. Piperine ameliorates diabetic mellitus erectile dysfunction by reducing oxidative stress and apoptosis through the PI3K/AKT/NRF2 signaling pathway[J]. Food Bioscience, 2025, 66:106326.
[37] LI F, ZHANG L, ZHANG X X, et al. Rutin alleviates Pb-induced oxidative stress, inflammation and cell death via activating Nrf2/ARE system in SH-SY5Y cells[J]. NeuroToxicology, 2024, 104:1-10.
[38] MAQSOOD M, SAEED R A, KHAN M I, et al. Ultrasound-assisted ethanolic extract of Morus nigra fruit alleviates oxidative stress and inflammation via Keap1/Nrf2, dual oxidases, and JAK/STAT pathways[J]. Journal of Agriculture and Food Research, 2024, 18:101378.
[39] WEN X N, LV C H, ZHOU R Z, et al. The molecular mechanism underlying the therapeutic effect of dihydromyricetin on type 2 diabetes mellitus based on network pharmacology, molecular docking, and transcriptomics[J]. Foods, 2024, 13(2):344.
[40] GUAN Y W, LV Q Y, WANG X Y, et al. Dihydromyricetin as a dietary supplement enhances hypoglycemic efficacy of Sangzhi Alkaloids via gut-liver axis[J]. Food Bioscience, 2025, 66:106197.
[41] LI Y, KUMAR P S, TAN S Q, et al. Anticancer and antibacterial flavonoids from the callus of Ampelopsis grossedentata; a new weapon to mitigate the proliferation of cancer cells and bacteria[J]. RSC Advances, 2022, 12(37):24130-24138.
[42] LI X Y, ZHOU L, WANG R K, et al. Dihydromyricetin suppresses tumor growth via downregulation of the EGFR/Akt/survivin signaling pathway[J]. Journal of Biochemical and Molecular Toxicology, 2023, 37(6): e23328.
[43] NI F, GONG Y, LI L L, et al. Flavonoid ampelopsin inhibits the growth and metastasis of prostate cancer in vitro and in mice[J]. PLoS One, 2012, 7(6): e38802.
[44] ZHAO Z Q, YIN J Q, WU M S, et al. Dihydromyricetin activates AMP-activated protein kinase and P38(MAPK) exerting antitumor potential in osteosarcoma[J]. Cancer Prevention Research, 2014, 7(9):927-938.
[45] ZHAO N X, KONG H M, LIU H S, et al. A network pharmacology approach to evaluate the synergistic effect of dihydromyricetin and myricitrin in vine tea on the proliferation of B16F10 cells[J]. Frontiers in Nutrition, 2022, 9:993133.
[46] WU Y P, JIANG L, RAN W Y, et al. Antimicrobial activities of natural flavonoids against foodborne pathogens and their application in food industry[J]. Food Chemistry, 2024, 460:140476.
[47] LIANG H Y, HE K K, LI T, et al. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus[J]. Scientific Reports, 2020, 10:21416.
[48] CUI S M, LI T, LIANG H Y, et al. Antibacterial activities and mechanisms of vine tea extract and 2R, 3R-Dihydromyricetin on Escherichia coli[J]. LWT, 2021, 146:111393.
[49] 张云坤, 李娟, 黄丹, 等. 中药藤茶化学成分及抗感染作用研究进展[J]. 世界科学技术-中医药现代化, 2021, 23(6):2012-2022.ZHANG Y K, LI J, HUANG D, et al. Research progress on chemical constituents and anti-infective effects of the traditional Chinese medicine vine tea(Ampelopsis grossedentata)[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2021, 23(6):2012-2022.
[50] 罗非君, 丁锦屏. 藤茶及二氢杨梅素的生物学功能研究进展[J]. 食品与生物技术学报, 2022, 41(2):8-21.LUO F J, DING J P. Progress of biological functions of vine tea and dihydromyricetin[J]. Journal of Food Science and Biotechnology, 2022, 41(2):8-21.
[51] 付明, 胡朝暾, 周亮, 等. 藤茶黄酮含量及其体外抗脂质过氧化能力研究[J]. 食品工业科技, 2013, 34(7):146-148; 214.FU M, HU Z, ZHOU L, et al. Study on content and anti-lipoperoxidation activity in vitro of flavonoids extracted from Ampelopsis grossedentata[J]. Science and Technology of Food Industry, 2013, 34(7):146-148; 214.
[52] HUANG B H, LI Y P, YAO Y L, et al. Dihydromyricetin from Ampelopsis grossedentata protects against vascular neointimal formation via induction of TR3[J]. European Journal of Pharmacology, 2018, 838:23-31.
[53] ZHAO D F, FAN Y F, YU H N, et al. Discovery and characterization of flavonoids in vine tea as catechol-O-methyltransferase inhibitors[J]. Fitoterapia, 2021, 152:104913.
[54] CHI J H, MA Y Y, SHI M L, et al. Associations between Catechol-O-methyltransferase (COMT) polymorphisms and cognitive impairments, psychiatric symptoms and tardive dyskinesia in schizophrenia[J]. Brain Research, 2024, 1826:148740.
[55] QI S Y, ZENG T X, SUN L, et al. The effect of vine tea (Ampelopsis grossedentata) extract on fatigue alleviation via improving muscle mass[J]. Journal of Ethnopharmacology, 2024, 325:117810.
[56] DONG H, XIAN Y P, LI H X, et al. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2):365-404.
[57] ZÖCHLING S, MURKOVIC M. Formation of the heterocyclic aromatic amine PhIP: Identification of precursors and intermediates[J]. Food Chemistry, 2002, 79(1):125-134.
[58] HIDALGO F J, ZAMORA R. Carbonyl chemistry and the formation of heterocyclic aromatic amines with the structure of aminoimidazoazaarene[J]. Journal of Agricultural and Food Chemistry, 2022, 70(1):79-86.
[59] SYEUNDA C, AWIKA J M. Mechanisms of flavonoid inhibition of Maillard reaction product formation in relation to whole grains processing[J]. Food Chemistry, 2024, 449:139237.
[60] ZHU Q, ZHANG S, WANG M F, et al. Inhibitory effects of selected dietary flavonoids on the formation of total heterocyclic amines and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in roast beef patties and in chemical models[J]. Food &Function, 2016, 7(2):1057-1066.
[61] SHI B S, GUO X, LIU H Y, et al. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation[J]. Food Chemistry, 2024, 438:137994.
[62] MA Q, CAI S B, JIA Y J, et al. Effects of hot-water extract from vine tea (Ampelopsis grossedentata) on acrylamide formation, quality and consumer acceptability of bread[J]. Foods, 2020, 9(3):373.
[63] TENG J, LIU X D, HU X Q, et al. Dihydromyricetin as a functional additive to enhance antioxidant capacity and inhibit the formation of thermally induced food toxicants in a cookie model[J]. Molecules, 2018, 23(9):2184.
[64] 樊庆涛. 藤茶中二氢杨梅素的纯化及其对乳酸菌生长与活性的影响研究[D].武汉:武汉轻工大学,2021.FAN Q T. Purification of dihydromyricetin from Ampelopsis grossedentata and its effect on growth and activity of lactic acid bacteria [D]. Wuhan: Wuhan Polytechnic University, 2021.
[65] PAN H H, JIAO W J, WANG F L, et al. Fabrication, characterization, and dihydromyricetin-loaded bioavailability of Pickering emulsions stabilized by Ampelopsis grossedentata polysaccharide-fish collagen peptide composite nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 701:134987.
[66] 耿升. 基于二氢杨梅素的Pickering乳液构建及其稳定机制研究[D].重庆:重庆大学,2021.GENG S. Fabrication and stability mechanism of Pickering emulsions based on dihydromyricetin [D]. Chongqing: Chongqing University, 2021.
[67] 高成成, 滕汉壮, 汤晓智. 燕麦蛋白/壳聚糖复合颗粒稳定的高内相乳液及其作为烘焙专用油脂的应用[J]. 中国粮油学报, 2025, 40(7):116-124.GAO C C, TENG H Z, TANG X Z. High internal phase emulsion stabilized by oat protein/chitosan composite particles and its applications baking special oils[J]. Journal of the Chinese Cereals and Oils Association, 2025, 40(7):116-124.
[68] ZHANG X H, XIE W X, LIANG Q Q, et al. High inner phase emulsion of fish oil stabilized with rutin-grass carp (Ctenopharyngodon idella) myofibrillar protein: Application as a fat substitute in surimi gel[J]. Food Hydrocolloids, 2023, 145:109115.
[69] DING F Y, LONG S M, HUANG X W, et al. Emerging Pickering emulsion films for bio-based food packaging applications[J]. Food Packaging and Shelf Life, 2024, 42:101242.
[70] XU J F, LI X Y, XU Y Q, et al. Dihydromyricetin-loaded Pickering emulsions stabilized by dialdehyde cellulose nanocrystals for preparation of antioxidant gelatin-based edible films[J]. Food and Bioprocess Technology, 2021, 14(9):1648-1661.
[71] XIE W Z, DU Y, YUAN S Y, et al. Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum[J]. International Journal of Biological Macromolecules, 2021, 180:385-391.
[72] RODR
GUEZ-CARPENA J G, MORCUENDE D, ESTÉVEZ M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage[J]. Meat Science, 2011, 89(2):166-173.
[73] ZHANG X, XU Y, XUE H, et al. Antioxidant activity of vine tea (Ampelopsis grossedentata) extract on lipid and protein oxidation in cooked mixed pork patties during refrigerated storage[J]. Food Science &Nutrition, 2019, 7(5):1735-1745.
[74] TEKIN O, KARATAS M D, CAVUSOGLU S. Effects of edible coating (guar and tara gam) applications on post-harvest fruit quality and gene expressions in cherry tomatoes[J]. Postharvest Biology and Technology, 2025, 224: 113475.
[75] LIANG X, WU Y P, QIU J H, et al. A potent antibrowning agent from pine needles of Cedrus deodara: 2R, 3R-dihydromyricetin[J]. Journal of Food Science, 2014, 79(9): C1643-C1648.
[76] JIA C H, ZHANG M X, MA W B, et al. Evaluation of antioxidant properties of the different tissues of vine tea (Ampelopsis grossedentata) in stripped canola oil and sunflower oil[J]. Journal of Food Science, 2020, 85(4):1082-1089.
[77] JIA C H, LI J H, ZHANG M X, et al. Antioxidant properties of the extracts of vine tea (Ampelopsis grossedentata) with the different color characteristics and inhibition of rapeseed and sunflower oil oxidation[J]. LWT, 2021, 136:110292.
[78] YE L Y, WANG H J, DUNCAN S E, et al. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef[J]. Food Chemistry, 2015, 172:416-422.
[79] BAEK N, EIGEL N W, O'KEEFE S. Antioxidant properties of a dihydromyricetin-rich extract from vine tea (Ampelopsis grossedentata) in menhaden oil[J]. Research &Reviews: Journal of BotanicalSciences, 2015.
[80] LI M Y, LUO X Q, ZHU R X, et al. Development and characterization of active bilayer film incorporated with dihydromyricetin encapsulated in hydroxypropyl-β-cyclodextrin for food packaging application[J]. Food Hydrocolloids, 2022, 131:107834.
[81] YANG M Y, XU X Y, TIAN X G. Chitosan-pullulan edible coating loaded with dihydromyricetin: Enhanced antioxidant activity and barrier properties to prolong Cantonese sausages’ shelf-life[J]. International Journal of Biological Macromolecules, 2025, 297:139831.
[82] LIU S Q, CHEN Z H, ZHANG H G, et al. Comparison of eugenol and dihydromyricetin loaded nanofibers by electro-blowing spinning for active packaging[J]. Food Bioscience, 2023, 51:102294.
[83] LI S, YAN Y, GUAN X, et al. Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment[J]. Food Packaging and Shelf Life, 2020, 23:100466.