重金属危害机制及益生菌清除重金属机制研究进展

王瑛1*,林钰清3,李爱军1,林启豪2,薛雪1,王洪飞1,陈琬颖2

1(暨南大学 理工学院,广东 广州,510632) 2(暨南大学 国际学院,广东 广州,510632)3(通标标准技术服务有限公司广州分公司,广东 广州,510663)

摘 要 随着工业发展,大量重金属通过工业废水废渣等方式排入空气和土壤,对环境造成污染,这些重金属一旦通过食物链、空气和水进入人体,就难以排出。工业上已经利用微生物对重金属的吸附、沉淀及氧化还原等能力,清洁含有重金属的废渣废水。益生菌也具有相似的能力,因此,适当利用益生菌可帮助人体排出重金属。该文综述了镉、铅、砷、铬和汞5种在食物中最常见的重金属的危害机制及微生物尤其是益生菌清除重金属的机制。

关键词 益生菌;重金属;镉;铅;砷;铬;汞

重金属一般是指密度在5.0以上元素。砷和硒虽然是非金属,但其毒性及某些性质与重金属相似,故将其列入重金属污染物范围内。重金属遍布土壤、水体和大气。随着工业发展,环境中的重金属被大量转移与富集[1]。矿山开采、金属冶炼、金属加工、天然能源的燃烧利用、在农药化肥和含铅电池等产品的应用过程中产生的重金属通过化工废水、工业粉尘、生活垃圾、雾霾等方式污染土壤、水源及空气,再通过食物链富集和呼吸进入人体[2-3]。根据暴露时长和剂量,重金属可对人体造成急性或慢性的伤害。重金属在人体代谢慢,会大量累积在肝脏和骨骼中,损害呼吸道、消化道、神经免疫系统和各个器官,最终导致畸变、肿瘤生成、癌变甚至死亡[3-4]

污染环境的金属中,除了生物毒性较强的重金属如汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)及砷(As)[4],还有具有毒性的金属如锌(Zn)、铜(Cu)、钴(Co)、镍(Ni)及锡(Sn)等[1,3]。清除环境中的重金属,大致可以分为化学沉淀、物理吸附、离子交换和微生物吸附等方法[5]。以微生物作为吸收材料的生物技术具有来源广、低成本、效率高的特点[6],比传统的化学、物理方法更具有优势。目前已经报道的可吸附和转化从而清除重金属离子的微生物包括细菌、真菌和藻类[5-6],如枯草芽孢杆菌(Bacillus subtilis)利用细胞表面高含量的磷壁酸吸附重金属[7],假单胞杆菌(Pseudomonas)和大肠杆菌利用氧化还原的能力将高毒性价态的重金属转化为低毒性的价态[8-10]。与此同时,越来越多的研究关注到益生菌中存在相似的细胞结构和性质[11],并开始研究益生菌清除重金属的应用与机制[12-17]。本文主要讨论的是食品中最常见的5种重金属:镉(Cd)、铅(Pb)、砷(As)、铬(Cr)和汞(Hg)[18]的危害机制及益生菌对其可能的清除机制。

1 益生菌作用

益生菌,即摄入充足的数量后,会对宿主产生一种或多种特殊且经论证的健康益处的活的微生物[19],包括所有通过改变肠道菌群,对宿主健康有正面影响的活微生物[20]。革兰氏阳性益生菌种主要包括乳杆菌(Lactobacillus)、双歧杆菌(Bifidobacterium)及嗜热链球菌(Streptococcus thermophiles)。革兰氏阴性益生菌有Akkermansia、大肠杆菌(E. coli Nissle 1917)等[21-22]。益生菌在健康疗效、食品应用和作用机制上存在普遍性[23-24]。健康功效上,益生菌都能促进肠道健康、增强免疫反应、降低血清胆固醇及预防癌症[19]。市场上含益生菌的食品一般为奶酪、酸乳酪等乳制品和谷物、豆制品等非乳制品[25-26]。益生菌的作用机制主要是2种:(1)作用于胃肠道内的直接影响;(2)作用于胃肠道外的间接影响[27]

益生菌对健康的直接影响主要是调节寄生菌落的数量、维生素的生成、促炎性细胞因子及增强肠道的屏障功能。例如,外源性双歧杆菌能进入结肠内调节内源性双歧杆菌和其他菌群来缓解乳糖不耐受的症状,以辅助手段的形式有效治疗婴幼儿乳糖不耐受症[28];鼠李糖乳杆菌(L. rhamnosus) GG和植物乳杆菌(L. plantarum) 299v能抑制大肠杆菌(E. coli)在肠道的定植[29];乳杆菌和双歧杆菌能够促进人体合成维生素K和B,并减少副反应[30];干酪乳杆菌(L. casei)能够特异性地减少LPS/GalN炎性细胞因子来降低肝炎发病率[31];益生菌还能抵御食物带来的细菌,以此增强肠道屏障能力[32]

益生菌的间接影响主要是通过抑制致病菌的定植,来缓解人体关节部位、肺及皮肤的特应性紊乱、免疫系统损害和阴道感染。例如,双歧杆菌三联活菌散剂(含长双歧杆菌(B. longum))、嗜酸乳杆菌(L. acidophilus)和粪肠球菌(Enterococcus faecalis)能够减少机械通气新生儿口咽部的致病菌定植,延迟口咽部、下呼吸道致病菌定植及呼吸机相关性肺炎(ventilator-associated pneumonia, VAP)发生时间[33]。定期摄入含有乳杆菌、嗜热链球菌、嗜酸乳杆菌、双歧杆菌、嗜热链球菌和德氏保加利亚乳杆菌乳酸亚种(L. delbrueckii subspecies bulgaricus)等益生菌的食物,可降低上呼吸道潜在病原细菌(potential pathogenic bacteria, PPB)如金黄色葡萄球菌(Staphylococcus aureus)的定植[34]

目前益生菌作为病理情况下的医学干预手段也有着广泛的应用和临床报道[35]。益生菌能调节免疫系统[36],缓解过敏[37],在发炎性和功能性大肠综合症的治疗上具有明显功效[38]。例如,益生菌能调控牛奶所引起的轻度过敏反应[37]。植物乳杆菌299v补充剂可增强先天暴露于HIV病毒的儿童的免疫系统[36],植物乳杆菌299v菌株还能有效减少腹痛、腹胀、胃肠气胀和便秘[39]。益生菌大肠杆菌(EcN)能够治疗婴幼儿急性腹泻[38]

2 益生菌对重金属的清除作用

2.1 镉

镉是一种具有延展性的银白色金属,自然界中主要在硫镉矿(CdS)中存在,贮存于锌矿、铅锌矿和铜铅锌矿石中,多数用于制造合金、做原子反应堆的控制棒、用作颜料、电镀及充电电池等。其形态为Cd+和Cd2+,人体摄入的多为Cd2+

2.1.1 镉对人体的危害及机制

根据形态和摄入生物的不同,镉的LD50从225~890 mg/kg不等,食品添加剂联合专家委员会(JECFA)规定人体每月允许摄入镉不得超过25 μg/kg体重[40]。镉通过肠、胃、肺和皮肤被人体所吸收[41],主要聚集在红血球中,少量与血清蛋白或含疏基的小分子如金属硫蛋白、谷胱甘肽和半胱氨酸等结合[42],随血液循环进入组织器官中。人体细胞表面没有镉特异离子通道或运输蛋白[43],但镉能利用其他必需元素的运输通道进入细胞[44],如膜蛋白TRPM7[45]。人体摄入的镉主要通过尿液排泄[46],少量经胆汁由粪便排出[47]

大量镉蒸汽通过呼吸道进入人体后,人会出现呼吸道刺激症状,如咽喉干痛、流涕及呼吸困难等,严重时会出现支气管炎等症状甚至死亡[48]。大量镉通过饮食进入人体后,会造成急性镉中毒引起中毒性肝脏损伤[49]。由于过量的镉很难被机体降解和排泄,因此在体内长期累积,会导致慢性镉中毒,造成机体器官一系列损伤反应如生长迟滞、肾功能衰竭、生殖功能减退、高血压、肿瘤和畸胎等。严重时,更会引起细胞癌变和突变[50]

镉虽然不能直接催化自由基,但是能通过脂质的过氧化来抑制谷胱甘肽合成[51],抑制超氧化物歧化酶和过氧化氢酶,影响铁代谢,增加游离铁[52],间接诱发过氧化物和自由基,破坏抗氧化防卫,引起机体细胞产生毒性和癌变[53]。它也能与具有相似化学和物理性质的必需元素如铁等竞争细胞内抗氧化酶结合位点,阻碍必需元素的吸收[48],又因为镉和钙离子大小相似,镉离子会和钙竞争钙离子通道[54],还能通过细胞内的调控系统,影响细胞凋亡和增生有关的基因和蛋白质的表达,引起机体癌变[53]

2.1.2 微生物和益生菌对镉的清除及作用机制

在动物体内,肠道是第一个受外源性物质影响的器官,大量肠道菌,包括益生菌,都对镉有明显的清除作用,使得肠道成为抵御由食物进入人体的镉的第一道防线[55]。鼠李糖乳杆菌、发酵乳杆菌、乳双歧杆菌和长双歧杆菌在内的一系列乳酸菌可以在5~60 min之内达到饱和吸附,最大清除率达到87.8%[11,56]。乳酸菌在100 mg/L镉溶液中也能表现出31.34%的镉移除率[12]。克菲尔乳杆菌(L. kefir)能够有效与镉结合,缓解镉对HepG2细胞的损伤[57]。植物乳杆菌及其发酵物都能降低小鼠肠道对镉的吸收以及肝脏和肾脏的镉累积,同时显著恢复丙二醛、谷胱甘肽、过氧化物歧化酶等抗氧化物指标[58]

益生菌清除镉机制的文献非常少。部分微生物具有清除镉的结构,益生菌也具有类似结构,可以认为机制相似。微生物对镉的清除机制包括镉离子外排系统、胞外沉淀和生物吸附。微生物细胞膜上的CBA外排泵和CzcABC 复合蛋白这2种转运系统能将进入微生物中的镉进行外排[59-60]。胞外沉淀过程中,细胞产物包括胞外聚合物(extracellular polymeric substances, EPS)和硫化氢可以与镉结合生成沉淀[61-62]。微生物的胞外聚合物包含了大量的多糖、蛋白、脂类、肽聚糖、磷酸和核酸,都能够和镉形成配合物或螯合物[63]。微生物的硫循环系统以硫酸作为最终电子接受者,产生硫化氢,可以与镉结合生成不溶的硫化镉[64]。生物吸附是细胞膜上的基团通过络合反应吸附镉,比如革兰氏阳性菌芽孢杆菌和乳酸菌细胞壁上高比例的肽聚糖和磷酸[12, 65]

2.2 铅

铅是一种具有蓄积性和多亲和性,柔软和延展性强的弱金属,存在于方铅矿中,可用于建筑、铅酸蓄电池和部份合金等。价态多为Pb2+和Pb4+,前者以PbCl2和PbF2形式存在,后者多以Pb3O4存在。

2.2.1 铅对人体的危害及毒害机制

铅有剧毒,是国际上公认的危害儿童神经系统发育的第一杀手,可造成人体神经、造血、消化和免疫等系统的损害。WHO对人体中铅每周的允许摄入量制定有严格的标准,即不得超过0.025 mg/kg体重[66]。大鼠静脉给药LD50为70 mg/kg。铅大部分在肠胃吸收,被吸收的铅首先进入血液中跟红细胞表面蛋白结合,随着血液循环与机体组织交换,分布于肝、肾、脾、肺和脑中,大多数铅主要以不溶性磷酸铅的形式沉积在骨骼中[67]。当骨骼和组织中的结合部位饱和,人体组织吸收铅的速度会自行降低,不能被吸收的铅留在血液中被排泄掉。血液中的铅主要通过尿液排泄,可服用螯合剂增加排出量,粪便中的铅不能被吸收,但能够通过胆汁再回到胃肠道中[68]

铅不但对脑、肾和血液等关键靶器官造成危害,还会损伤和干扰代谢活动。铅能够在人体中生成活性氧自由基,造成DNA和细胞膜的损害[69],同时还能影响DNA转录[70],通过与酶的硫氢基结合阻碍酶促反应[68,71],抑制合成维生素D酶的形成。铅还能取代钙离子,通过钙-ATP酶泵穿过脑血管屏障的内皮细胞,损坏小脑、大脑皮质细胞和脑神经[72],导致营养物质和氧气供应不足,甚至造成脑贫血和脑水肿,严重时可发展成为高血压脑病。

2.2.2 益生菌对铅的清除及作用机制

大量益生菌对铅都有吸附作用。乳杆菌和双歧杆菌可以迅速去除水溶液中的铅,长双歧杆菌46可以在1 h内清除175.7 μg/g干菌中的铅,植物乳杆菌CCFM8661不仅可以清除其干菌质量36.66%的铅[14-15],还可以显著降低动物肝脏、肾脏、胃以及血液中的铅浓度[73]。此外,已经广泛应用在功能性食品中的2种益生菌嗜酸乳杆菌LA-5和双歧杆菌BB-12,都能够降低在铅暴露下大鼠大脑中铅累积量[74]

生物吸附是益生菌清除铅的主要机制。类似于镉的生物吸附机制,细胞壁表面上的酶或蛋白质中的带负电荷基团,如硫氢基、羧基咪唑基等[68],以及以氮、硫和磷作为配位原子的分子,都能够与铅结合,完成富集和吸附。乳酸菌细胞表面的肽聚糖、磷壁酸、蛋白质和多糖中就富含这种带负电的羧基、羟基和磷酸基团 [15,75]。同时,pH影响这些基团的活力及铅离子对结合位点的竞争力,当pH在适合范围内升高时,质子对负电荷结合位点的竞争下降,细胞表面暴露出更多负电荷结合点,增强乳酸菌对铅离子的接触和吸附[76]

2.3 砷

砷是在地壳中含量排名第53名,带有金属灰色光泽的类金属,在工业、农业、畜牧业和医药中都有广泛应用[77]。单质以灰砷、黑砷、黄砷三种同素异形体存在,其中灰砷最常见也最稳定[78]。自然界中砷的价态可以分为三价(As(III))和五价(As(V)),也可以根据形态不同分为无机砷和有机砷,它们的LD50也根据形态的不同从77 μg/g到10 g/kg不等[79-80]。其中无机砷为剧毒[急性中毒剂量是0.6 mg/(kg·day)[81]],有机砷容易被人体排出,对人体危害较轻。无机砷包括:砷化三氢(AsH3)、砒霜(As2O3)、亚砷酸盐和砷酸盐其中砷酸盐在地下水污染中最为常见。有机砷包括:甲基胂酸(MMA)、二甲基砷酸(DMA)、三甲基胂酸(TMAD)、二甲基砷氧化乙醇(DMAE)、二甲基砷氧化醋酸(DMAA)、二甲基砷氧化丙酯(DMAP)、三甲基砷氧化丙酯(TMAP)、三甲基砷氧(TMAO)、四甲基砷离子(TMAs+)砷糖、砷脂、砷胆碱(AsC)和砷甜菜碱(AsB),均在海产品(鱼类、海藻及贝类)中存在[82],是人体摄入砷的主要来源[83]。他们的毒性依次为AsH3>As(III)>As(V)>MMA>DMA>TMAD>AsC>AsB[77, 84]。其中AsC和AsB被认为无毒,然而,在食品加工和烹饪时,会在高温中把无毒或低毒的砷化合物转化为毒性较大的砷化合物,甚至是无机砷[85]

2.3.1 砷对人体的危害及毒害机制

砷中毒很少有急性[86],通常是在误饮了杀虫剂的时候才会急性砷中毒,如果不及时治疗,患者将会在24 h到4 d之内死亡[87],慢性砷中毒一般通过饮用水(WHO规定饮用水的砷限度为10 μg/L)和食物进入人体[88]。砷化合物在肠道中被吸收、转化之后一部分会发生形态变化,直接通过尿液排出,另一部分会被人体富集,难以排出。AsB对人体无毒,可以直接通过尿液排出。70%~80%的AsC能转化为AsB随尿液排出,其余的与磷脂结合形成砷磷脂,最后代谢为AsB随尿液排出。摄入的无机砷会被肠道吸收,在人体内经过转化和还原,最后变成三价的DMA。代谢过程简化为:As(V)→As(III)→MMA(V)→MMA(III)→DMA(V)→DMA(III)[82]

急性砷中毒症状是呕吐、腹痛及水泄,急性精神错乱、心肌病及癫痫,之后血液、呼吸道、肺部和肾脏都会相继出现问题,及时洗胃、注射二巯基丙醇或者透析可有效治疗,但如果摄入量太大,将无法治愈[86-87,89]。砷蓄积在肝脏、肾脏、心脏、肺和角质多的组织中,比如在指甲、头发和皮肤沉积,对心肌、呼吸、神经[90]、生殖[91]、造血[85]和免疫系统产生不同程度的损害[77],增加了患心血管疾病[92]、呼吸道疾病[93]、糖尿病的风险,甚至造成全身病变,生成肿瘤[94]。目前尚未有治愈慢性砷中毒的有效方法[95]

砷可以标记细胞器里不同的分子,抑制200多种酶的活性,特别是细胞内能量传输和DNA合成修复中需要的酶,造成细胞增生,NO生成,NAD+损耗,DNA链破坏,微核生成[96]。砷能激活致癌基因、压制肿瘤抑制基因[97],还能够通过影响谷氨酸的运转蛋白EAAT1/GLAST来损坏神经胶质细胞和中枢神经系统[98]。砷有多个途径可以导致正常细胞凋亡:一是诱导丝裂原活化蛋白激酶发出信号,刺激调节细胞激素和生长因子的AP-1激活蛋白,形成凋亡小体[99-100];二是通过抑制过氧化氢酶来诱导细胞死亡[101];三是通过激活半胱天冬酶来抑制端粒酶活性,致使基因和染色体不稳定,从而导致细胞死亡[102]。As(III)作为原生质毒剂易跟酶的硫醇基结合,使酶活性降低甚至失去活性[103],抑制酶促反应及细胞呼吸,影响人体代谢[104]。As(V)在结构上和磷酸盐十分相似,两者存在竞争关系,通过妨碍磷酸参与的代谢反应[105],损坏如ATP合成和呼吸链氧化磷酸化等细胞功能[106]。有机砷中毒性较低的MMA和DMA也是潜在的致癌物[107],它们会在人体内形成自由基,使得脂质过氧化导致细胞损坏[108]

2.3.2 微生物和益生菌对砷的清除及作用机制

由于不能被降解,砷的防治主要有2种,一是采取特殊方法合理回收环境中的砷,尽可能减少进入食物链中的砷含量;二是把高毒性形态的砷化合物转化为低毒性形态砷化合物,使它对人体的危害降到最低[109]。目前已经发现细菌、真菌和蓝藻对砷有生物累积和转化砷化合物形态的能力[110-111],已经应用在修复砷污染环境和处理废水中[112]。硫铁杆菌(Acidithiobacillus ferrooxidan)和假单胞杆菌能够氧化As(III) [8-9],将亚砷酸盐氧化成砷酸盐,又以硫化物的形式转移和沉淀下来[113],从而降低砷的毒性。厌氧条件下硫酸盐还原菌能够生成硫化物与环境中的砷反应产生沉淀[114]。从智利北部一条高砷污染河流(As≥1100 μg/L)的沉积物中分离得到9种假单胞菌株(P. putida),这些菌株能将As(III)氧化为更加稳定的 As(V)[108],在一定程度上降低环境中砷化合物的毒性[115]。微生物还能使砷甲基化和脱甲基化,将单甲基胂酸盐和二甲基胂酸盐转化为三甲基胂,进而达到修复土壤砷污染的效果[116]。普通海单胞菌(Marinomonas communis)[117]、代尔夫特菌(Delftia)[118]、棘孢木霉(Trichoderma asperellum)、微紫青霉(Penicillin janthinellum)和尖孢镰刀菌(Fusarium oxysporum)[119]都能够转化一定量的砷。一些益生菌也具有相同的能力,嗜酸乳杆菌和干酪乳杆菌DSM20011都能在水中结合、转移砷[13-14, 120]。在模拟人体肠道实验中,肠道菌也能够代谢转化部分砷化合物,使其顺利排泄出人体[121]。大量食用含益生菌的奶酪可以帮助孕妇抵抗砷的毒性[122]

益生菌对砷的清除机制还未见报道。如果益生菌具有和能清除砷的微生物相同的结构,就可能具有相同的机制。微生物对砷的清除机制可分为3种:毒性离子外排系统、氧化还原和甲基化[112, 123-124]。大多数的微生物都有操控毒性离子外排的ars基因,它由3种基因共同转录完成运作,分别是决定调节抑制的arsR、决定运输泵的arsB和决定细胞内砷酸盐还原酶的arsC,它们共同组成砷离子外排泵,抵御As(III)和As(V)[125-126]。一些微生物中同时存在asoarr基因,它们分别调控亚砷酸氧化酶和砷酸还原酶[127],前者能够在好氧环境下发挥抗耐As(III)作用,使As(III)作为电子供体,转化为低毒的As(V),后者在无氧环境下作为末端电子受体,让兼性厌氧细菌得以生长[128]。甲基化过程中,微生物中由S-腺苷甲硫氨酸提供甲基[129],取代 AsO(OH)3中的羟基,形成砷化氢的甲基化衍生物[130],转化为毒性较低的DMA、TMA和TMAO以及无毒的AsC和AsB[131]

2.4 铬

铬是一种铁灰色、有金属光泽、非常硬但容易碎的金属[132],以铁铬矿(FeCr2O4)的形式被开采出来,多用于合金、燃料和耐火材料。常见的价态有Cr(II),Cr(III),Cr(VI),Cr(V),Cr(IV),Cr(I)和Cr(0)。Cr(II)的常见形式有稳定于中性水中的CrCl2和NaCrO2[133]。Cr(III)是人体必需的微量元素,对胰岛素、糖类和脂质的代谢都具有极大作用[134]。Cr(VI)的典型离子是重铬酸根和铬酸根,在强酸或中性时具有强氧化性。Cr(III)和Cr(VI)之间存在着转换平衡,形态转化取决于pH和环境的氧化特性。Cr(V)和Cr(IV)都很少见,并且Cr(IV)在水中不稳定。Cr(I)由Cr(0)八面体复合物氧化得到。Cr(III)和Cr(VI)是研究铬与人体健康关系中最主要的2个价态,因为通常进入人体的铬都以这2种形式存在,并且这2个价态的铬化合物十分稳定[135]

2.4.1 铬对人体的危害及毒害机制

人体接触和摄入的铬一般为Cr(III)(急性口服毒性1.5~3.3 mg/kg)和Cr(VI)(急性口服毒性50~150 μg/kg)[136],它们的主要吸收部位是小肠,其次是回肠和十二指肠。Cr(III)无法穿透细胞膜,但能够与细胞表面的运铁蛋白的氨基端结合位结合,进入血液中。Cr(VI)能够穿透细胞膜,与血红蛋白中的球蛋白结合[137],通过血液在身体中循环。通常铬通过尿液排出体外,少量能通过胆汁经粪便排出[138]

短期内接触大剂量的铬会在接触部位发生溃疡,一次性吸入大量铬会在呼吸道上造成鼻黏膜刺激和鼻中隔穿孔,急需用大量生理盐水冲洗除去。长期摄入更可能引起扁平上皮癌、腺癌及肺癌等。若是超大剂量摄入且不及时洗胃,会导致胃溃疡和肌肉痉挛、损伤肾脏和肝脏、循环系统衰竭、失去知觉甚至死亡[139]

Cr(III)作为膳食补充剂,在合理服用(铬的成年适宜摄入量是30 μg/day)的情况下是对人体有益的微量元素[140-141]。但是过量摄入Cr(III)对人体是有害的,细胞中高浓度的Cr(III)会形成带电荷的配合物,与DNA结合,损害DNA[142]。Cr(VI)是剧毒[143],会和游离的羟基反应合成氧化自由基,或者跟着硫酸根和磷酸根一起进入细胞内,利用强氧化性,破坏细胞膜结构,损坏蛋白质,诱导肿瘤形成。Cr(VI)能致使基因点突变,染色体损坏,诱导生出DNA加成物,改变蛋白质结构,破坏肝脏、肾和血细胞,最终导致血溶,肝肾功能衰竭[144]。Cr(VI)比Cr(III)溶解度高,更容易通过受污染的水源和食物进入人体[145-146]

2.4.2 微生物和益生菌对铬的清除及作用机制

近年来,微生物和肠道益生菌在清除金属方面的报道也不断增多。链霉菌(Streptomyces)、脱硫弧菌(Desulfovibrio) SRB7、脱硫肠状菌(Desulfotomaculum)、阴沟杆菌(Enterobacter cloacae)HO1和假单胞菌CRB5等拥有还原Cr(VI)并形成沉淀的能力,被广泛应用在污水处理中清除铬[11,147-152]。芽孢杆菌也具有还原铬、抵抗铬的特性[153]。分离自肠道的1株链霉菌(S. werraensis)LD22可通过表面大量的负电基团吸附Cr(VI),对Cr(VI)的清除效率则高达100 mg/L[154]。嗜酸乳杆菌、鼠李糖乳杆菌和干酪乳杆菌能在含有32 μg/g的Cr(VI)培养基中生长[155]。嗜热链球菌和双歧杆菌对Cr(VI)的吸附清除作用随其生长周期而变化,吸附峰值分别可以达到50%和66.6%[16]。肠道菌群在帮助机体预防和中和铬中毒的作用已经在一些动物实验中得到验证。从Cr(VI)处理组大鼠粪便中分离的乳杆菌、假单胞菌和大肠杆菌能够抵御更高浓度的Cr(VI),而将其还原为Cr(III)的能力则有所下降[145]。干酪乳杆菌能够显著地减少重铬酸钾在大鼠体内造成的氧化性伤害,如过氧化物歧化酶、谷胱甘肽等抗氧化指标的下降和丙二醛等氧化物指标的上升,从而保护动物的组织功能[156]

益生菌和微生物对铬的清除机制大致可以分为生物吸附、还原及胞外沉淀[143-144,157-158]。益生菌表面的基团通过离子交换、螯合及电荷吸附等途径将铬吸附在其细胞表面[157],比如带有强负电荷的革兰氏阳性菌细胞壁上的磷酸和革兰氏阴性菌细胞壁肽聚糖外层的脂多糖[159-160]。铬的还原机制分为2大类[144, 161]:一是细胞通过合成NADH和NADPH[162]、核黄素、FMN或者FAD[11]、硝基还原酶[163]、维生素C、硫醇、谷胱甘肽、干胱氨酸、半胱胺和硫辛酸辅酶A等酶或辅酶,还原铬酸盐[164];二是在无氧环境下,把铬作为呼吸链中电子的最终接受体还原铬酸盐[165]。这样Cr(VI)被还原为Cr(III),还原之后的Cr(III) 相比Cr(VI),不仅毒性下降[166],溶解度也大幅度降低,可更高效地排出体外[145-146]。胞外沉淀是一些微生物比如酵母菌和啤酒酵母等清除铬的机制,其分泌的谷胱甘肽与铬离子有很高的亲和力,能与铬结合形成稳定难溶的沉淀,产生抗性,阻止这些沉淀物进入细胞[166]。益生菌如果也在胞外分泌谷胱甘肽,就很可能利用同样的机制沉淀清除铬。

2.5 汞

汞是一种凝固点低、流动性大、易挥发且易分成小汞珠的唯一的液体金属[167],在自然界中分布极广,几乎所有的矿物中都含有汞,主要以朱砂(硫化汞)形式存在,在水银温度计、医疗补牙及染料中广泛应用。按照自然界中汞的价态可以分为Hg(0)、Hg(I)和Hg(II),根据不同的化学形态,汞可分为无机汞(Hg(0)和Hg(II))和有机汞[168]。常见的有机汞包括甲基汞、氯化甲基汞(MMC)、乙基汞、氯化乙基汞、苯基汞、氢氧化甲基汞和乙氧基汞[169]。有机汞毒性大于无机汞[170],甲基汞毒性最强,具有亲脂性,易被生物体吸收,其LD50值为1 mg/kg。

2.5.1 汞对人体的危害及毒害机制

无机汞中常见的形态有HgCl2、Hg2Cl2、HgBr2、HgO、HgSO4和HgS(朱砂)[171]。其中HgSO4 LD50值为57 mg/kg。人体每周对元素汞摄入的安全水平是0.7 mg/kg体重。无机汞主要以呼吸汞蒸气的形式进入人体,短时间内吸入高浓度汞蒸气(1.0 mg/m3)可导致急性汞中毒,甲基汞通过水源或食物由肠道吸收进入人体,2者都主要以粪便的形式排出人体[172]。汞进入人体后,很少会在血液、尿液和毛发中沉积,而是在肝脏和大脑等重要器官中沉积[173]

汞中毒按中毒程度可分为急性、亚急性、慢性中毒。急性汞中毒患者表现为皮肤溃疡,消化道黏膜溃疡和腹泻,呼吸困难,肾脏衰竭,甚至会抽搐、昏迷或精神失常[167,174]。亚急性中毒患者临床症状与急性中毒相似,程度较轻,但仍有脱发等症状。慢性中毒患者表现为情绪不稳定、注意力不集中、神经衰弱综合症、汞毒性震颤、中毒性脑病和严重的肝肾损害[169]

有机汞以短链烷基汞为主,易和细胞膜上丰富的巯基物质和脂类物形成质复合物,沉积在细胞壁和细胞质膜周围,不穿透细胞,形成含硫化汞的核心,在人的中枢神经系统、肝脏和肾脏中累积。抑制红细胞膜及脑、肝和肾微粒体膜上的T-ATP 酶、Mg2+-ATP 酶和Na+-K+-ATP 酶活性,同时使细胞膜及脑微粒体膜中巯基含量显著下降, 从而导致膜的构象和功能改变、诱导细胞凋亡、抑制细胞生长及杀死细胞[175-177]。其中,氯化甲基汞能导致DNA结构畸变[178]

2.5.2 微生物和益生菌对汞的清除及作用机制

一些微生物和益生菌对汞有清除作用。希瓦氏菌(Shewanella oneidensis)和硫还原地杆菌(Geobacter sulfurreducens)能够结合Hg(II)并将其还原为Hg(0)。芽孢杆菌属(Bacillus spp.)也有清除汞的能力[179]。乳酸菌在汞浓度为0.15 μg/g时表现出高达99.1%的汞离子Hg(II)吸附率[180]。连续6日每日摄入6 mg氯化甲基汞的小鼠在服用抗生素杀灭肠道微生物后,4/5的小鼠急性汞中毒,而没有服用抗生素的对照组只有1/5的小鼠急性汞中毒,说明肠道菌能够抵御汞中毒[181]

益生菌对汞清除机制研究尚未有报道,但肠道微生物的相关研究已有不少。如果益生菌具有和能清除汞的微生物相同的结构,就可能具有相同的机制。微生物对汞的清除机制大致能够分为吸附、还原和去甲基化。细菌表面蛋白14 kDa是最主要的汞结合蛋白,可以利用自身的N末端氨基酸序列(N-terminal amino acid sequencing)和CXXC(C是半胱氨酸2Cys,X是任意一种氨基酸)结构,吸附结合大量Hg(II)离子[182-183]。富含硫基的金属硫蛋白(metallothionein, MT)能吸附大量汞,调节细胞内环境的离子平衡,减少重金属离子对细胞的伤害[179, 184]。肠道微生物对有机汞的去甲基化由mer基因所控制的Mer蛋白操控,其中分布在细胞内膜的MerP、MerT、MerC和MerF蛋白 [123],负责吸收环境中的Hg(II)和甲基汞,汞还原酶MerA还原无机Hg(II),有机汞裂解酶MerB裂解甲基汞,释放出的Hg(II)再被MerA还原为Hg(0)。由于Hg(0)极不容易被肠道吸收,摄入的甲基汞和汞盐在经过肠道菌的去甲基化和还原后降低了被吸收的概率,有助于将汞排出体外[181, 185]

3 结论及展望

随着重金属的加工和利用越来越多,重金属污染已经成为了严重的环境污染问题,但环境保护技术却逐渐跟不上工业进步。通过空气、水源和食物等途径,重金属或多或少都对人体健康产生影响。工业上已利用微生物清除重金属的能力来治理工业污染。益生菌在动物实验中也被证明有很好的功效,其类似能力也能够应用在人体上,清除人体内重金属。比如,健康人体的肾有足够的能力排出体内80%的铬[186],但摄入的铬过多时,自身机制不足以将大部分铬排出去[187],此时摄入一定量益生菌可能会辅助人体更好地排出铬。

虽然益生菌清除重金属的体外和体内研究越来越多,但仍缺少一套完整的清除机理和临床试验数据,医疗上的安全性也需要评估,研究有待新的突破。临床上使用益生菌治疗重金属中毒,以及有针对性的清除重金属的益生菌种类和功效,将是未来微生物和医学领域中一个值得研究的方向。

参考文献

[1] 郑喜珅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.

[2] 郭轶琼,宋丽.重金属废水污染及其治理技术进展[J].广州化工,2010,38(4):18-20.

[3] 朱石嶙,冯茜丹,党志.大气颗粒物中重金属的污染特性及生物有效性研究进展[J].地球与环境,2008,36(1):26-32.

[4] 孙光闻.重金属污染及治理研究进展[J].南方农业,2007,1(2):41-43;52.

[5] 马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-14.

[6] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3):407-418.

[7] CARLOS A C A D, DUTA F P. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis [J]. Brazilian Journal of Microbiology, 2001, 32(1):1-5.

[8] YAN L U, YIN H H, ZHANG S, et al. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3[J]. Journal of Hazardous Materials, 2010, 178(1-3):209-217.

[9] PATEL P, GOULHEN F, BOOTHMAN C, et al. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic [J]. Archives of Microbiology, 2007, 187(3):171-183.

[10] PUZON G J, PETERSEN J N, ROBERTS A G, et al. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex[J]. Biochemical and Biophysical Research Communications, 2002, 294(1):76-81.

[11] IBRAHIM F, HALTTUNEN T, TAHVONEN R, et al. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms [J]. Canadian Journal of Microbiology, 2006, 52(9):877-885.

[12] 翟齐啸.乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.

[13] SCHARZAMMARETTI P, UBBINK J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations [J]. Biophysical Journal, 2003, 85(6):4 076-4 092.

[14] HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology, 2007, 114(1):30-35.

[15] YIN R J, ZHAI Q X, YU L L, et al. The binding characters study of lead removal by Lactobacillus plantarum CCFM8661 [J]. European Food Research and Technology, 2016, 242(10):1 621-1 629.

[16] 张何,罗程印,傅昕.模拟肠道环境下肠道益生菌对三种重金属离子的富集作用的研究[J].食品工业科技,2015,36(21):349-352;357.

[17] 李荣,冯朋雅,叶泽,等.肠道修复:一种利用益生菌减少重金属积累的新思路[J].微生物学通报,2019,46(7):1 712-1 722.

[18] 叶峻.食品重金属污染及其防止措施[J].公共卫生与预防医学,2010,21(3):54-56.

[19] KECHAGIA M, BASOULIS D, KONSTANTOPOULOU S, et al. Health benefits of probiotics: A review [J].International Scholarly Research Notices, 2013: 481 651.

[20] HAVENAAR R, BRINK B T, VELD J H . Selection of strains for probiotic use [J]. Probiotics: The Scientific Basis, 1992:209-224.

[21] NAITO Y, UCHIYAMA K, TAKAGI T. A next-generation beneficial microbe: Akkermansia muciniphila [J]. Journal of Clinical Biochemisty and Nutrition, 2018, 63(1):33-35.

[22] 邓欢,赖星,孙志洪,等.革兰氏阴性益生菌大肠杆菌Nissle 1917益生机理及其在仔猪方面的应用[J].动物营养学报,2014,26(9):2476-2482.

[23] FELIS G E, DELLAGLIO F. Taxonomy of Lactobacilli and Bifidobacteria [J]. Current Issues in Intestinal Microbiology, 2007, 8(2):44-61

[24] HOLZAPFEL W H , HABERER P, GEISEN R, et al. Taxonomy and important features of probiotic microorganisms in food and nutrition[J]. The American Journal of Clinical Nutrition, 2001, 73(2): 365S-373S.

[25] STANTON C, GARDINER G E, MEEHAN H, et al. Market potential for probiotics[J]. The American Journal of Clinical Nutrition, 2001, 73(2):476-483.

[26] EWE J, WANABDULLAH W, LIONG W. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins [J]. International Journal of Food Sciences and Nutrition, 2010, 61(1):87-107.

[27] DRISKO J, GILES C K, BISCHOFF B. Probiotics in health maintenance and disease prevention [J]. Alternative Medicine Review. 2003, 8(2):143-155.

[28] 江爱清.益生菌辅助治疗婴幼儿继发性乳糖不耐受症疗效探讨[D].新疆医科大学,2014.

[29] MACK D R, MICHAIL S, WEI S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. American Journal of Physiology. 1999, 276(4): 941-950

[30] GU Q, LI P. Biosynthesis of vitamins by probiotic bacteria [A]. In Probiotics and Prebiotics in Human Nutrition and Health [M], 2016:135-148.

[31] WANG Y, XIE J, LI Y, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. European Journal of Nutrition, 2015, 55(2):821-831.

[32] OHLAND C L, MACNAUGHTON W K. Probiotic bacteria and intestinal epithelial barrier function [J]. American Journal of Physiology-gastrointestinal and Liver Physiology, 2010, 298(6): G807-G819.

[33] 李学超,王建忠,刘元辉.益生菌对机械通气新生儿呼吸道致病菌定植的影响[J].中国当代儿科杂志,2012,14(6):406-408.

[34] GLUCK U, GEBBERS J. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae and β-hemolytic streptococci) [J]. The American Journal of Clinical Nutrition, 2003, 77(2):517-520.

[35] SEZLARA M J, ROBLESSANCHEZ C, RUIZOJEDA F J, et la. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials [J]. International Journal of Molecular Sciences, 2016, 17(6):928.

[36] CUNNINGHAMRUNDLES S, AHRNE S, BENGMARK S, et al. Probiotics and immune response [J]. The American Journal of Gastroenterology, 2000, 95(1):22-25.

[37] PELTO L, ISOLAURI E, LILIUS E M, et al. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects[J]. Clinical & Experimental Allergy, 1998, 28(12):1 474-1 479.

[38] HENKER J, LAASS M W, BLOKHIN B M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers [J]. European Journal of Pediatrics, 2007, 166(4):311-318.

[39] DUCROTTÉ P, SAWANT P, JAYANTHI V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome [J].World Journal of Gastroenterology, 2012, 18(30): 4 012-4 018.

[40] World Health Organization. Safety evaluation of certain food additives and contaminants in food[R]. Geneva, 2004.

[41] JARUP L, BERGLUND M, ELINDER C G, et al. Health effects of cadmium exposure-a review of the literature and a risk estimate [J]. Scandinavian Journal of Work, Environment & Health, 1998, 24(1):1-51.

[42] SATO M, KONDOH M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals [J]. Tohoku Journal of Experimental Medicine, 2002, 196(1):9-22.

[43] KLINCK J S, WOOD C M. Gastro-intestinal transport of calcium and cadmium in fresh water and seawater acclimated trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2013, 157(2):236-250.

[44] THEVENOD F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells [J]. Biometals, 2010, 23(5):857-875.

[45] MARTINEAU C, ABED E, MÉDINA G, et al. Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts[J]. Toxicology Letters, 2010, 199(3):357-363.

[46] ALFVENT, JARUP L, ELINDER C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria[J]. Environmental Health Perspectives, 2002, 110(7):699- 702.

[47] DIJKSTRA M, HAVINGA R,VONK R J, et al. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems [J]. Life Sciences, 1996, 59(15):1 237-1 246.

[48] 黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展[J].安徽农业科学,2007,35(9):2 528-2 531.

[49] 金慧英,胡惠民,周雍.急性镉中毒的肝脏损伤机制及金属硫蛋白的保护作用[J].中华劳动卫生职业病杂志,1998,16(1):43-46.

[50] 朱善良,陈龙.镉毒性损伤及其机制的研究进展[J].生物学教学,2006,31(8):2-5.

[51] IVANINA A V, CHERKASOV A S, SOKOLOVA I M. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin [J]. The Journal of Experimental Biology, 2008, 211(4):577-586.

[52] SON Y O, WANG X, HITRON J A, et al. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells [J]. Toxicology and Applied Pharmacology, 2011, 255(3):287-296.

[53] LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicology and Applied Pharmacology, 2009, 238(3):209-214.

[54] HENI J E, MESSAOUDI I, CHAOUACHACHEKIR R B. Effects of sub-chronic exposure to cadmium on some parameters of calcium and iodine metabolisms in the Shaw's jird Meriones shawi [J]. Environmental Toxicology and Pharmacology, 2012, 34(2):136-143.

[55] LIU Y H, LI Y H, LIU K Y, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PLOS ONE, 2014, 9(2):e0085323.

[56] TEEMU H, SEPPO S, JUSSI M, et al. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria [J]. International Journal of Food Microbiology, 2008, 125(2): 170-175.

[57] GERBINO E, CARASI P, TYMCZYSZYN E E, et al. Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity [J]. Journal of Dairy Research, 2014, 81(3):280-287.

[58] ZHAI Q X, WANG G, ZHAO J X, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice: Intestinal sequestration is not the only route of protection [J]. Applied and Environmental Microbiology, 2014, 80(13):4 063-4 071.

[59] NIES D H. Efflux-mediated heavy metal resistance in prokaryotes [J]. Fems Microbiol Reviews, 2003, 27(2):313-339.

[60] NIES D H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cationproton antiporter in Escherichia coli [J]. Journal of Bacteriology, 1995, 177(10):2 707-2 712.

[61] WEI X, FANG L C, CAI P, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria [J]. Environmental Pollution, 2011, 159(5): 1 369-1 374.

[62] 徐粲然,卢滇楠,刘永民. 生物钝化修复镉污染土壤研究进展[J].化工进展,2014, 33(8):2 174-2 179.

[63] KONHAUSER K O, SCHULTZELAM S, FERRIS F G, et al. Mineral precipitation by epilithic biofims in the Speed River, Ontario, Canada[J]. Applied and Environmental Microbiology, 1994, 60(2):549-553.

[64] TABAK H H, LENS P N, HULLEBUSCH E D V. Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport [J]. Environmental Science and Bio/Technology, 2005, 4(3):115-156.

[65] 熊婧.乳酸菌对重金属镉的耐受性和吸附机制研究[D].广州:暨南大学,2015.

[66] Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain food additives and contaminants[R]. Geneva, 2011.

[67] 马宝艳,张学林.环境中铅中毒的研究[J].微量元素与健康研究,1999,1:78-80.

[68] 王德青.机体铅代谢及毒性检测[J].国外医学(卫生学分册),1985,5:277-280.

[69] FLORA S J S, MITTAL M, MEHTA A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy[J]. The Indian journal of medical research, 2008, 128(4):501-523.

[70] DART R C, HURLBUT K M, HASSEN B, et al. Medical Toxicology [M]. 3rd ed. PA, USA: Lippincott Williams & Wilkins, 2004:1 423-1 432

[71] PAWLIKSKOWRONSKA B. Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris [J]. Aquatic Toxicology, 2000, 50(3): 221-230.

[72] LIDSKY T I, SCHNEIDER J S. Lead neurotoxicity in children: basic mechanisms and clinical correlates [J]. Brain, 2003, 126(1):5-19.

[73] TIAN F W, ZHAI Q X, ZHAO J X, et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice[J]. Biological trace element research, 2012, 150(1):264-271.

[74] ZANJANI S Y, ESKANDARI M R, KAMALI K, et al. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains [J]. Environmental Science and Pollution Research, 2016:1-6.

[75] DELCOUR J, FERAIN T, DEGHORAIN M, et al. The biosynthesis and functionality of the cell-wall of lactic acid bacteria [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1999, 76(1-4):159-184.

[76] 徐颖,李洁,贺丹丹,等. 两株乳酸菌对铅的吸附作用[J].食品与机械,2018,34(3):49-53.

[77] 赵维梅.环境中砷的来源及影响[J].科技资讯,2010,(8):146.

[78] NORMAN C N. Chemistry of arsenic, antimony and bismuth [M]. Blackie Academic & Professional, 1998:547-558.

[79] National Institute for Occupational Safety and Health (NIOSH). Arsine: Immediately Dangerous to Life and Health Concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/7784421.html.

[80] National Institute for Occupational Safety and Health (NIOSH). Methyl methacrylate: Immediately dangerous to life and health concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/80626.html.

[81] OPRESKO D M. Toxicity profiles[R].Risk Assessment Information System. TN, USA, 1992.

[82] 王瑛,陈苗苗,谭婷婷,等.海产品中的砷及其代谢机制的研究进展[J].现代食品科技,2014,30(11):256-265.

[83] PERGANTIS S A, FRANCESCONI K A, GOESSLER W, et al . Characterization of arsenosugars of biological origin using fast atom bombardment tandem mass spectrometry [J]. Analytical Chemistry, 1997, 69(23):4 931-4 937.

[84] GONG Z L, LU X F, MA M S, et al. Arsenic speciation analysis [J]. Talanta, 2002, 58(1): 77-96.

[85] DEVESA V, MARTINEZ A, SUNER M A, et al. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood[J]. Journal of Agricultural and Food Chemistry, 2001, 49(5):2 272-2 276.

[86] RATNAIKE R N. Acute and chronic arsenic toxicity [J]. Postgraduate Medical Journal, 2003, 79(933):391-396.

[87] LOGEMANN E, KRUTZFELDT B, POLLAK S. Suicidal administration of elemental arsenic [J]. Arch Kriminol, 1990, 185:80-88.

[88] NAUJOKAS M F, ANDERSON B E, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem [J]. Environmental Health Perspectives, 2013, 121(3):295-302.

[89] 肖发怀,陈丽丽,刘丽娟,等.急性砷化物中毒的临床诊疗分析[J].世界最新医学信息文摘,2016,16(93):34-35.

[90] MAZUMDER D N. Chronic arsenic toxicity & human health [J]. Indian Journal of Medical Research,2008,128(4):436-447.

[91] GUO H, CHIANG H, HU H, et al. Arsenic in drinking water and incidence of urinary cancers[J]. Epidemiology, 1997, 8(5):545-550.

[92] CHIOU H G, HUANG W, SU C L, et al. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic[J]. Stroke, 1997, 28(9):1 717-1 723.

[93] MAZUMDER D G, DASGUPTA B U. Chronic arsenic toxicity: Studies in West Bengal, India [J]. Kaohsiung Journal of Medical Sciences, 2011, 27(9):360-370.

[94] TSAI S, WANG T, KO Y. Mortality for certain diseases in areas with high levels of arsenic in drinking water [J]. Archives of Environmental Health, 1999, 54(3):186-193.

[95] ABERNATHY C O, LIU Y P, LONGFELLOW D G, et al. Arsenic: health effects, mechanisms of actions and research issues [J]. Environmental Health Perspectives, 1999, 107(7):593-597.

[96] CHEN L, LIANG R J, TAN T T, et al. Recent development in arsenic speciation and toxicity reduction of inorganic arsenic in food [J]. European Journal of BioMedical Research, 2016, 2(1):27-31

[97] MILLER W H, SCHIPPER H M, LEE J, et al. Mechanisms of action of arsenic trioxide [J]. Cancer Research, 2002, 62(14):3 893-3 903.

[98] CASTROCORONEL T, RAZO L M D, HUERTA M, et al. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells[J]. Toxicological sciences, 2011, 122(2):539-550.

[99] AMEYAR M, WISNIEWSKA M, WEITZMAN J B. A role for AP-1 in apoptosis: the case for and against [J]. Biochimie, 2003, 85(8):747-752.

[100] HOSSAIN E, OTA A, TAKAHASHI M, et al. Arsenic upregulates the expression of angiotensin II type I receptor in mouse aortic endothelial cells[J]. Toxicology Letters, 2013, 220(1):70-75.

[101] SASAKI A, OSHIMA Y, FUJIMURA A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide [J]. Experimental Hematology, 2007, 35(2):252-262.

[102] ZHANG T C, SCHMITT M T, MUMFORD J L. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro[J]. Carcinogenesis, 2003, 24(11): 1 811-1 817.

[103] HU Y, SU L, SNOW E T. Arsenic toxicity is enzyme specific and its effects on ligation are not caused by the direct inhibition of DNA repair enzymes [J]. Mutation Research-DNA Repair, 1998, 408(3):203-218.

[104] TCHOUNWOU P B, UDENSI U K, ISOKPEHI R D, et al. Arsenic and Cancer[A]. In Handbook of Arsenic Toxicology[M], Academic Press, 2015:533-555.

[105] TAWFIK D S, VIOLA R E. Arsenate replacing phosphate: Alternative life chemistries and ion promiscuity [J]. Biochemistry, 2011, 50(7): 1 128-1 134.

[106] 化学化工大辞典[M].北京:化学工业出版社,2003:2 032.

[107] HUGHES M F, RAZO L M D, KENYON E M. Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration[J]. Journal of Toxicology and Environmental Health, Part A, 1998, 53:95-112.

[108] WANG T C, JAN K Y, WANG A S S, et al. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615(1):75-86.

[109] 王鹤茹,刘燕舞.污染土壤生物修复的研究进展[J].安徽农业科学,2010,38(20):11 013-11 014;11 017.

[110] NAIDU R, SMITH E, OWENS G, et al. Managing arsenic in the environment from soil to human health[M]. Australia: Commonwealth Scientific and Industrial Research Organization Press, 2006:417-432.

[111] HENRY H, CREEN. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths [J]. Journal of the South African Veterinary Association, 1918, 34(6):593-599.

[112] VALENZUELA C, CAMPOS V L, YANEZ J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596.

[113] 吴锡,许丽英,张雪霞,等.缺氧条件下土壤砷的形态转化与环境行为研究[J].环境科学,2012,33(1):273-279.

[114] 余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3 898-3 904.

[115] JAIN A, SHARMA V K, MBUYA O S. Removal of arsenite by Fe (VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: Effect of pH and anions[J]. Journal of Hazardous Materials. 2009, 169(1):339-344.

[116] 李素玉.环境微生物分类与检测技术[M].化学工业出版社,2005:147-148.

[117] TAKEUCHI M, KAWAHATA H, GUPTA L P, et al. Arsenic resistance and removal by marine and non-marine bacteria[J]. Journal of Biotechnology, 2007, 127(3):434-442.

[118] 刘玲.砷污染土壤中砷氧化菌的筛选[D].广州:广东工业大学,2007.

[119] 苏世鸣,曾希柏,蒋细良,等.高耐砷真菌的分离及其耐砷能力[J].应用生态学报,2010,21(12):3 225-3 230.

[120] HALTTUNEN T, FINELL M, SALMINEN S. Arsenic removal by native and chemically modified lactic acid bacteria [J]. International Journal of Food Microbiology, 2007, 120(1):173-178.

[121] SUN G X, WIELE T V D, ALAVA P, et al. Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and specia-tion in the human gastrointestinal tract [J]. Environmental Pollution, 2012, 162:241-246.

[122] BISANZ J, ENOS M, MWANGA J, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in tanzanian pregnant women and school children [J]. MBio, 2014, 5(5):e01580-14.

[123] SILVER S, PHUNG L T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions [J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(11-12):587-605.

[124] ROSEN B P. Biochemistry of arsenic detoxification [J]. FEBS Letters, 2002, 529(1):86-92.

[125] CARLIN A, SHI W, DEY S, et al. The ars operon of Escherichia coli confers arsenical and antimonial resistance [J]. Journal of Bacteriology, 1995, 177(4):981-986

[126] SILVER S, PHUNG L T. Bacterial heavy metal resistance: new surprises [J]. Annual Review of Microbiology, 1996, 50(1):753-789.

[127] FRANKENBERGER W T. Environmental chemistry of arsenic [M]. New York: Marcel Dekker, 2002:343-361.

[128] SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic [J]. Applied and Environmental Microbiology, 2005, 71(2):599-608.

[129] THOMAS DJ, WATERS S B, STYBLO M. Elucidating the pathway for arsenic methylation [J]. Toxicology and Applied Pharmacology, 2004, 198(3):319-326.

[130] NRIAGU J O. Arsenic in the Environment, Part 1: Cycling and Characterization [M]. New York: Wiley, 1994:155-187.

[131] MUKHOPADHYAY R, ROSEN B P, PHUNG LT, et al. Microbial arsenic: from geocycles to genes and enzymes [J]. FEMS Microbiology Reviews, 2002, 26(3):311-325.

[132] BRANDES E A, GREENAWAY H T, STONE H E N. Ductility in chromium [J]. Nature, 1956, 178(4 533):587.

[133] COTTON F A. Chromium compound. In Multiple Bonds Between Metal Atoms [M].Oxford University Press, 2005:35-68.

[134] US National Institutes of Health. Chromium [EB/OL]. https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/. 2016.

[135] DAYAN A, PAINE A J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000[J].Human&Experimental Toxicology, 2001, 20(9): 439-451.

[136] KATZ S, SALEM H. The toxicology of chromium with respect to its chemical speciation: A review [J]. Journal of Applied Toxicology, 1993, 13(3):217-224.

[137] 高步先,夏耕田,张乃生.铬的生物学功能及其在动物体内的代谢[J].动物医学进展, 2002, 23(6): 49-51.

[138] 朱良印,郑林英.微量元素铬的吸收代谢与生化功能[J].中国畜牧兽医,2006,33(4):13-15.

[139] 王青,王娜.铬对人体与环境的影响及防治[J].微量元素与健康研究,2011,28(5):64-66.

[140] 中国营养学会编著.中国居民膳食营养素参考摄入量速查手册[M].2013版.北京:中国标准出版社.27.

[141] EASTMOND D A, MACGREGOR J T, SLESINSKI R S. Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement [J]. Critical Reviews in Toxicology, 2008, 38(3):173-190.

[142] RAJA N S, NAIR B U. Chromium (III) complexes inhibit transcription factors binding to DNA and associated gene expression [J]. Toxicology, 2008, 251(1):61-65.

[143] LI MM, ZHU JY, GAN M, et al. Characteristics of chromium coprecipitation mediated by Acidithiobacillus ferrooxidans DC [J]. Water Air Soil Pollution, 2014, 225(8):2 071.

[144] MUDHOO A, GARG V K, WANG S B. Removal of heavy metals by biosorption [J]. Environmental Chemistry Letters, 2011, 10(2):109-117.

[145] UPRETI R K, SHRIVASTAVA R, CHATURVEDI U C. Gut microflora & toxic metals:chromium as a model [J]. Indian Journal of Medical Research, 2004, 119(2):49-59.

[146] ZHITKOVICH A. Chromium in drinking water: Sources, metabolism, and cancer risks [J]. American Chemical Society, 2011, 24(10):1 617-1 629.

[147] DAS S, CHANDRA A L. Chromate reduction in Streptomyces [J]. Cellular and Molecular Life Sciences, 1990, 46(7):731-733.

[148] 马小珍,费保进,金楠,等.脱硫弧菌SRB7对重金属铬Cr(VI)的还原特性[J].微生物学通报,2009,36(9):1 324-1 328.

[149] GOULHEN F, GLOTER A, GUYOT F, et al. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies[J]. Applied Microbiology and Biotechnology, 2006, 71(6):892- 897.

[150] OHTAKE H, FUJII E, TODA K. A survey of effective electron donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1) [J]. Journal of General and Applied Microbiology, 1990, 36(3):203-208.

[151] WANG P, TODA K, OHTAKE H, et al. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate[J]. FEMS Microbiol Letters, 1991, 78(1):11-16.

[152] MCLEAN J S, BEVERIDGE T J. Chromate reduction by a Pseudomonad Isolated from a Site contaminated with chromated copper arsenate [J]. Applied and Environmental Microbiology, 2001, 67(3):1 076-1 084.

[153] LIU Y G, XU W H, ZENG G M, Et al. Cr(VI) reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41(9):1 981-1 986.

[154] LATHA S, VINOTHINI G, DHANASEKARAN D. Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22[J]. BioTechniques, 2015, 5:423-432.

[155] UPRETI R K, SINHA V, MISHRA R, et al. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder [J]. Journal of Environment Biology, 2011, 32(3):325-332.

[156] KUMAR C S V S, RANI M U, REDDY D D, et al. Effect of probiotic strain Lactobacillus casei strain 17 AGAINST toxicity induced by chromium in female reproductive system of rats [J]. International Journal of Pharm and Bio Sciences, 2013, 4(1):1 119-1 130

[157] KSHEMINSKA H, FEDOROVYCH D V, HONCHAR T, et al. Yeast tolerance to chromium depends on extracellular chromate reduction and Cr (III) chelation [J]. Food Technology and Biotechnology, 2008, 46(4):419-426.

[158] SHRIVASTAVA R, UPRETI R K, CHATURVEDI U C. Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium [J]. FEMS Immunology and Medical Microbiology, 2003, 38(1):65-70.

[159] 孙嘉龙,李梅,曾德华.微生物对重金属的吸附、转化作用[J].贵州农业科学.2007, 35(5):147-150.

[160] 杨峰,尹华,彭辉,等.酵母融合菌对铬离子的吸附特性研究[J].环境化学,2007,26(3):318-322.

[161] 高小朋,张欠欠,许平,等.微生物还原Cr(VI)的研究进展[J].微生物学通报,2008,35(5):820-824.

[162] ELANGOVAN R, ABHIPSA S, ROHIT B, et al. Reduction of Cr(VI) by a Bacillus sp [J]. Biotechnology Letters, 2006, 28:247-252.

[163] DEFLORA S, WETTERHAN K E. Mechanisms of chromium metabolism and genotoxicity [J]. Life Chemical Report, 1989, 7:169-244.

[164] VIERA M, CURUTICHET G, DONATI E. A combined bacterial process for the reduction and immobilization of chromium [J]. International Biodeterioration & Biodegradation, 2003, 52(1):31-34.

[165] BOPP L H, EHRLICH H L. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300 [J]. Archives of Microbiology, 1988, 150(5):426-431.

[166] GHARIEB M M, GADD G M. Role of glutathione in detoxification of metal (loid)s by Saccharomyces cerevisiae[J]. Biometals, 2004, 17(2):183-188.

[167] 邵雷.汞污染对食品质量的危害及对人体的伤害[J].现代食品,2016,1(2):36-37.

[168] 曾少军,曾凯超,杨来.中国汞污染治理的现状与策略研究.[J]中国人口、资源与环境,2014,24(S1):92-96.

[169] 苗利军.汞污染对人体的危害[J].农业工程,2013,3(3):83-84.

[170] KOT A, NAMIESNIK J. The role of speciation in analytical chemistry [J]. Trends in Analytical Chemistry, 2000, 19(2-3):69-79.

[171] 冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2009,21(Z1):436-457.

[172] BERNARD S R , 苏鲁.甲基汞和无机汞的代谢模式[J].国外医学(卫生学分册).1985,(2):92-94.

[173] HOLMES A S, BLAXILL M F, HALEY B E. Reduced levels of mercury in first baby haircuts of autistic children[J]. International Journal of Toxicology, 2003, 22(4):277-285.

[174] 张燕萍,颜崇淮,沈晓明.环境中汞污染来源、人体暴露途径及其检测方法[J].广东微量元素科学, 2004,11(6):11-16.

[175] 李爱,陈雷,胡新武,等.甲基汞诱导海马神经细胞凋亡及其机制研究[J].环境与健康杂志,2008, 25(1):18-21;95.

[176] 金明华,姜春明,王欣,等.甲基汞对小鼠睾丸生殖细胞凋亡作用[J].中国公共卫生,2006,22(10): 1 225-1 226.

[177] 林雪梅,张海英,姜蓉,等.低剂量甲基汞促进鼠胚肠上皮细胞凋亡及相关机制的体内实验[J].第三军医大学学报,2007,29(5):410-412.

[178] 何继亮.用液体贮存法研究氯化甲基汞对人体淋巴细胞的遗传毒性效应[J].浙江医科大学学报,1994,6:265-268.

[179] GREENRUIZ C. Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary [J]. Bioresource Technology, 2006, 97(15):1 907-1 911.

[180] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7):701-709.

[181] ROWLAND I R, DAVIESM J, EVANS J G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora [J]. Archives of Environmental Health: An International Journal, 2013, 35(3):155-160.

[182] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701-709.

[183] BOONYODYING K, WATCHARASUPAT T, YOTPANYA W, et al. Factors affecting the binding of a recombinant heavy metal-binding domain (CXXC motif) protein to heavy metals[J]. Environment Asia, 2012, 5(2):70-75.

[184] 王欣卉,王颖,佐兆杭,等.酵母源金属硫蛋白对慢性汞中毒小鼠排汞及肝脏损伤修复作用[J].食品科学,2017,38(19):195-200.

[185] ROWLAND LR, ROBINSON R, DOHERTY R A. Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora [J]. Archives of Environmental Health: An International Journal, 1984, 39(6):401-408.

[186] DUCROS V. Chromium metabolism: a literature review [J]. Biological Trace Element Research, 1992, 32:65-77.

[187] WELINDER H, LITTORIN M, GULLBERG B, et al. Elimination of chromium in urine after stainless steel welding[J]. Scandinavian Journal of Work, Environment & Health , 1983, 9(5):397-403.

Research progress on the mechanism of heavy metal contaminationand probiotics sequestration

WANG Ying1*, LIN Yuqing3, LI Aijun1, LIN Qihao2, XUE Xue1, WANG Hongfei1, CHEN Wanying2

1(Department of Food Science & Engineering, Jinan University, Guangzhou 510632,China) 2(International School, Jinan University, Guangzhou 510632,China) 3(SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch, Guangzhou 510632,China)

ABSTRACT Food chain could be contaminated by heavy metals accumulated from polluted industrial sources. Once heavy metals entered human body, excretion rate is relatively low. Microorganisms have been widely employed by the industry as means to remove heavy metals from waste water and residues. The major mechanisms involved in these processes include microorganism absorption, precipitation and oxidation-reduction. Some probiotics have the similar capabilities. Therefore, the appropriate application of probiotics implies their potential role in removing heavy metals from human body. This paper reviewed the potential application of probiotics for the removal of five most common heavy metals in food-cadmium, lead, arsenic, chromium and mercury, as well the related mechanisms.

Key words probiotic; heavy metal; cadmium; lead, arsenic; chromium; mercury

DOI:10.13995/j.cnki.11-1802/ts.021349

引用格式:王瑛,林钰清,李爱军,等.重金属危害机制及益生菌清除重金属机制研究进展[J].食品与发酵工业,2020,46(3):281-292.WANG Ying, LIN Yuqing, LI Aijun, et al. Research progress on the mechanism of heavy metal contamination and probiotics sequestration[J].Food and Fermentation Industries,2020,46(3):281-292.

第一作者:博士,副教授(本文通讯作者,E-mail:twangywy@jnu.edu.cn)

基金项目:国家自然科学基金-青年基金(31101307)

收稿日期:2019-06-12,改回日期:2019-10-09