稻米是位于小麦和玉米之后的世界第三大农产品,联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)数据表明,2022年到2023年6月全球稻米产量为515 348千t,稻米消费量达519 215千t。除作为普通的米饭原料外,大米还可加工成米粉、米线、年糕、米糕、凉糕、汤圆、米饼等众多产品。与小麦相比,大米不会引发乳糜泻,导致过敏的几率也更低。在乳糜泻和过敏发生率持续攀高的情况下,大米及大米粉成为替代小麦粉生产无麸质食品的重要原料。大米原料原有属性(如品种、成分组成、成分含量等)是决定大米制成品的关键因素,但众多研究表明大米籽粒或大米粉经适当方式处理,可显著改善产品的营养、质地和功能品质等。这些技术包括射频处理[1]、超声处理[2-4]、X-射线[5]、微波处理[6-7]等。如研究发现大米蛋白质与矿物质含量随研磨程度增加逐渐降低[8];低温冲击研磨对保留糙米酚类化合物改善口感非常有益[9];湿热处理可提高米粉抗性淀粉含量等[10]。除上述物理技术外,生物技术处理(包括发酵、发芽和酶处理)也能有效改善大米及大米粉的营养安全品质和加工特性。BINH等[11]利用环糊精糖基转移酶处理的发芽糙米粉,对人肝细胞内癌瘤细胞具有积极的细胞毒性活性,且升糖指数具有显著的稳定效果;WANG等[12]运用部分发芽糙米粉对糯米粉进行部分替代,结果表明可降低汤圆的黏性,提高汤圆的消化性;ILOWEFAH等[13]运用酵母对糙米粉进行发酵,其发酵后糙米粉的发泡能力、发泡稳定性、持油性、糊化温度、焓值和白度均有所提高。相较于化学处理及物理处理技术,生物技术兼备安全、高效、清洁、接受度更高、成本低廉等特点。原料所具备的加工特性在一定程度上影响原料的适用场景与产品品质,因此运用生物技术对原料特性进行调控对原料适用场景的拓展及产品品质的提升均具有一定积极意义。本文从发酵、发芽作用、酶作用3个方面梳理总结了大米及大米粉的改良调控进展,并对其未来发展方向进行探讨,以期推动大米的深入研究和产业应用。
稻米含有80%碳水化合物,7%~8%的蛋白质,3%的脂肪和3%的纤维,麸皮约占糙米总质量的10%[14]。生物处理对大米及大米粉的主要成分会产生一定影响。如表1所示,就发酵的影响,除自然发酵之外,常用于稻米及米粉接种发酵的菌种主要为酵母菌和乳酸菌。有学者对自然发酵大米及大米粉中的菌种进行鉴别,发现其中乳酸菌主要包括乳酸杆菌、明串珠菌、片球菌、链球菌、肠球菌和气球菌等,酵母菌主要包括酿酒酵母、鲁戈萨念珠菌、热带假丝酵母等[15]。综合来看,对大米和大米粉主要成分有重要影响的发酵参数主要包括菌种、发酵时间、发酵pH等。就现有研究来看,接种乳酸菌引发的成分变化情况如下:a)蛋白质降低;b)灰分和油脂在大多数情况下降低,只有极个别情况没有变化;c)总淀粉含量升高或没有变化;d)淀粉直支比的变化规律性较差,降低、升高、无变化的情况都有。接种酵母菌的情况如下:a)蛋白质和灰分升高;b)总淀粉含量下降而直支比升高。造成淀粉含量变化有如下原因:a)微生物在生命活动进行过程中,产生多种有机酸、淀粉酶,造成淀粉的水解[16],又因为支链淀粉较直链淀粉更易受到酶作用,造成新直链淀粉的产生与直支比的变化;b)微生物在释放淀粉酶的同时,也存在脂肪酶、蛋白酶等酶类,这些酶可去除淀粉颗粒周边蛋白质与脂肪,使得淀粉分子中酶作用位点充分暴露,促进其降解。大米蛋白作为优质蛋白,除了蛋白水解酶造成其含量变化外,微生物发酵产生的乳酸可促进蛋白质的溶解[17-18]。而部分研究中,蛋白质含量有上升趋势,这可能与发酵过程中,随发酵时间的延长,微生物增殖,发生细胞积累有关[13]。总结发酵影响大米及大米粉成分的机制,主要包括以下几点:a)发酵液对有关成分的萃取溶解;b)微生物及所产生的酶对蛋白质、淀粉等的分解及分解产物代谢利用效应;c)微生物尤其乳酸菌产生的有机酸对蛋白质、淀粉等的水解作用;d)微生物菌体成分积累的影响。
表1 生物处理对大米及大米粉主要组成成分的影响
Table 1 Effects of biological treatment on main components of rice and rice flour
物料处理条件成分变化文献发酵菌种/环境条件精米自然发酵/37 ℃/12~72 hPr↓2.94%~39.71%;Ash↓33.33%~66.67%;Oil, Ts和Rs无变化[19]精米自然发酵/25 ℃/144 hPr↓20.00%;Rs↑6.73%;Oil和Ts无变化[20]精米粉嗜淀粉乳杆菌/37 ℃/24 hPr↓6.93%~17.07%;Oil↓0.00~28.81%;Ash↓39.53%~44.19%[21]精米粉自然发酵/25 ℃/5~15 dPr↓24.88%~45.57%;Oil↓51.52%~72.73%;Ash↓53.06%~63.27%;Ts↑2.06%~5.09%;Rs↑4.81%~11.24%[22]精米粉3种乳酸菌/35 ℃/28 hPr↓7.31%~24.36%;Oil↓33.94%~42.20%;Ash↓26.97%~42.70%;Ts↑6.82%~8.03%;Rs↓3.35%~6.36%3种菌混合/35 ℃/28 hPr↓26.25%;Oil↓48.62%;Ash↓47.19%;Ts↑11.32%;Rs↓2.85%自然发酵/35 ℃/28 hOil↓23.85%;Ash↓29.21%;Ts↑3.96%;Pr和Rs无变化[17]糙米粉酵母/32 ℃/6.25 hPr↑12.99%;Ash↑7.08%;Ts↓11.18%;Rs↑17.68%;Oil无变化[13]糙米粉3种酵母/25 ℃/12 hPr↑12.06%~14.66%;Ash↑10.71%~17.86%;Oil无变化[23]发芽环境条件糙米35 ℃/24~72 h/pH 3.0~7.0Pr:24 h↑0.00~4.90%;48 h↓0.00~12.17%;72 h↑4.75%~↓20.33%[24]糙米35 ℃/24~72 h/pH 3.0~7.0Pr:24 h无变化;36 h↑4.05%~↓3.13%;48 h↓0.00~9.01%[24]糙米30 ℃/24 hAsh↑37.80%;Ts↓9.74%;Pr和Oil无变化[25]稻谷30 ℃/48 hAsh↑6.98%;Pr和Oil无变化[26]糙米25 ℃/1~5 dTs↓6.85%~46.36%;Rs↑0.00%~13.56%[27]糙米28 ℃/12~48 hPr↑29.52%~34.99%;Oil↓6.61%~19.83%;Ash↓7.02%~17.54%[28]稻谷25 ℃/24~72 hPr↓6.45%~19.35%;Oil↓8.02%~26.16%;Ash↓8.00%~21.00%;Ts↓7.10%~14.99%[29]酶处理酶种类/环境条件糙米纤维素酶/65 ℃/3 h/pH 5.6Ts和Rs无变化葡萄糖淀粉酶/65 ℃/4.5 h/pH 5.0Ts↓1.78%;Rs↓2.59%α-淀粉酶/63 ℃/4.5 h/pH 4.6Ts↓3.52%;Rs↓3.86%[30]精米普鲁兰酶/60 ℃/16 h/pH 4.5Pr↑67.26%;Oil↓54.55%;Ash↑12.07%[31]精米蛋白酶/40 ℃/1 h/pH 7.0Pr、Oil和Ash无变化[32]糙米粉纤维素酶/50 ℃/30 minPr、Oil和Ts无变化[33]精米粉淀粉颗粒水解酶/55 ℃/1~24 h/pH 5.0Pr↑24.06%~54.58%;Ts↓3.93%~8.54%[34]精米粉蛋白酶/50 ℃/5~180 min/pH 10.0Pr↓0.00~40.56%[35]精米粉α-淀粉酶/37 ℃/5~180 min/pH 6.0Pr↑0.00~10.45%[35]
注:↑和↓分别表示升高和降低,它们后面的数值表示与对照组相比升高或降低的百分比(%),直接从论文数据中计算或估算(下同)。Pr、Oil、Ash、Ts和Rs分别表示蛋白质、油脂、灰分、总淀粉和直支比。
发芽的原料只涉及稻谷和糙米,影响主要成分的因素包括稻型、发芽时间、发芽温度和发芽pH等。发芽对稻谷及糙米主要成分的影响较为复杂,比较统一的现象是发芽会导致总淀粉降低,直支比在大多数情况下升高,而蛋白质、油脂和灰分的变化因情况各异,升高、降低或保持不变的情况都存在。总结发芽造成糙米成分变化机制如下:a)籽粒被水分子激活,合成酶类,对淀粉、非淀粉多糖、蛋白质类物质的水解作用[26],由于水解强度不同,直支比变化呈现差异;b)蛋白质在不同pH中溶解度不同,酸性溶液中蛋白质溶解度增加,浸泡过程中溶出量增加,导致发芽后测定呈现降低趋势[36];c)新合成酶类及各生物反应中间产物的积累[26]。
利用酶作用大米及米粉时,使用的酶主要包括糖类水解酶和蛋白水解酶,前者包括纤维素酶、α-淀粉酶、葡萄糖淀粉酶、普鲁兰酶和淀粉颗粒水解酶等。在具体处理中,酶种类、反应温度、作用时间、处理pH是主要的影响因素。显然,不同的酶由于其作用的底物和酶水解的专一性不同,所导致的大米及大米粉成分变化也相差很大,很难有共同的规律可循。淀粉酶作用时往往会导致总淀粉和直支比下降,而纤维素酶作用时一般对总淀粉、直支比、油脂等没有明显影响。
淀粉是大米及大米粉中含量最高的成分,对大米及大米粉的特性有决定性影响,其性质会随生物处理发生显著变化。表2、表3分别总结了生物处理对大米及米粉中淀粉糊化特性与热特性的影响情况。发酵处理会对大米及大米粉淀粉的糊化特性产生显著影响(表2),但其在不同研究中规律性不强。就现有研究所得结果来看,糊化温度升高或保持不变,峰值黏度和谷值黏度上升、下降和保持不变的情况均存在,最终黏度、回生值和崩解值有上升也有下降的情况;就发酵对大米及大米粉中淀粉的热特性的影响来看(表3),自然发酵要么使淀粉的热特性指标下降要么保持不变,而嗜淀粉乳杆菌和酵母菌发酵时则会使峰值温度和糊化热焓升高。发酵对淀粉特性的影响主要源自发酵液酸性环境、微生物胞外酶的水解作用[17]、发酵过程中蛋白质的变性等作用。发酵过程中,由于微生物生命活动的进行,产生乳酸等酸性物质,使发酵液呈酸性,发酵液的酸性环境使淀粉颗粒酸化,变得脆弱易破裂;发酵中多种水解酶作用,破坏淀粉结晶结构,使得溶胀力降低,支链淀粉的结晶结构与无定型面积比例和分子结构的改变,结晶度的改变可能导致较高的转变温度,增加了糊化中淀粉结构的稳定性[13];大分子蛋白水解,降低表面蛋白含量,一方面减弱蛋白质对淀粉颗粒的保护和稳定作用,增加膨胀力,淀粉颗粒膨胀破裂,另一方面变性蛋白的重组抑制氢键结合,延缓直链淀粉的缔合,此外,蛋白质与脂质含量减少,使得淀粉颗粒在外部热作用下,吸水能力增强,吸水更快,促进糊化[15]。
表2 生物处理对大米及大米粉中淀粉糊化特性的影响
Table 2 Effects of biological treatment on starch gelatinization characteristics in rice and rice flour
物料处理条件糊化特性文献发酵菌种/环境条件精米自然发酵/25 ℃/144 hPT↑9.10%;PV↓18.58%;SV↑30.91%;BV↓0.23%[15]精米自然发酵/37 ℃/12~72 hPV↓0.00~7.03%;TV↓0.00~21.70%;FV↑43.87%~↓24.93%;SV↓0.00~28.74%;BV↑0.00~42.21%[19]精米粉3种乳酸菌/35 ℃/28 hPT↑6.82%~9.06%;PV↑25.30%~32.4%;TV↑22.51%~33.16%;FV↑18.43%~24.67%;SV↑13.58%~17.45%;BV↑29.46%~39.60%3种菌混合/35 ℃/28 hPT↑10.67%;PV↑50.76%;TV↑45.98%;FV↑35.79%;SV↑13.67%;BV↑69.31%自然发酵/35 ℃/28 hPT↑4.02%;FV↑12.72%;SV↑9.71%;BV↑44.80%;PV和TV无变化[17]精米粉发酵乳杆菌/30 ℃/24 hPV↓22.06%;TV↓24.44%;FV↓40.78%;SV↓51.17%;BV↓16.19%德尔布鲁氏菌/30 ℃/24 hPV↓20.94%;TV↓25.59%;FV↓41.04%;SV↓50.87%;BV↓9.46%[37]糙米粉酵母菌/32 ℃/6.25 hPV↓11.27%;FV↓32.42%;SV↓8.68%;BV↓17.44%;PT无变化[13]发芽环境条件稻谷25 ℃/24~72 hPV↓16.06%~63.19%;FV↓13.23%~83.14%;SV↓11.93%~95.31%;BV↓19.65%~50.00%[29]稻谷30 ℃/48 hPT↑1.58%;PV↓83.67%;TV↓88.10%;FV↓84.03%;SV↓79.69%;BV↓79.09%[38]糙米25 ℃/1~5 dPV↓32.63%~94.74%;TV↓31.60%~90.80%;FV↓32.52%~93.27%;SV↓34.58%~98.00%;BV↓31.40%~97.29%[27]糙米25~35 ℃/12~48 hPT↓1.54%~↑5.67%;PV↓29.26%~97.77%;FV↓11.36%~99.87%[39]糙米(28±2) ℃/8~36 hPV↓7.21%~79.57%;TV↓6.37%~97.24%;FV↓19.14%~91.69%;SV↓40.25%~113.24%;BV↓8.40%~56.91%[40]糙米35 ℃/24~72 h/pH 3.0~7.0PT↓0.47%~↑1.72%;PV↓97.10%~↑9.24%;TV↓100.00%~↑9.24%;FV↓0.00~99.74%;SV↓0.00~99.32%;BV↓0.00~92.12%;[24]
续表2
物料处理条件糊化特性文献糙米35 ℃/36~48 h/pH 3.0~7.0PT↑1.15%~3.06%;PV↓70.73%~97.68%;TV↓85.43%~100.00%;FV↓82.17%~99.51%;SV↓70.61%~97.33%;BV↓60.24%~95.96%[24]糙米35 ℃/5~9 hPV↓20.84%~33.08%;TV↓18.00%~33.00%;FV↓14.56%~29.70%;SV↓11.04%~26.23%;BV↓24.16%~33.30%;PT无变化[41]酶处理酶种类/环境条件糙米纤维素酶/65 ℃/3 h/pH 5.6PV↑26.72%;TV↑28.38%;FV↑6.62%;BV↑18.30%;SV↓27.43%葡萄糖淀粉酶/65 ℃/4.5 hPV↑16.53%;TV↑10.31%;FV↓1.34%;BV↑17.69%;SV↓31.43%α-淀粉酶/63 ℃/4.5 hPV↓95.13%;TV↓110.27%;FV↓102.06%;BV↓85.19%;SV↓107.29%[30]糙米纤维素酶/50 ℃/3 hPT↓3.33%;PV↑29.95%;TV↑23.27%;FV↑13.36%;SV↑2.99%;BV↑44.54%[42]精米蛋白酶/40 ℃/pH 3.0~9.0PV↓5.67%~24.15%;FV↓0.00~25.24%;SV↓0.00~16.20%;PT无变化[32]糙米粉纤维素酶/50 ℃/30 minFV↓20.29%;SV↓50.00%;PT、PV、TV、BV均无变化[33]精米粉淀粉水解酶/55 ℃/1~24 hPT↑6.01%~8.05%;PV↓48.11%~62.46%;TV↓57.02%~71.76%;FV↓49.28%~59.90%;SV↑16.52%~↓45.48%;BV↓41.48%~55.54%[34]精米粉普鲁兰酶/55 ℃/16 hPV↓47.49%~62.29%;FV↓54.23%~57.77%;SV↓0.00~75.97%;BV↓86.83%~98.89%[43]精米粉α-淀粉酶/37 ℃/5~180 min蛋白酶/50 ℃/5~180 minPT↑2.81%~4.09%;PV↓8.56%~32.13%;FV↓52.22%~61.71%;SV↑0.00~58.10%;BV↑0.00~23.76%PV↑45.25%~55.32%;FV↑32.92%~44.62%;SV↑60.47%~73.81%;BV↑55.77%~68.32%;PT无变化α-淀粉酶/蛋白酶联合PT↑3.11%~4.16%;PV↑27.57%~↓10.45%;FV↓10.12%~48.42%;SV↑39.04%~84.29%;BV↑26.41%~59.08%[35]精米粉环糊精酶PV↓12.90%~23.25%;TV↓27.75%~54.65%;FV↓4.49%~38.48%;SV↑40.94%~↓121.25%;BV↑7.85%~20.71%[44]精米粉多酶组合/25 ℃/25 minPV↓28.41%~39.50%;FV↓49.12%~67.52%;PT无变化[45]
注:PT、PV、TV、FV、SV和BV分别表示糊化温度、峰值黏度、谷值黏度、最终黏度、回升值和崩解值。
表3 生物处理对大米及大米粉中淀粉热特性的影响
Table 3 Effects of biological treatment on thermal properties of starch in rice and rice flour
物料处理条件热特性文献发酵菌种/环境条件精米自然发酵/25 ℃/144 hTo↓1.39%;Tp↓1.47%;Tc↓0.61%;ΔT↓26.97%[15]精米自然发酵/37 ℃/12~72 hTc↓0.00~2.16%;To、Tp、ΔT无变化[19]精米自然发酵/25 ℃/144 hTo↓1.27%;Tp↓0.94%;Tc和ΔT无变化[46]精米粉嗜淀粉乳杆菌/37 ℃/24 hTo↓0.00~5.20%;Tp↑0.00~3.43%;ΔT↑23.72%~96.58%;Tc无变化[21]糙米粉酵母菌/32 ℃/6.25 hTo↑1.15%;Tp↑1.67%;Tc↑1.91%;ΔT↑40.01%[13]发芽环境条件糙米30 ℃/24 hTo↓2.62%;Tp↓4.07%;Tc↑70.51%;ΔT↓34.63%[25]糙米25 ℃/1~5 dTo↓1.43%~↑0.03%;Tp↓1.37%~↑3.26%;Tc↓1.04%~↑2.53%;ΔT↑1.49%~↓8.18%;粳糙米25 ℃/1~5 dTo↑4.70%~↓0.80%;Tp↓0.77%~↑5.19%;Tc↓0.32%~↑3.85%;ΔT↓1.60%~16.44%;糯糙米25 ℃/1~5 dTo↓0.26%~↑3.17%;Tp↓0.44%~↑2.04%;Tc↓0.50%~↑2.53%;ΔT↓3.80%~16.20%[27]稻谷30 ℃/48 hTc↓2.63%;ΔT↓4.21%;To和TP无变化[38]酶处理酶种类/环境条件糙米粉纤维素酶/50 ℃/30 minTo、Tp、Tc、ΔT均无变化[33]精米粉淀粉水解酶/55 ℃/1~24 hTo↑3.32%~7.05%;Tp↓1.67%~↑0.98%;Tc↓1.66%~↑1.47%;ΔT↑0.00~48.18%[34]精米粉普鲁兰酶/55 ℃/16 hTo↑10.41%~7.65%;Tp↑2.30%~3.17%;Tc↑1.96%~7.51%;ΔT↓19.55%~19.61%[43]
注:To、Tp、Tc和ΔH分别表示起始温度、峰值温度、最终温度和糊化焓。
发芽处理会导致稻谷及糙米中淀粉的峰值黏度、谷值黏度、最终黏度、回生值和崩解值降低,且变化幅度都较大(高达100%),而对糊化温度的影响较小(最高5.67%),且上升、下降或保持不变的情况都存在。同时,发芽处理使稻谷及糙米中淀粉峰值温度、最终温度和糊化焓值降低或保持不变,但起始温度缺乏规律。发芽处理影响淀粉糊化特性和热特性的主要原因是发芽过程中产生的诸如α-淀粉酶等众多酶的水解作用及其水解产物的影响。α-淀粉酶破坏了弱小的微晶,如由较短链和部分具有不规则拖尾的螺旋结构组成的双螺旋结构,导致颗粒结构的晶体表面能升高,并增加了它们的热稳定性[46]。发芽过程中糖含量上升,可在淀粉表面及周围形成类似保护层的结构,增加降解的难度[27]。此外,浸泡发芽具有更多的时间和更高的渗透压介导水分运动,可对糊化过程造成显著的影响。
酶处理大米及大米淀粉糊化特性的影响因酶而异,且即便是同种类的酶,在不同条件下或对不同原料的影响结果也完全不一。就现有研究来看,很难得到酶处理对大米及大米粉中淀粉糊化特性影响较为一致的规律。大多数情况下,淀粉水解酶如α-淀粉酶、葡萄糖淀粉酶等会使淀粉的峰值黏度、谷值黏度、最终黏度、回生值及崩解值降低。酶对大米及大米淀粉糊化特性的影响的机制也因酶而异,糖类水解酶主要是直接对淀粉产生水解作用而影响其糊化特性[30],蛋白酶则主要是通过降解蛋白质而影响淀粉/蛋白质相互作用,使淀粉糊化特性发生改变[32,35]。
表4总结了生物处理对大米及大米粉营养安全特性的影响。可以看出酵母或乳酸菌发酵处理可以提升大米及大米粉的总酚、B族维生素和矿质元素的含量以及铁还原力,同时还可以使植酸和镉含量降低。多酚和B族维生素含量的提高以及铁还原力的增强主要源于发酵中微生物以及原料自身酶对糙米细胞壁结构破坏而释放了更多的酚类化合物和B族维生素[13,23];植酸的下降主要归功于发酵过程料液的pH值下降以及原料中内源性植酸酶的作用[47],而植酸的降解使物料对阳离子的螯合能力下降,使更多阳离子得以释放,提高了矿物质元素含量。发芽处理可使稻谷及糙米的总酚和γ-氨基丁酸含量升高,植酸含量下降,抗氧化性提升。总酚含量的提升主要是发芽过程中物料中新生糖解酶水解糙米细胞壁释放[39];抗氧化能力的提升与总酚的升高、发芽过程中美拉德反应产物形成[39]、发酵体系的丙二醛水平降低抑制促氧化剂的分泌有关[48]。植酸含量的降低主要是发芽激活了植酸酶的活性[47];γ-氨基丁酸的增加一方面与发芽过程蛋白质水解产生更多的谷氨酸有关,另一方面发芽提升了谷氨酸脱羧酶含量或该酶被激活,使更多的谷氨酸转化为γ-氨基丁酸[24,49-50];金属镉含量的降低与发酵体系 pH值降低,乳酸含量升高,蛋白结合态镉溶出以及微生物本身对镉的吸附作用有关[51-52]。就酶处理对大米及大米粉影响特性来看,不论使用何种酶,矿质元素含量大多时候都呈下降趋势,而纤维素酶可以提升水溶性膳食纤维含量,普鲁兰酶则能有效提升物料的抗性淀粉含量。营养成分的变化可影响主要成分含量的变化,淀粉蛋白质等在转化过程中一方面可作为能源物质进行利用,另一方面其分解物可提供新物质合成的原料,如游离氨基酸。营养成分的增加与抗营养因子的降低,增加了大米及米粉本身的营养特性,在制备产品中,对产品的特性也存在一定影响,如多酚类物质对产品色泽、口感、风味均会产生影响。有研究者表明发芽糙米及其相关产品在预防一些生活方式疾病如饮食性肥胖、高血脂、高血压以及降低终末期疾病如癌症、糖尿病、心血管疾病和阿尔茨海默病的风险方面发挥着重要作用[53]。
表4 生物处理改善大米和大米粉及其制品营养安全特性的效果
Table 4 Effects of biological treatment on improving nutritional safety characteristics of rice, rice flour and their products
物料处理条件营养安全指标变化文献发酵菌种/环境条件精米粉酵母/50 ℃/3~24 h植酸↓25.64%~100.00%[47]大米乳酸菌组合/35 ℃/48 h镉↓825.00%精米粉乳酸菌组合/35 ℃/48 h镉↓2 700.00%~3 100.00%[51]精米粉3种乳酸菌混合/8%/35 ℃/28 h镉↓87.59% [17]糙米粉酵母/1%/32 ℃/6.25 h总酚含量↑11.71%;铁还原力↑14.56%;植酸↓41.29%;维生素B2↑36.17%;维生素B3↑9.46%;维生素B6↑400.00%;磷↑17.57%;镁↑16.04%;锌↑33.99%;钙↑13.80%;铁↑12.77%;γ-氨基丁酸无变化[13]糙米粉3种酵母/25 ℃/12 h总酚含量↑0.00~11.01%;铁还原力↑31.68%~52.48%;磷↑34.45%~39.94%;镁↑4.82%~8.46%;锌↑45.22%~51.76%;钙↑8.65%~↓1.18%;铁↑20.00%~57.06%;植酸↓38.79%~70.66%[23]发芽环境条件稻谷30 ℃/3 d植酸↓16.83%[47]糙米25~35 ℃/12~48 h总酚含量↑35.38%~210.77%[39]糙米35 ℃/24 h抗氧化活性↑129.09%;总酚含量↑51.66%糙米28 ℃/12~48 h植酸↓12.84%~25.69%[28]
续表4
物料处理条件营养安全指标变化文献糙米35 ℃/24~72 h/pH 3.0~7.0γ-氨基丁酸↑302.84%~3 075.36%糯糙米35 ℃/24~48 h/pH 3.0~7.0γ-氨基丁酸↑0.00~1 173.44%[24]糙米30 ℃/12~48 hγ-氨基丁酸↑28.48%~161.13%[54]酶处理酶种类/环境条件精米粉精米粉蛋白酶/5~180 min磷↓49.70%~73.81%;镁↓44.95%~78.85%;锌↓30.77%~47.86%;钙↓81.88%~89.25%;钾↓46.56%~96.30%α-淀粉酶/5~180 min磷↓42.51%~53.08%;镁↓23.20%~53.25%;锌↓0.00~36.75%;钙↓0.00~73.75%;钾↓62.12%~67.11%蛋白酶/α-淀粉酶联合磷↓57.49%~69.32%;镁↓70.65%~91.50%;锌↓79.49%~↑105.13%;钙↓63.75%~87.50%;钾↓57.99%~62.85%[35]糙米纤维素酶/50 ℃/3 h总酚含量↓9.06%;磷↓19.43%;钾↓43.52%;镁↓10.56%;锌↓13.31%;铁↓31.28%;钴↓25.00%;铜↓5.08%;钠、钙、锰、硒无变化[42]糙米粉纤维素酶/50 ℃/30 min可溶性纤维↑100.00%;不溶性纤维↓27.33%;总纤维↓9.65%[33]精米粉普鲁兰酶/55 ℃/12 h/pH 5.2RDS↓18.43%~23.62%;SDS无变化;RS↑73.70%~99.13%[55]精米粉普鲁兰酶/55 ℃/16 hRDS↓0.00~23.62%;SDS↑48.06%~205.61%;RS↑0.00~57.98%[43]精米普鲁兰酶/60 ℃/16 h/pH 4.5RDS↓7.46%;SDS↓76.30%;RS↑194.46%;血糖指数↓15.83%[31]
注:RDS、SDS、RS分别表示快消化淀粉、慢消化淀粉、抗性淀粉。
表5是生物处理对稻米及米粉工艺特性(包括原料加工特性与产品品质特性)的改善效果情况。生物处理大多数情况下都可以使大米及米粉的吸水率、溶解度或溶解指数提升,而对色差、持油力、膨胀力、持水力的影响规律性不强。工艺特性与主要成分中淀粉含量、直链淀粉含量、蛋白质含量等紧密关联,如直链淀粉含量与淀粉的溶解度有关,而支链淀粉则影响膨胀能力,此外处理后的淀粉颗粒特性改变也影响工艺特性。当淀粉颗粒在水中加热时,淀粉颗粒迅速膨胀和延伸,生物处理改变了淀粉分子葡萄糖链之间的相互作用程度或游离羟基的可用性,因此影响淀粉的膨胀。而淀粉颗粒破裂伴随直链淀粉的浸出则会增强溶解度。同时,蛋白质的降解,二硫键的减少也会加速淀粉颗粒的膨胀,降低淀粉刚性。部分研究还对生物处理大米及大米粉制得的产品品质进行了研究,产品类型涉及米线和米糕。结果表明对大米和大米粉发酵可有效改善米线的品质,如ZHU等[17]研究发现不论是自然发酵、3种乳酸菌单独发酵或联合发酵精米粉,都可使米线的弹性、复水率和透光率升高,而复水时间、断条率和蒸煮损失率下降。酶处理大米粉也能有效改善其所生产产品的品质,如GENG等[33]的研究表明利用纤维素酶处理糙米粉可使其生产的米线的硬度、黏聚性、咀嚼性和吸水率提升,而浑汤度下降。MENG等[45]的研究则发现α-淀粉酶、木聚糖酶和β-淀粉酶单独或联合处理精米粉可提升其所生产米糕的比容。
表5 生物处理对大米和大米粉工艺特性及产品品质的影响
Table 5 Effects of biological treatment on process characteristics and product quality of rice and rice flour
物料处理条件原料工艺特性变化/产品:品质变化文献糙米粉酵母/1%/32 ℃/6.25 h持油力↑18.75%;L∗↑1.48%;a∗↓8.51%;b∗↑125.27%;持水力不变 [13]精米自然发酵/25 ℃/144 h持水力↓1.18%~2.05%;溶解度↑23.33%~31.50%/米线:最大应力↓;最大应变↑;咀嚼性↑[15]精米粉嗜淀粉乳杆菌/1%/37 ℃/24 hL∗↓0.00~3.25%;b∗↑18.75%~↓24.37%;a∗↑0.00~153.33%[21]精米粉3种乳酸菌/35 ℃/28 h溶解度↑78.45%~200.16%;膨胀力↑4.16%~22.95%/米线:硬度↑0.00~70.60%;弹性↑14.23%~49.15%;内聚性↑0.00~28.91%;回复性↑0.00~42.75%;黏附性↑7.88%~119.64%;咀嚼性↑37.05%~227.82%;复水时间↓9.02%~18.39%;复水率↑5.56%~7.63%;蒸煮损失↓4.02%~22.11%;断条率↓22.04%~35.82%;透光度↑11.36%~57.95%3种菌混合/35 ℃/28 h溶解度↑264.65%;膨胀力↑32.28%/米线:硬度↑35.26%;弹性↑12.53%;内聚性、回复性、黏附性、咀嚼性无变化;复水时间↓25.31%;复水率↑10.65%;蒸煮损失↓29.15%;断条率↓42.24%;透光度↑98.86%自然发酵/35 ℃/28 h溶解度↑200.40%;膨胀力↑8.55%/米线:弹性↑12.17%;内聚性↑6.30%;回复性↑22.31%;黏附性↑14.69%;咀嚼性↑28.81%;硬度无变化;复水时间↓8.14%;复水率↑3.66%;蒸煮损失↓4.02%;断条率↓19.80%;透光度↑35.36%;[17]稻米发芽30 ℃/48 hL∗↑0.61%;b∗↓2.11%;a∗ ↑16.67%[38]
表5
物料处理条件原料工艺特性变化/产品:品质变化文献糙米粉纤维素酶/50 ℃/30 minL∗↑0.44%;b∗↑200.00%;a∗不变/米线:硬度↑21.19%;内聚性↑5.97%;咀嚼性↑29.33%;弹性、回复性、黏附性无变化;吸水率↑10.71%;浑汤度↓13.58%;蒸煮损失无变化[33]精米蛋白酶/40 ℃/1 h/pH 3.0~9.0吸水能力↓;溶解度↑[32]精米粉普鲁兰酶/55 ℃/12 h/pH 5.2膨胀力↓65.49%~70.29%;透光度↓85.39%~90.84%[55]精米粉多酶组合/25 ℃/25 min吸水率↑21.31%~40.44%;溶解指数↑165.35%~268.50%/米糕:比容↑0.00~13.81%;L∗↑0.59%~↓3.23%;b∗↓14.81%~35.19%;a∗ ↑200.00%~400.00%;表面含水量↑[45]
以微生物发酵、发芽和酶处理为主的生物技术是改良大米及大米粉特性的有效方法。不同类型和加工精度的大米(稻谷、精米、糙米等)和大米粉(精米米粉、糙米米粉等)经这些方法处理后可引起其主要组成成分含量变化,其中淀粉糊化特性和热特性改变、多酚等功能成分的释放和生成、抗性淀粉含量提升、植酸等有害物质降低、加工适性改良等诸多变化。这些变化对特定场景下开发高品质大米制品具有十分重要的指导意义。但就现有研究来看,有些结论规律性较强,如蛋白质在乳酸菌发酵时降低而在酵母菌发酵时升高,发芽会显著降低其中淀粉的峰值黏度、谷值黏度、最终黏度、回生值和崩解值,植酸含量降低,新形成γ-氨基丁酸,而多酚含量和抗氧化性得以提升;也有很多研究结论规律性不强,需要进一步探索。此外,大多数有关这方面的研究仅停留在对物料一些理化特性和成分变化的研究上,涉及对原料加工适性或对最终食品产品品质影响的研究较少,这方面的研究需要进一步加强目标导向和应用场景导向,提升研究结论的工业参考价值。
[1] ZHANG Z N, ZHANG B, ZHU L, et al.Microstructure, digestibility and physicochemical properties of rice grains after radio frequency treatment[J].Foods, 2022, 11(12):1723.
[2] TIOZON R N J, CAMACHO D H, BONTO A P, et al.Efficient fortification of folic acid in rice through ultrasonic treatment and absorption[J].Food Chemistry, 2021, 335:127629.
[3] QIN W Y, XI H H, WANG A X, et al.Ultrasound treatment enhanced semidry-milled rice flour properties and gluten-free rice bread quality[J].Molecules, 2022, 27(17):5403.
[4] KUNYANEE K, VAN NGO T, KUSUMAWARDANI S, et al.Ultrasound-chilling assisted annealing treatment to produce a lower glycemic index of white rice grains with different amylose content[J].Ultrasonics Sonochemistry, 2022, 87:106055.
[5] MIKI H, YONEYAMA A, HIRANO K.Observation of processed rice using synchrotron radiation X-ray phase-contrast imaging[J].Journal of Texture Studies, 2022, 53(3):366-373.
[6] ZHONG Y J, XIANG X Y, CHEN T T, et al.Accelerated aging of rice by controlled microwave treatment[J].Food Chemistry, 2020, 323:126853.
[7] 曹汝鸽, 武小晖, 黄文达.微波处理对大米储藏过程中脂质变化的影响[J].食品科学, 2024, 45(4):247-256.
CAO R G, WU X H, HUANG W D. Effect of microwave treatment on the changes in lipids of rice during storage[J]. Food Science, 2024, 45(4):247-256.
[8] LAMBERTS L, DE BIE E, VANDEPUTTE G E, et al.Effect of milling on colour and nutritional properties of rice[J].Food Chemistry, 2007, 100(4):1496-1503.
[9] YAN X D, LIU C M, HUANG A, et al.The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill[J].Journal of Cereal Science, 2020, 92:102927.
[10] LI Z Y, GUO D S, LI X, et al.Heat-moisture treatment further reduces in vitro digestibility and enhances resistant starch content of a high-resistant starch and low-glutelin rice[J].Foods, 2021, 10(11):2562.
[11] BINH N D T, LE NGOC N T, OLADAPO I J, et al.Cyclodextrin glycosyltransferase-treated germinated brown rice flour improves the cytotoxic capacity of HepG2 cell and has a positive effect on type-2 diabetic mice[J].Journal of Food Biochemistry, 2020, 44(12):e13533.
[12] WANG Y, LIU S J, YANG X J, et al.Effect of germination on nutritional properties and quality attributes of glutinous rice flour and dumplings[J].Journal of Food Composition and Analysis, 2022, 108:104440.
[13] ILOWEFAH M, BAKAR J, GHAZALI H M, et al.Physicochemical and functional properties of yeast fermented brown rice flour[J].Journal of Food Science and Technology, 2015, 52(9):5534-5545.
[14] GUL K, YOUSUF B, SINGH A K, et al.Rice bran:Nutritional values and its emerging potential for development of functional food: A review[J].Bioactive Carbohydrates and Dietary Fibre, 2015, 6(1):24-30.
[15] LU Z H, LI L T, MIN W H, et al.The effects of natural fermentation on the physical properties of rice flour and the rheological characteristics of rice noodles[J].International Journal of Food Science &Technology, 2005, 40(9):985-992.
[16] FENG N J, TANG S M, ZHOU M Z, et al.Optimizing the texture and retrogradation properties of Niangao (Rice Cake) made with naturally fermented rice flour[J].Food Science and Technology, 2019, 39(4):810-817.
[17] ZHU J H, CHEN Y, LYU C H, et al.Study on optimization of removing cadmium by Lactobacillus fermentation and its effect on physicochemical and quality properties of rice noodles[J].Food Control, 2019, 106:106740.
[18] 闵伟红. 乳酸菌发酵改善米粉食用品质机理的研究[D].北京:中国农业大学, 2003.
MIN W H. Study on the mechanism of improving the eating quality of rice noodles by lactic acid bacteria fermentation[D].Beijing:China Agricultural University, 2003.
[19] PARK J, SUNG J M, CHOI Y S, et al.Effect of natural fermentation on milled rice grains:Physicochemical and functional properties of rice flour[J].Food Hydrocolloids, 2020, 108:106005.
[20] LU Z H, YUAN M L, SASAKI T, et al.Rheological properties of fermented rice flour gel[J].Cereal Chemistry, 2007, 84(6):620-625.
[21] CHO S H, LEE B H, EUN J B.Physicochemical properties of dry- and semi-wet-milled rice flours after fermentation by Lactobacillus amylovorus[J].Journal of Cereal Science, 2019, 85:15-19.
[22] LUO S J, ZHOU B B, CHENG L L, et al.Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice[J].Food Chemistry, 2022, 386:132757.
[23] ILOWEFAH M, BAKAR J, GHAZALI H M, et al.Enhancement of nutritional and antioxidant properties of brown rice flour through solid-state yeast fermentation[J].Cereal Chemistry, 2017, 94(3):519-523.
[24] CHAROENTHAIKIJ P, JANGCHUD K, JANGCHUD A, et al.Germination conditions affect physicochemical properties of germinated brown rice flour[J].Journal of Food Science, 2009, 74(9):C658-C665.
[25] XU J, ZHANG H, GUO X N, et al.The impact of germination on the characteristics of brown rice flour and starch[J].Journal of the Science of Food and Agriculture, 2012, 92(2):380-387.
[26] BOLARINWA I F, LIM P T, MUHAMMAD K.Quality of gluten-free cookies from germinated brown rice flour[J].Food Research, 2018, 3(3):199-207.
[27] WU F F, CHEN H Y, YANG N, et al.Effect of germination time on physicochemical properties of brown rice flour and starch from different rice cultivars[J].Journal of Cereal Science, 2013, 58(2):263-271.
[28] CORNEJO F, CACERES P J, MARTNEZ-VILLALUENGA C, et al.Effects of germination on the nutritive value and bioactive compounds of brown rice breads[J].Food Chemistry, 2015, 173:298-304.
[29] KAUR H, GILL B S.Comparative evaluation of physicochemical, nutritional and molecular interactions of flours from different cereals as affected by germination duration[J].Journal of Food Measurement and Characterization, 2020, 14(3):1147-1157.
[30] DANG L T K, THERDTHAI N, RATPHITAGSANTI W.Improvement of structure and cooking quality of brown rice using ultrasonic and enzymatic treatments[J].Journal of Food Processing and Preservation, 2018, 42(11):e13814.
[31] CHEN S H, LI X F, SHIH P T, et al.Preparation of thermally stable and digestive enzyme resistant flour directly from Japonica broken rice by combination of steam infusion, enzymatic debranching and heat moisture treatment[J].Food Hydrocolloids, 2020, 108:106022.
[32] PARK J, SUNG J M, CHOI Y S, et al.pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis[J].Food Hydrocolloids, 2021, 117:106754.
[33] GENG D H, LIN Z X, LIU L, et al.Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles[J].LWT, 2021, 146:111543.
[34] ZHAI J X, LI X X, SVENSSON B, et al.Increasing protein content of rice flour with maintained processability by using granular starch hydrolyzing enzyme[J].Molecules, 2023, 28(8):3522.
[35] KIM H R, KIM K M, LEE J H, et al.Physicochemical properties of enzyme-treated waxy rice flour and expansion properties of Gangjung (a traditional Korean oil-puffed rice snack)[J].Food Science and Biotechnology, 2016, 25(5):1353-1360.
[36] SONGTIP P, JANGCHUD K, JANGCHUD A, et al.Physicochemical property changes in germinated brown rice flour from different storage periods of paddy rice[J].International Journal of Food Science &Technology, 2012, 47(4):682-688.
[37] YANG Y, TAO W Y.Effects of lactic acid fermentation on FT-IR and pasting properties of rice flour[J].Food Research International, 2008, 41(9):937-940.
[38] HU Z Q, SHAO Y F, LU L, et al.Effect of germination and parboiling treatment on distribution of water molecular, physicochemical profiles and microstructure of rice[J].Journal of Food Measurement and Characterization, 2019, 13(3):1898-1906.
[39] SINGH A, SHARMA S, GUPTA A, et al.Impact of grain germination on in vitro antioxidative properties, nutrients digestibility, and functional attributes of brown rice flour[J].Acta Alimentaria, 2021:259-268.
[40] DING J Z, HOU G G, DONG M Y, et al.Physicochemical properties of germinated dehulled rice flour and energy requirement in germination as affected by ultrasound treatment[J].Ultrasonics Sonochemistry, 2018, 41:484-491.
[41] WANG H, HU F F, WANG C F, et al.Effect of germination and high pressure treatments on brown rice flour rheological, pasting, textural, and structural properties[J].Journal of Food Processing and Preservation, 2020, 44(6):e14474.
[42] GENG D H, ZHOU S M, WANG L L, et al.Effects of slight milling combined with cellulase enzymatic treatment on the textural and nutritional properties of brown rice noodles[J].LWT, 2020, 128:109520.
[43] SATMALEE P, MATSUKI J.Effect of debranching and heat-moisture treatment on the properties of Thai rice flours[J].International Journal of Food Science &Technology, 2011, 46(12):2628-2633.
[44] GUJRAL H S, GUARDIOLA I, CARBONELL J V, et al.Effect of cyclodextrin glycosyl transferase[corrected]on dough rheology and bread quality from rice flour[J].Journal of Agricultural and Food Chemistry, 2003, 51(13):3814-3818.
[45] MENG L W, KIM S M.Effects of different carbohydrases on the physicochemical properties of rice flour, and the quality characteristics of fermented rice cake[J].Food Science and Biotechnology, 2019, 29(4):503-512.
[46] LU Z H, SASAKI T, KOBAYASHI N, et al.Elucidation of fermentation effect on rice noodles using combined dynamic viscoelasticity and thermal analyses[J].Cereal Chemistry, 2009, 86(1):70-75.
[47] BAEK J E, LEE E J, KOH B K.The effects of germination, fermentation, and fermentation additives on the phytate content of rice flour[J].Food Science and Biotechnology, 2014, 23(5):1447-1451.
[48] 郝雯雯, 于瑞莲, 王贝琦, 等.大米发酵物的提取工艺优化及抗氧化活性研究[J].食品与发酵工业, 2023, 49(21):60-65.
HAO W W, YU R L, WANG B Q, et al.Optimization of extraction process and antioxidant activity of rice fermentation[J].Food and Fermentation Industries, 2023, 49(21):60-65.
[49] 金国明, 陈笑笑, 严国伟, 等.发芽糙米γ-氨基丁酸富集、调控与功能食品研究进展[J].浙江大学学报(农业与生命科学版), 2024, 50(3):353-367.
JIN G M, CHEN X X, YAN G W, et al.Research progress of γ-aminobutyric acid enrichment, regulation and functional food in germinated brown rice[J].Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2024, 50(3):353-367.
[50] 汪昱柯, 王冕, 王晓晴, 等.发芽对不同品种糙米γ-氨基丁酸及酚类物质累积的调控作用[J].食品与发酵工业, 2024, 50(15):272-280.
WANG Y K, WANG M, WANG X Q, et al.Effects of germination on the accumulation of gamma-aminobutyric acid and phenolic substances in different varieties of brown rice[J].Food and Fermentation Industries, 2024, 50(15):272-280.
[51] 徐文华, 张文钊, 侯海军, 等.发酵对米粉生产的降镉作用及其微生物学机理[J].农业现代化研究, 2023, 44(2):359-369.
XU W H, ZHANG W Z, HOU H J, et al.Cadmium reducing effect of fermentation on rice noodles production and its microbiological mechanism[J].Research of Agricultural Modernization, 2023, 44(2):359-369.
[52] 王娅殊, 胡瀚, 付红军, 等.大米降镉技术及其对大米品质影响的研究进展[J].食品与发酵工业, 2022, 48(5):302-308.
WANG Y S, HU H, FU H J, et al.Research progress on cadmium reduction technology in rice and its effect on rice quality[J].Food and Fermentation Industries, 2022, 48(5):302-308.
[53] WU F F, YANG N, TOURÉ A, et al.Germinated brown rice and its role in human health[J].Critical Reviews in Food Science and Nutrition, 2013, 53(5):451-463.
[54] WEI S W, WANG N J, HUANG X Q, et al.Effect of germination on the quality characteristics and volatile compounds of fermented brown rice cake[J].Food Bioscience, 2022, 50:102165.
[55] LEE T, LEE Y E, SHIN J, et al.Physicochemical and prebiotic properties of waxy rice flour modified by pullulanase[J].Food Biotechnology, 2023, 37(2):89-105.