硝酸盐广泛存在于土壤、空气、植物和水资源中[1],是人类膳食中普遍存在的一种分子,本身无毒,但其代谢物会引起高铁血红蛋白血症和肠源性紫绀症,甚至形成强致癌物N-亚硝胺,长期被推测为“致癌”的限量摄入物质[2-4],使消费者过分担忧其安全性而忽视了其生物功能。近年来,学者们发现膳食硝酸盐可通过硝酸盐-亚硝酸盐-一氧化氮途径为人体补充硝酸盐,具有降低血压、抑制血小板聚集、保护血管,提高运动员的运动能力、延缓疲劳发生等生理功能[5-8]。人类摄入的硝酸盐约80%来自于蔬菜,15%来自于饮用水、动物产品(肉、奶酪、鱼类),5%来自于谷物[5-6]。日常饮食中摄入的硝酸盐被认为是潜在的心脏保护性成分,在心血管保护方面具有重要意义[8]。然而,蔬菜中的硝酸盐含量因蔬菜类型、土壤条件、化肥、烹饪方式等因素影响差异较大[1,9],导致膳食硝酸盐摄入量的评估及其对人体发挥的生理功能无法得到一致的结论,但膳食硝酸盐对人体的健康益处基本得到了证实。因此,为了清晰阐释膳食硝酸盐对人体的健康益处和安全性,本文综述了膳食硝酸盐的来源及其在人体内的代谢与功能,加工方式对食品中硝酸盐含量的影响与其安全性,以期为消费者合理利用膳食硝酸盐促进人体健康,为企业开发富含硝酸盐的健康食品提供理论依据。
硝酸盐和亚硝酸盐来源广泛[1],膳食中硝酸盐主要来自饮用水、植物性食物(主要是绿叶蔬菜和根茎类蔬菜)和动物性食物(主要是腌制食品和加工肉类)[7]。一般天然地下水中硝酸盐的浓度较低,而饮用水因农业系统中氮肥过量使用、工业和生活废水等污染导致其硝酸盐含量较高[10]。蔬菜中的硝酸盐80%来自蔬菜种植过程中施用的氮肥[11],当硝酸盐的施用量远超过蔬菜硝态氮的吸收与还原转化能力时,硝酸盐就会在植物组织(叶片、球茎、种子、果实、根、块茎)中积累,蔬菜组织中硝酸盐含量高低的顺序为:叶片>茎>根>花序>腺体>果实>籽粒[12],通常莴苣、甜菜、菠菜、生菜、芹菜和欧芹等叶片类蔬菜被认为是硝酸盐含量较高的品种。蔬菜中硝酸盐的含量还与植物的生物学特性、光照强度、收获季节、贮存时间和氮源等有关[9]。SALEHZADEH等[1]检测了三类蔬菜中硝酸盐含量,叶类蔬菜(甜菜叶、欧芹、罗勒、生菜、卷心菜、胡芦巴)、水果蔬菜(番茄)和根类蔬菜(萝卜、胡萝卜、洋葱),发现蔬菜种类和生长季节对硝酸盐含量均有显著的影响,结果显示叶类蔬菜硝酸盐含量(5 190 mg/kg)>根茎蔬菜类(3 709 mg/kg)>水果类蔬菜(3 332 mg/kg),且秋季蔬菜的硝酸盐含量(6 200 mg/kg)>春季蔬菜(3 217 mg/kg),冬季番茄和土豆中的硝酸盐含量高于夏季[12]。
蔬菜中硝酸盐的含量受烹饪加工的方式与过程的影响可能增加或减少。如在清洗、浸泡和煮制过程中,因硝酸盐在水中的溶解作用和扩散作用,蔬菜中硝酸盐的含量会下降,最高可降低50%,降低程度受水温、加工时间等因素影响[1,9,13];油炸过程可显著增加蔬菜中的硝酸盐含量,因油炸过程使蔬菜的体积和质量减少,且油自身含有硝酸盐 [1,13];腌渍(发酵)过程可使蔬菜中硝酸盐含量降低30%~70%[14],主要是生鲜果蔬中的硝酸盐被腌制液稀释,以及在硝酸盐还原酶作用下被还原成亚硝酸盐所致[15]。此外,不同烹饪方式对蔬菜中硝酸盐含量的影响存在明显的差异,如采用油炒、汽蒸、微波和水煮4 种方式烹饪空心菜和卷心菜,结果发现油炒会提高叶类蔬菜的硝酸盐含量(28.03%~49.57%),水煮、微波和汽蒸可降低蔬菜硝酸盐含量(31.25%~46.61%)[13]。因此,利用食品中摄入硝酸盐发挥其对人体的益处时,需要考虑加工和烹饪方式对食品中硝酸盐含量的影响。
膳食硝酸盐是机体获得硝酸盐的一条重要的外源性途径,即不依赖内皮的硝酸盐-亚硝酸盐-一氧化氮途径。膳食硝酸盐在人体的代谢如图1所示。硝酸盐被机体摄入后经上消化道吸收后进入循环系统,约75%通过尿液排出,其余部分被肾脏、胆道和唾液腺重新吸收[16]。在唾液腺中重吸收后的硝酸盐(约占摄入硝酸盐总量5%~8%)经唾液分泌于口腔,被口腔中的共生兼性厌氧菌(如放线菌、链球菌等)分泌的硝酸盐还原酶还原为亚硝酸盐,通过吞咽经胃肠黏膜重新被吸收进入血液中[17]。硝酸盐摄入0.5 h后血浆中硝酸盐浓度快速升高(最高达16倍),在1.5 h后达到峰值,并可在5~6 h保持较高的水平[17]。体内80%~85%的亚硝酸盐由内源性硝酸盐转化产生[7],正常血浆亚硝酸盐水平为50~100 nmol/L,在食用富含硝酸盐的膳食后,亚硝酸盐水平会增加4~5倍,并在摄入后3 h达到峰值、在5 h内保持较高的水平[17]。外源性亚硝酸盐在十二指肠和空肠几乎完全被吸收,体内循环系统中的大多数亚硝酸盐转化为NO,并作为NO相对稳定的储存库。硝酸盐和亚硝酸盐在血液、唾液和组织中循环并在人体内广泛分布,但不同器官中硝酸盐的含量差异很大。通常,健康人的血浆中硝酸盐浓度为20~40 μmol/L,唾液和尿液中硝酸盐含量通常以mmol/L计,心脏、肝脏和肌肉中硝酸盐浓度也较高[18]。
图1 膳食硝酸盐在机体中代谢
Fig.1 Metabolism of dietary nitrates in the body
在缺氧和缺血条件下,膳食硝酸盐通过硝酸盐-亚硝酸盐-NO途径转化为NO,提高机体NO的生物利用度,起到改善心肺功能[7-8]、胃黏膜血流量[19]和肌肉功能,提高运动能力[20]和认知功能[21]。
膳食硝酸盐/亚硝酸盐能持续地增加血浆中硝酸盐
水平,提高血管对NO的生物利用度、促进血管舒张和抑制血管收缩、血小板聚集和自由基的产生[7],进而起到降血压作用、抑制血小板聚集、降低动脉粥样硬化程度等[22-23]。近些年,诸多研究证实膳食无机硝酸盐可降低血压和罹患心血管疾病的风险。蔬菜硝酸盐摄入量与老年缺血性脑血管病事件风险呈负相关,即蔬菜硝酸盐摄入量水平每增加1个标准差(29 mg/d),14.5年期间缺血性脑血管疾病事件风险降低17%(P=0.02)[24]。补充低剂量甜菜根汁(Beta vulgaris L.,硝酸盐含量为1.3 mmol/L)可抑制右心室肥厚、肺动脉内侧增厚及右心室收缩压升高[25],且硝酸盐剂量与降血压效果之间具有明显的正相关性。如高血压患者的膳食中补充硝酸盐(≥650 mg/d)可使静息收缩压下降10.45 mmHg,舒张压下降6.31 mmHg[26],即使补充低剂量的硝酸盐(130~259 mg/d)也可使收缩压下降5.52 mmHg,舒张压下降2.62 mmHg[27],但LI等[28]认为摄食硝酸盐剂量低于445 mg/d 可产生更显著的降低收缩压的效果。膳食补充硝酸盐对高血压患者表现出明显的降血压效果,但对临界高血压患者无效果。BONDONNO等[24]观察7 d高硝酸盐饮食(硝酸盐摄入量300 mg/g)对临界高血压人群(收缩压120~139 mmHg)的降血压效果,结果发现无论男性还是女性,高硝酸盐饮食对其血压和动脉僵硬度均没有效果,不能有效降低临界高血压人群罹患高血压的风险。此外,STAMM等[29]认为亚硝酸盐的降血压效果优于硝酸盐,他们比较了硝酸盐(150 mg/kg/d)和亚硝酸盐(7.5 mg/kg/d)对血管紧张素-Ⅱ诱导的动脉高血压小鼠的潜在血管保护作用,发现亚硝酸盐比硝酸盐能更有效地使高血压小鼠血压正常化,改善内皮功能障碍,降低氧化应激和炎症,进而改善了血管功能。
动脉粥样硬化是心脑血管疾病的首要诱因,表现为内皮损伤、出血及血栓形成等,最终导致动脉壁厚变硬。因此,保护血管内皮的完整性被认为是预防动脉粥样硬化的关键[30]。膳食补充硝酸盐或亚硝酸盐可通过降低血清总胆红素、超氧阴离子和肿瘤坏死因子-α水平,改善血管内皮完整性、预防血管炎症,降低动脉粥样硬化程度[5,7-8]。动脉僵硬度通常以脉搏波速度为衡量金标准,一般地,脉搏波传导速度越快,动脉的扩张性越差、提示动脉僵硬度越高。长期摄入硝酸盐(剂量为300~650 mg/d)可使脉搏波速度下降(0.2~1.2 m/s)[31],脉搏波速度的下降提示补充硝酸盐可明显改善动脉硬化程度。此外,健康人群单次补充2 mmol硝酸钾可抑制血小板聚集达31%,减少血栓形成[32]。一项对年龄为70~85岁澳大利亚老年妇女(n=1 226)随访14.5年的研究表明,蔬菜硝酸盐摄入量每天增加30 mg,动脉粥样硬化性血管疾病死亡率降低21%,且每天从饮食中摄入53~76 mg(中位数为63 mg)硝酸盐就可保持这种效果[33]。
膳食硝酸盐可通过增加NO 的水平、提高NO 的生物活性和反应性,降低肺动脉高压,缓解慢性阻塞性肺疾病(chronic obstructive pulmonary diseases,COPD)患者的呼吸困难,进而提高肺功能[34]。肺动脉高压与NO 的生物活性和反应性降低有关,甜菜根汁可促进肺动脉高压患者肺 NO 的产生,降低血浆鸟氨酸水平,有效地防止缺氧诱导的肺动脉高压的发展[35]。亚硝酸盐也具有相似的功能,可降低高肺血流肺动脉高压大鼠平均肺动脉压力、增加NO的呼出量、减轻肺血管重塑[36]。膳食补充硝酸盐通过激活蛋白激酶B(protein kinase B,AKT)信号通路增加NO的生成,调节AKT1、白细胞介素-1β、丝裂原活化蛋白激酶3和胱天蛋白酶3来改善内皮功能,增加血浆硝酸盐和亚硝酸盐浓度以及呼出气NO水平[37],缓解COPD患者的呼吸困难,从而提高COPD患者的运动能力[37-38]。重度COPD患者补充14 d甜菜根汁可显著增加其行走能力[37],但并不能确定提高COPD患者的运动耐量。GIURIATO[39]认为一氧化氮对运动能力影响的数据比较有限且不一致,但一氧化氮对重度COPD患者运动期间肺血管阻力可能有益处。
胃黏膜是胃腔内呈粉色的褶皱状黏膜,在维持胃结构完整和功能正常中起基础性的屏障作用,但因持续暴露于大量侵袭性刺激物中而易受损伤[19]。机体通常通过增加黏膜表面黏液中碳酸氢盐的产生、调节胃黏膜血流量,加速上皮细胞再生3种防御方式保持胃黏膜的完整性[40]。其中,充足的胃黏膜血流量可保证细胞代谢有充足的氧源、维持组织氢离子浓度指数的稳定,对维持黏膜的完整性起着关键作用。膳食硝酸盐和亚硝酸盐可增加胃黏膜血流量,具体机理还不清楚,可能有2个原因:a)膳食硝酸盐可能通过上调前列腺素E2的生成来促进血管生成、维持胃黏膜血流量[41];b)亚硝酸盐在松散黏附的胃黏液中积累并形成大量的非酶促NO,通过调节体内NO稳态来增加胃黏膜血流量,从而保护胃黏膜,BJÖRNE等[42]发现酸化的亚硝酸盐和酸化的富含亚硝酸盐的唾液可增加胃黏膜血流量也证实了这个观点。
膳食硝酸盐通过硝酸盐-亚硝酸盐-一氧化氮途径提高一氧化氮的生物利用度,参与骨骼肌收缩功能的调节[20],提高运动员或普通人群的肌肉力量,增强骨骼肌收缩力及抗疲劳能力,提高骨骼肌氧利用率等[43]。如膳食补充5周甜菜根汁能够提高铁人三项运动员有氧耐力,对合成代谢有促进作用,提高了铁人三项运动员的自行车、游泳和跑步运动表现能力,在身体机能、灵敏素质、力量素质、有氧能力等方面有明显效果[44]。摄入甜菜根汁可能通过提高氧化磷酸化的效率来降低运动时的耗氧量,延长运动时间[45]。补充硝酸盐还可提高健康和未受过训练人群的膝关节最大伸展速度(11%)、增加最大伸肌力量(6%)[46],大幅度增强心衰患者的最大神经肌肉力量(13%),增加骨骼肌血容量,改善人体肌肉微血管功能,加快肌肉组织氧循环,提高肌肉有氧能力[47]。膳食硝酸盐提高运动耐力的机制尚不清楚,但血浆中亚硝酸盐浓度的增加与耐力的提高之间具有显著的相关性[48]。摄入硝酸盐可以有效提高血浆中亚硝酸盐的浓度,减少机体肌纤维的收缩成本,增加ATP的使用效率,增强肌肉兴奋-收缩耦合,降低亚极限运动能量和氧的消耗[48]。有趣的是,研究人员发现补充硝酸盐可提高男性在高强度运动中的运动经济性和运动能力,而对女性没有效果。研究小组招募了12名男性(24±4岁)和14名女性(23±4 岁)补充3 d甜菜根汁(硝酸盐含量13 mmol/d),结果发现补充硝酸盐可使男性的氧气消耗速率下降5%,疲劳时间延长15%。研究人员认为补充硝酸盐对性别造成的这种作用差异可能与雌激素水平、抗氧化能力、硝酸盐还原细菌或骨骼肌钙处理和/或纤维类型等生理差异有关[49]。
NO是一种对认知功能具有重要作用的神经递质,参与调节脑血管舒张、脑血流量、神经传递以及神经活动与局部脑血流等多种生理功能[21]。膳食硝酸盐可能会增加机体脑血流量、增加神经血管耦合,提升认知功能和脑代谢。随着年龄增加和不良饮食等因素的影响,老年人对NO的生物利用度逐渐下降,认知功能减退[50]。前额叶皮层是大脑中与执行功能、工作记忆和其他依赖认知能力的过程相关的区域,食用富含硝酸盐的食物可刺激老年人前额叶皮层的脑灌注,高硝酸盐饮食(12.6 mmol/d)可显著增加大脑皮层下和额叶深部白质内的脑血流量[51],提示膳食硝酸盐可能具有增强执行功能和对抗认知衰退的潜力。VANHATALO等[21]发现认知轻度受损的老年人(70~80岁)食用富含硝酸盐的甜菜根汁(≤12 mmol/d硝酸盐)10 d后,持续注意力(快速视觉信息处理能力)显著提高,但短期记忆、选择性注意或信息处理速度方面没有差异。目前,对于硝酸盐摄入量与认知功能之间的效应关系还未得出一致的结论。PEREIRA等[52]评估了1 000多名老年人(60~80岁)的尿硝酸盐浓度(硝酸盐摄入量的生物标志物)与认知功能(以单词列表学习、单词列表回忆、动物流畅性和数字符号替代测试进行评估)之间的关系,结果观察到尿硝酸盐浓度与认知功能之间没有显著的关联性。因此,膳食中增加硝酸盐摄入量是否可以改善认知功能与大脑健康还需进一步证实。
膳食硝酸盐对人体健康的有益功能已逐渐被证实,但消费者对硝酸盐化合物的安全性还心存担忧。硝酸根离子相对无害,但人体接触硝酸盐的反应产物和代谢物(包括亚硝酸盐、一氧化氮和N-亚硝基化合物)可能对人体健康造成直接威胁,如是否会致癌,引发高铁血红蛋白血症和损伤甲状腺功能。
关于硝酸盐是否致癌一直是关注的焦点,一些人群(素食者、婴儿和老年人)在饮食中摄入过多硝酸盐可能会导致患癌症的风险增加,但国际癌症研究机构认为“在导致内源性亚硝化的情况下摄入硝酸盐或亚硝酸盐可能对人类致癌(2A组)”[4],即摄入硝酸盐和亚硝酸盐后形成内源性亚硝基化合物(N-nitrosatable compounds,NOCs)是致癌的首要原因。NOCs在低酸性胃中可直接形成N-烷基-NOCs,它可诱导人类肿瘤Kras基因中DNA碱基(GC→AT)的突变,形成NOC DNA复合物[53],成为结肠直肠癌的致癌剂。一般地,低胃酸环境和炎症(幽门螺杆菌)患者发生胃癌的风险较高,而维生素C、α-生育酚或多酚等抗氧化合物可将亚硝酸(HNO2)还原为NO、减少亚硝基气体的数量进而抑制其形成NOCs。因此,摄食富含硝酸盐和亚硝化天然抑制剂的绿叶蔬菜,如菠菜、芹菜或羽衣甘蓝等蔬菜,可以部分抑制NOCs的形成,会降低患癌的风险。CHEN等[54]评估了饮用水和食物中硝酸盐和亚硝酸盐摄入量与肾癌的关系,证实饮用水中硝酸盐和总膳食硝酸盐/亚硝酸盐与肾癌无关,但肾癌的发病率与加工肉类的硝酸盐/亚硝酸盐有关,在维生素C摄入量较低或血红素铁摄入量较高的参与者中,其与饮食中亚硝酸盐总量有关,这可能是由于形成内源性NOCs导致,与鲜肉相比,红肉和加工肉中血红素铁可促进内源性亚硝化,如红肉摄入量分别为600 g/d 和 60 g/d,粪便中NOCs水平可增加3倍,导致食用亚硝酸盐腌制的加工肉制品可增加罹患结肠癌的风险[55]。JA等[56]做了一项关于高剂量硝酸盐摄入量与癌症之间相关性的研究,以小型猪为模型,选择高剂量饲喂(91 g/L硝酸钾)2年,发现对猪的肝脏和肾脏未表现出毒性或损伤。SHANNON等[57]指出,急性膳食补充硝酸盐剂量达16 mmol/d可能是安全的,不会增加癌症、甲基血红蛋白血症、低血压或肾损伤的风险。总之,依据硝酸盐的动物毒理学文献的结论,没有证据表明硝酸盐具有致癌或诱变作用,且流行病学也不能提供足够的证据来支持限制人类饮食中的硝酸盐。蔬菜 (如甜菜根汁)因富含多酚和抗氧化剂可以最大限度地减少形成潜在有害的N -亚硝胺的可能性,可能是补充膳食硝酸盐最安全的方式[57]。为保证消费者的生命安全,基于急性或慢性摄入硝酸盐会增加患高铁血红蛋白血症的风险,长期摄入硝酸盐会增加患癌症的风险,世界卫生组织建议每日硝酸盐和亚硝酸盐的最大摄入量分别限定为3.7、0.07 mg/kg bw[4]。
饮用水中硝酸盐是常见的碘摄入抑制剂,可能会影响甲状腺功能[58],但郝瑞婷等[59]认为饮用水中硝酸盐暴露可引起甲状腺肿以及增加甲状腺体积的发生风险,但是否会增加甲状腺功能减退和罹患甲状腺癌的风险还缺乏证据。为明确硝酸盐对甲状腺功能的影响,研究人员让13名健康成年人补充140 mL甜菜根汁(硝酸盐含量8.12±3.61 mmol)7 d,发现血浆三碘甲状腺原氨酸、甲状腺素、硝酸盐和亚硝酸盐以及尿碘浓度在补充甜菜根汁前后均没有明显变化[60]。目前,通过饮用水摄入硝酸盐和富含硝酸盐的甜菜根汁均不会影响甲状腺功能,但长期摄入硝酸盐也有副作用,可能会导致贫血性缺氧[9]、甜菜尿、红便和胃肠不适等[61]。
亚硝酸盐是强氧化剂,可与血液中血红蛋白结合生成高铁血红蛋白,不能转运氧和可逆性地释放氧。正常人血高铁血红蛋白仅占血红蛋白总量的1%左右,摄入过量的亚硝酸盐可导致高铁血红蛋白血症,降低血液的携氧能力。中毒者会出现心律失常、惊厥、昏迷、甚至休克致死,而婴幼儿是主要的敏感人群,但摄入过量的硝酸盐不会导致此疾病,且母亲摄入大量的硝酸盐,婴儿也不会通过母乳喂养患上高铁血红蛋白血症[4]。
膳食中硝酸盐主要来自饮用水、植物性和动物性食物,是机体获得硝酸盐的一条重要的外源性途径,在机体中发挥着重要的生理功能,主要包括降低血压、改善心血管功能和肺功能、提高胃黏膜血流量、肌肉功能和运动能力等。尽管过量摄入硝酸盐可能会导致高铁血红蛋白血症和不良反应,但目前还未有足够证据证明摄入硝酸盐会导致癌症。因此,通过膳食(特别是绿色蔬菜和甜菜根)、在世界卫生组织建议的最大摄入量内补充硝酸盐,既可保证摄入硝酸盐的安全性,还可以发挥其对身体的有益功能。
[1] SALEHZADEH H, MALEKI A, REZAEE R, et al.The nitrate content of fresh and cooked vegetables and their health-related risks[J].PLoS One, 2020, 15(1):e0227551.
[2] KYRIACOU M C, SOTERIOU G A, COLLA G, et al.The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions[J].Food Chemistry, 2019, 285:468-477.
[3] 陈梦婷, 罗秉俊, 杨芳芳.食品行业控制硝酸盐及亚硝酸盐含量的重要性及相关研究[J].广东化工, 2022, 49(8):72-73;105.CHEN M T, LUO B J, YANG F F.The importance and related research of controlling nitrate and nitrite content in food industry[J].Guangdong Chemical Industry, 2022, 49(8):72-73;105.
[4] SANTAMARIA P.Nitrate in vegetables:Toxicity, content, intake and EC regulation[J].Journal of the Science of Food and Agriculture, 2006, 86(1):10-17.
[5] APTE M, NADAVADE N, SHEIKH S S.A review on nitrates' health benefits and disease prevention[J].Nitric Oxide, 2024, 142(1):1-15.
[6] MA L S, HU L, FENG X Y, et al.Nitrate and nitrite in health and disease[J].Aging and Disease, 2018, 9(5):938-945.
[7] DA C PINAFFI-LANGLEY A C, DAJANI R M, PRATER M C, et al.Dietary nitrate from plant foods:A conditionally essential nutrient for cardiovascular health[J].Advances in Nutrition, 2024, 15(1):100158.
[8] CARVALHO L R R A, GUIMAR
ES D D, FL
R A F L, et al.Effects of chronic dietary nitrate supplementation on longevity, vascular function and cancer incidence in rats[J].Redox Biology, 2021, 48:102209.
[9] SMYATSKAY Y, PANKINA I, KULIKOVA L, et al.Nitrate content in vegetables and fruits in Russia and Mongolia[J].E3S Web of Conferences, 2020, 161.01066.[10] ZHANG X, ZHANG Y, SHI P, et al, The deep challenge of nitrate pollution in river water of China[J].Science of The Total Environment, 2021, 770:144674.
[11] SINGH S, ANIL A G, KUMAR V, et al.Nitrates in the environment:A critical review of their distribution, sensing techniques, ecological effects and remediation[J].Chemosphere, 2022, 287:131996.
[12] COLLA G, KIM H J, KYRIACOU M C, et al.Nitrate in fruits and vegetables[J].Scientia Horticulturae, 2018, 237:221-238.
[13] 邬松恒, 刘玉环, 崔宪, 等.烹饪过程对空心菜和卷心菜硝酸盐潜在安全风险的影响[J].食品科学, 2022, 43(16):302-308.WU S H, LIU Y H, CUI X, et al.Effect of cooking process on the potential safety risks of nitrate in water spinach and cabbage[J].Food Science, 2022, 43(16):302-308.
[14] DING Z S, JOHANNINGSMEIER S D, PRICE R, et al.Evaluation of nitrate and nitrite contents in pickled fruit and vegetable products[J].Food Control, 2018, 90:304-311.
[15] 迟雪梅, 王一茜, 乔慧, 等.发酵蔬菜硝酸盐、亚硝酸盐消长变化及其相关性的研究[J].食品与发酵工业, 2018, 44(1):25-30.CHI X M, WANG Y Q, QIAO H, et al.Study on the change of nitrite in fermented vegetable and its correlation[J].Food and Fermentation Industries, 2018, 44(1):25-30.
[16] 陈琦, 朱永博.膳食硝酸盐对人体运动健康的研究进展[J].中国食物与营养, 2022, 28(1):60-66;70.CHEN Q, ZHU Y B.Influence of dietary nitrate supplementation on human exercise health[J].Food and Nutrition in China, 2022, 28(1):60-66;70.
[17] QU X M, WU Z F, PANG B X, et al.From nitrate to nitric oxide:The role of salivary glands and oral bacteria[J].Journal of Dental Research, 2016, 95(13):1452-1456.
[18] PIKNOVA B, PARK J W, SWANSON K M, et al.Skeletal muscle as an endogenous nitrate reservoir[J].Nitric Oxide, 2015, 47:10-16.
[19] 焦圆凤, 陈若凡, 李兴华, 等.胃黏膜损伤机制及治疗进展[J].临床医学研究与实践, 2023, 8(23):195-198.JIAO Y F, CHEN R F, LI X H, et al.Mechanism and treatment progress of gastric mucosal injury[J].Clinical Research and Practice, 2023, 8(23):195-198.
[20] JONES A M.Dietary nitrate supplementation and exercise performance[J].Sports Medicine, 2014, 44(1):35-45.
[21] VANHATALO A, L’HEUREUX J E, KELLY J, et al.Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions[J].Redox Biology, 2021, 41:101933.
[22] BLEKKENHORST L C, BONDONNO C P, LEWIS J R, et al.Association of dietary nitrate with atherosclerotic vascular disease mortality:A prospective cohort study of older adult women[J].The American Journal of Clinical Nutrition, 2017, 106(1):207-216.
[23] NOROUZZADEH M, HASAN RASHEDI M, PAYANDEH N, et al.The effects of dietary nitrate on blood pressure and vascular health:An umbrella review and updated Meta-Analysis and meta-regression[J].Journal of Functional Foods, 2024, 114:106082.
[24] BONDONNO C P, LIU A H, CROFT K D, et al.Short-term effects of nitrate-rich green leafy vegetables on blood pressure and arterial stiffness in individuals with high-normal blood pressure[J].Free Radical Biology and Medicine, 2014, 77:353-362.
[25] TAWA M, NAGATA R, SUMI Y, et al.Preventive effects of nitrate-rich beetroot juice supplementation on monocrotaline-induced pulmonary hypertension in rats[J].PLoS One, 2021, 16(4):e0249816.
[26] JACKSON J K, PATTERSON A J, MACDONALD-WICKS L K, et al.The role of inorganic nitrate and nitrite in cardiovascular disease risk factors:A systematic review and meta-analysis of human evidence[J].Nutrition Reviews, 2018, 76(5):348-371.
[27] LARSEN F J, SCHIFFER T A, BORNIQUEL S, et al.Dietary inorganic nitrate improves mitochondrial efficiency in humans[J].Cell Metabolism, 2011,13(2):149-159.
[28] LI D D, NISHI S K, JOVANOVSKI E, et al., Repeated administration of inorganic nitrate on blood pressure and arterial stiffness:A systematic review and meta-analysis of randomized controlled trials[J].Journal of Hypertension, 2020, 38(11):2122-2140.
[29] STAMM P, OELZE M, STEVEN S, et al.Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension[J] Nitric Oxide, 2021, 113-114:57-69.
[30] PENG H L, ZHANG S Y, ZHANG Z F, et al.Nitric oxide inhibits endothelial cell apoptosis by inhibiting cysteine-dependent SOD1 monomerization[J].FEBS Open Bio, 2022, 12 (2):538-548.
[31] VELMURUGAN S, GAN J M, RATHOD K S, et al.Dietary nitrate improves vascular function in patients with hypercholesterolemia:A randomized, double-blind, placebo-controlled studyl[J].The American Journal of Clinical Nutrition, 2016, 103 (1):25-38.
[32] RICHARDSON G, HICKS S L, O’BYRNE S, et al.The ingestion of inorganic nitrate increases gastric S-nitrosothiol levels and inhibits platelet function in humans[J].Nitric Oxide, 2002, 7(1):24-29.
[33] BLEKKENHORST L C, PRINCE R L, WARD N C, et al.Development of a reference database for assessing dietary nitrate in vegetables[J].Molecular Nutrition &Food Research, 2017, 61 (8):1600982.
[34] L
Z
R Z, MÉSZ
ROS M, BIKOV A.The nitric oxide pathway in pulmonary arterial hypertension:Pathomechanism, biomarkers and drug targets[J].Current Medicinal Chemistry, 2020, 27(42):7168-7188.
[35] HENROHN D,BjÖRKSTRAND K,LUNDBERG J O,et al.Effects of oral supplementation with nitrate-rich beetroot juice in patients with pulmonary arterial hypertension-results from BEET-PAH, an exploratory randomized, double-blind, placebo-controlled, crossover study[J].Journal of Cardiac Failure, 2018, 24(10):640-653.
[36] CORTÉS-PUCH I, SUN J F, SCHECHTER A N, et al.Inhaled nebulized nitrite and nitrate therapy in a canine model of hypoxia-induced pulmonary hypertension[J].Nitric Oxide, 2019, 91:1-14.
[37] WANG J, FENG F C, ZHAO Y, et al.Dietary nitrate supplementation to enhance exercise capacity in patients with COPD:Evidence from a meta-analysis of randomized controlled trials and a network pharmacological analysis[J].Respiratory Medicine, 2024, 222:107498.
[38] LI R J, ZHOU Y L, LIU W, et al.Rare earth element lanthanum protects against atherosclerosis induced by high-fat diet via down-regulating MAPK and NF-κB pathways[J].Ecotoxicology and Environmental Safety, 2021, 207:111195.
[39] GIURIATO G, PANERONI M, VENTURELLI M, et al.Strategies targeting the NO pathway to counteract extra-pulmonary manifestations of COPD:A systematic review and meta-analysis[J].Nitric Oxide, 2022, 128:59-71.
[40] EL-MARAGHY S A, RIZK S M, SHAHIN N N.Gastroprotective effect of crocin in ethanol-induced gastric injury in rats[J].Chemico-Biological Interactions, 2015, 229:26-35.
[41] PANG B X, ZHU Z, JIN L Y, et al.Long-term dietary inorganic nitrate increases gastric mucosal blood flow in Mongolian gerbils[J].International Journal of Clinical and Experimental Pathology, 2016, 9(9):9213-9218.
[42] BJÖRNE H H, PETERSSON J, PHILLIPSON M, et al.Nitrite in saliva increases gastric mucosal blood flow and mucus thickness[J].The Journal of Clinical Investigation, 2004, 113(1):106-114.
[43] TAN R, CANO L, LAGO-RODR
GUEZ
, et al.The effects of dietary nitrate supplementation on explosive exercise performance:A systematic review[J].International Journal of Environmental Research and Public Health, 2022, 19(2):762.
[44] 郭乐. 补充甜菜根汁对铁人三项运动员身体机能和运动表现的影响[J].内蒙古师范大学学报(自然科学汉文版), 2023, 52(4):436-440.GUO L.Effects of beetroot juice supplementation on physical function and performance of triathletes[J].Journal of Inner Mongolia Normal University (Natural Science Edition), 2023, 52(4):436-440.
[45] ROKKEDAL-LAUSCH T, FRANCH J, POULSEN M K, et al.Chronic high-dose beetroot juice supplementation improves time trial performance of well-trained cyclists in normoxia and hypoxia[J].Nitric Oxide,2019, 85:44-52.
[46] COGGAN A R, LEIBOWITZ J L, KADKHODAYAN A, et al.Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women[J].Nitric Oxide, 2015, 48:16-21.
[47] RIMER E G, PETERSON L R, COGGAN A R.Acute dietary nitrate supplementation increases maximal cycling power in athletes[J].International Journal of Sports Physiology and Performance, 2016, 11:715-720.
[48] HAIDER G, FOLLAND J P.Nitrate supplementation enhances the contractile properties of human skeletal muscle[J].Medicine and Science in Sports and Exercise, 2014, 46(12):2234-2243.
[49] SIM M, BLEKKENHORST L C, BONDONNO N P, et al.Dietary nitrate intake is positively associated with muscle function in men and women independent of physical activity levels[J].The Journal of Nutrition, 2021, 151(5):1222-1230.
[50] SHANNON O M, CLIFFORD T, SEALS D R, et al.Nitric oxide, aging and aerobic exercise:Sedentary individuals to Master’s athletes[J].Nitric Oxide, 2022, 125-126:31-39.
[51] PRESLEY T D, MORGAN A R, BECHTOLD E, et al.Acute effect of a high nitrate diet on brain perfusion in older adults[J].Nitric Oxide, 2011, 24(1):34-42.
[52] PEREIRA L C R, SHANNON O M, MAZIDI M, et al.Relationship between urinary nitrate concentrations and cognitive function in older adults:Findings from the NHANES survey[J].International Journal of Food Sciences and Nutrition, 2021, 72(6):805-815.
[53] KUHNLE G G C, STORY G W, REDA T, et al.Diet-induced endogenous formation of nitroso compounds in the GI tract[J].Free Radical Biology and Medicine, 2007, 43(7):1040-1047.
[54] CHEN D Z, PARKS C G, BEANE FREEMAN L E, et al.Ingested nitrate and nitrite and end-stage renal disease in licensed pesticide applicators and spouses in the Agricultural Health Study[J].Journal of Exposure Science and Environmental Epidemiology, 2024, 34(2):322-332.
[55] WARD M H, JONES R R, BRENDER J D, et al.Drinking water nitrate and human health:An updated review[J].International Journal of Environmental Research and Public Health, 2018, 15(7):1557.
[56] JA K, SUN L, YOUL C, et al.Nitrate intake relative to antioxidant vitamin intake affects gastric cancer risk:A case-control study in Korea[J].Nutrition and Cancer, 2007, 59(2):185-191.
[57] SHANNON O M, ALLEN J D, BESCOS R, et al.Dietary inorganic nitrate as an ergogenic aid:An expert consensus derived via the modified Delphi technique[J].Sports Medicine, 2022, 52(10):2537-2558.
[58] SUH M, ABRAHAM L, HIXON J G, et al.The effects of perchlorate, nitrate, and thiocyanate on free thyroxine for potentially sensitive subpopulations of the 2001-2002 and 2007-2008 National Health and Nutrition Examination Surveys[J].Journal of Exposure Science and Environmental Epidemiology, 2014, 24(6), 579-587.
[59] 郝瑞婷, 张振伟, 叶必雄, 等.饮用水中硝酸盐暴露与甲状腺疾病关系研究进展[J].环境与健康杂志, 2017, 34(8):748-751.HAO R T, ZHANG Z W, YE B X, et al.Relationship between drinking water nitrate exposure and thyroid diseases:A review of recent study[J].Journal of Environment and Health, 2017, 34(8):748-751.
[60] DOS SANTOS PINHEIRO V, VOLINO-SOUZA M, VIEIRA DE OLIVEIRA G, et al.Effect of high-nitrate beetroot juice consumption on thyroid gland hormones and iodine levels in adults[J].Food Bioscience, 2021, 40:100869.
[61] MCMAHON N F, BROOKER P G, PAVEY T, et al.Assessment of dietary nitrate supplementation:Prevalence of use, knowledge, attitudes and beliefs among active Australians[J].Frontiers in Nutrition, 2023, 10:1291431.