高温蒸煮协同纤维素酶改性竹笋膳食纤维

汪楠1,2,黄山1,2,张月1,2,张甫生1,2,郑炯1,2*

1(西南大学 食品科学学院,重庆, 400715)2(食品科学与工程国家级实验教学示范中心(西南大学),重庆,400715)

摘 要 以竹笋膳食纤维(bamboo shoot dietary fiber,BSDF)为研究对象,分别采用纤维素酶酶解(ET)、高温蒸煮(HT)、高温蒸煮协同纤维素酶(ET-HT)处理BSDF,分析其结构和理化性质(持水力、膨胀力、持油力、色泽)的变化。结果表明,改性后BSDF的粒径均显著减小(P<0.05),ET-HT40组BSDF的粒径((423±23.7) nm)最小,改性处理后的BSDF的电位均显著下降(P<0.05)。ET-HT处理后BSDF呈片状结构,ET-HT组BSDF的L*值(54.26±0.64)和b*值(18.41±0.29)最小,a*值(9.63±0.17)最大。ET-HT20组BSDF 的持水力((5.29±0.17) g/g)和膨胀力((13.22±0.12) mL/g)最大,ET-HT40组BSDF的持油力((8.35±0.03) g/g)最大。热重分析表明ET-HT处理BSDF的热稳定性最强。红外光谱表明ET、HT和ET-HT改性后BSDF的主要官能团结构未发生改变。综上,ET-HT较单独ET和HT更有效地改善了BSDF的理化性质,是提升BSDF品质的有效方式。

关键词 竹笋膳食纤维;高温蒸煮;纤维素酶;理化性质;微观结构

第一作者:本科生(郑炯副教授为通讯作者,E-mail:zhengjiong_swu@126.com)

基金项目:国家自然科学基金(31701617)

收稿日期:2019-09-23,改回日期:2019-10-13

DOI:10.13995/j.cnki.11-1802/ts.022326

引用格式:汪楠,黄山,张月,等.高温蒸煮协同纤维素酶改性竹笋膳食纤维[J].食品与发酵工业,2020,46(4):13-18.WANG Nan, HUANG Shan, ZHANG Yue, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J].Food and Fermentation Industries,2020,46(4):13-18.

Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase

WANG Nan1,2, HUANG Shan1,2, ZHANG Yue1,2, ZHANG Fusheng1,2, ZHENG Jiong1,2*

1(College of Food Science, Southwest University, Chongqing 400715, China)2(National Demonstration Center for Experimental Food Science and Engineering Education (Southwest University), Chongqing 400715, China)

ABSTRACT Cellulase hydrolysis, high temperature cooking (HT), high temperature cooking combined with cellulose (ET-HT) were applied to modify bamboo shoot dietary fiber (BSDF). The physicochemical properties such as color, water holding capacity, swelling capacity, oil holding capacity, thermal gravity and structure such as particle size, potential, microstructure, infrared spectroscopy were measured. The results showed that the particle size of BSDF were significantly reduced after modifications (P<0.05). The particle size ((423±23.7) nm) of BSDF was the smallest in the group of ET-HT40. The potentials of BSDF were all significantly decreased after modification(P<0.05). BSDF showed flaky structure after ET-HT treatment. The smallest L*(54.26±0.64) and b* (18.41±0.29) were caused by ET-HT treatment meanwhile the largest a*(9.63±0.17)was obtained. The BSDF treated by ET-HT20 has the largest water holding capacity ((5.29±0.17) g/g) and swelling capacity ((13.22±0.12) mL/g) while the largest oil holding capacity ((8.35±0.03) g/g) was obtained with ET-HT40 treatment. Thermal gravity analysis showed that the thermal stability of BSDF was strongest after ET-HT20. Infrared spectroscopy indicated that the main functional groups structure of BSDF were not be changed by ET, HT and ET-HT treatment. Above results showed that ET-HT was an effective approach to improve the physicochemical properties of BSDF compared with ET and HT treatment.

Key words bamboo shoot;dietary fiber;high temperature cooking;cellulase;physicochemical properties;microstructure

竹笋作为一种绿色森林蔬菜,富含蛋白质、膳食纤维、氨基酸、矿物质、无机盐等多种营养成分[1],越来越受到消费者的欢迎。鲜竹笋贮藏时间短,故常被加工成笋干、水煮笋、腌制笋等食品。随着竹笋加工业的快速发展,竹笋加工过程中往往会产生大量的笋壳、笋头和笋脚等副产物,其中大部分副产物被随意丢弃或利用率低,造成了相当大的环境污染和资源浪费[2]。研究表明竹笋副产物中的膳食纤维(dietary fiber,DF)含量可达干重的40%左右,高于一般食用蔬菜[3]。竹笋膳食纤维(bamboo shoot dietary fiber,BSDF)的添加被证明可以降低油炸鱼丸面包吸收脂肪的能力[1],有效改善牛奶布丁的流变性能和组织性能[4]。添加BSDF可以解决食品中DF缺乏问题以及改善食品的质构和感官特性。因此,利用竹笋加工副产品作为DF的来源,既可以解决DF来源不足的问题,同时还可以减少环境污染,实现竹笋的综合利用,提高其附加值。

DF根据其溶解性可分为可溶性膳食纤维(solubble dietary fiber,SDF)和不溶性膳食纤维(insoluble dietary fiber,IDF)。与IDF相比,SDF具有更多的功能特性和更大的黏度、乳化性,SDF通常也会提供更好的质地和口感,因此很容易应用于食品加工。竹笋中DF含量高,但竹笋中的DF大多是不溶性的,SDF含量低限制了其在食品工业中的应用。因此,生物法、化学法和物理法被用来改性DF以提高SDF含量[5-8]。近年来,一些研究者利用挤压结合纤维素酶[9]、超声波辅助蒸煮碱处理[10]、挤压结合酶[11]、高温蒸煮结合纤维素酶[12]等联合处理方式对DF进行改性。根据结构决定性质的原理,改性处理可减小DF的粒径,使DF中更多的功能基团暴露,从而增强其持水性、溶胀性、油脂结合能力、黏度、阳离子交换能力、抗氧化等理化性质及功能特性。然而,目前对于高温蒸煮协同纤维素酶改性BSDF后理化性质和结构的研究鲜有报道。因此,本文采用高温蒸煮协同纤维素酶改性BSDF,并比较了单独高温蒸煮和酶解处理以及高温协同酶解处理后BSDF的粒径、微观结构、水合性质、持油能力、色泽、热稳定性和官能团组成,旨在为BSDF改性提供一种新的方法。

1 材料与方法

1.1 材料与试剂

麻竹笋,重庆市北碚区天生菜市场;金龙鱼食用油,重庆市北碚区永辉超市;纤维素酶(40 U/mg)、木瓜蛋白酶(800 U/mg)等,上海源叶生物科技有限公司有限公司。

1.2 仪器与设备

HH-ZK8数显恒温水浴锅,巩义市予化仪器有限责任公司;FA1004A电子分析天平,上海精天电子仪器有限公司;GR60DA高压灭菌锅,美国Zealway致微公司;Zetasizer Nano ZS粒度分析仪,英国马尔文仪器有限公司;Phenom Pro扫描电镜,荷兰Phenom World公司;UltraScan PRO分光测色仪,美国HunterLab公司;TGA55热重分析仪,美国TA公司;Spectrum 100傅里叶红外光谱仪,美国Perkin Elmer公司。

1.3 样品处理

取新鲜无损伤麻竹笋,洗净切片,取用麻竹笋肉,用沸水漂烫8 min,60 ℃烘干,用粉碎机粉碎后过100目筛得到麻竹笋粉,加木瓜蛋白酶800 U/g,料液比1∶20 (g∶mL),55 ℃ 酶解2 h后沸水灭酶15 min,在3 000 r/min下离心15 min,收集离心得到的沉淀物,冷冻干燥,粉碎得到BSDF。

取BSDF加纤维素酶300 U/g,料液比1∶12 (g∶mL),60 ℃酶解1.5 h得到纤维素酶解组BSDF(ET),取BSDF在温度120 ℃,设置不同的蒸煮时间(20、40 min)进行高温蒸煮处理分别得到HT20、HT40组BSDF;取纤维素酶处理后的BSDF在温度120 ℃,设置不同的蒸煮时间(20、40 min)进行高温蒸煮分别得到ET-HT20、ET-HT40组BSDF。以未处理的BSDF作为空白对照(CK)。

1.4 测定方法

1.4.1 粒径和电位的测定

将样品用蒸馏水稀释1 000倍后,采用纳米粒度仪测定其粒径大小和电位。粒径测定条件:平衡时间2 min,测定温度25 ℃,所用光源为最大输出功率10 W的He-Ne激光,检测角90°,检测波长633 nm。避免多重光散射,每次循环扫描10~120次。电位测定条件:折叠毛细管样品池,0.45 cm2铂电极,折叠毛细管间距0.4 cm,平衡时间2 min,测定温度25℃,每次循环扫描10~100次。每个样品重复测定3次。

1.4.2 微观结构

将干燥至恒重的BSDF粉末固定于双面导电的样品台上,喷金使其具有导电性,采用扫描电镜观察样品的微观结构并拍照记录。扫描电镜电压10 kV,放大倍数1 000倍。

1.4.3 色泽的测定

BSDF的色泽使用分光测色仪进行测定。记录每个样品的明度(L*)、绿/红度(a*)、蓝/黄度(b*)等不同颜色参数的值。总色差(△E)表示颜色强度,采用公式(1)计算:

(1)

1.4.4 持水力、膨胀性、持油性的测定

参考CHEN等[13]和HUA等[14]的方法略作修改,一式3份测定持水力(water holding capacity,WHC)、膨胀性(swelling capality,SC)、持油性(oil holding capacity,OHC)。

称取样品0.5 g,放入烧杯中,加入20 mL蒸馏水后静置6 h,在4 500 r/min下离心15 min后,收集沉淀物称重测定WHC。称取0.2 g样品,放入10 mL量筒中读取体积V1,量取8 mL纯水转移到10 mL量筒中,振荡均匀,室温下放置24 h,记录BSDF吸水后的体积测定SC。

称取样品0.5 g,放入烧杯中,加入食用油20 mL后静置6 h,在4 500 r/min下离心15 min后,收集沉淀物,用滤纸吸收BSDF表面多余的油脂后,称重测定OHC。

1.4.5 热重测定

取5~10 mg干燥样品用同步热分析仪进行热重分析,采用热重法(thermogravimetry,TG)和微分热重分析法(differential thermogravimetry analysis,DTG)测定样品的热力学性质。试验在充N2的条件下进行,升温速率为10 ℃/min,测定范围为25~600 ℃。

1.4.6 红外光谱分析

取样品1 mg干燥至恒重,放于玛瑙研钵中,加入100 mg的干燥的KBr粉末,研磨混匀至细微的粉末状。取0.05 g研磨后的混合物粉末,装入并使其均匀平铺于压片模具中,抽气加压,保持3 min左右,将制成的透明薄片迅速放入红外光谱仪中进行分析扫描,扫描次数32次,分辨率4 cm-1,扫描范围500~4 000 cm-l

1.5 数据分析

使用SPSS 25.0统计软件,对数据进行方差分析;试验数据通过数据分析系统软件对数值进行差异显著性分析(P<0.05表示显著,P>0.05表示不显著)。每个试验重复3次。运用Origin 8.0软件对数据进行处理绘图。

2 结果与分析

2.1 不同处理对BSDF粒径和电位的影响

图1为不同处理BSDF的粒径和电位。由图1可知,不同处理均能显著减小BSDF的粒径(P<0.05),HT组与ET组粒径无显著差异(P>0.05),HT40和ET-HT40组粒径分别小于HT20和ET-HT20组,ET-HT40组粒径((423±23.7) nm)最小,粒径的减小可能是纤维素被水解为小分子以及BSDF颗粒断裂所致[5]。DF粒径与其吸收水和油的能力、在结肠中的运输和发酵等理化性质和功能特性密切相关[15]。有研究表明粒径减小会增加DF分子间的范德华力、静电引力和表面活性,对DF的理化性质有重要影响[16]。BSDF的电位在不同处理后均显著减小(P<0.05),各处理组间电位无显著差异(P>0.05)。处理后BSDF含有较大的负电荷,可能是大量的羟基和羧基存在所致。电位绝对值较大,则粒子间的静电排斥作用较大,可以防止絮凝和凝聚,从而提高稳定性[17]。HAN等[18]发现少量的麦麸DF增强了小麦淀粉颗粒间的排斥力,增加了颗粒间的稳定性。

a-粒径;b-电位
图1 不同处理方式对BSDF的粒径和电位的影响
Fig.1 Effects of different treatments on the particle size
and potential of BSDF
注:图中不同处理小写字母代表差异显著(P<0.05)

2.2 不同处理对BSDF微观结构的影响

图2为不同处理后BSDF放大1 000倍的扫描电镜图。经过处理后的BSDF颗粒更细小,ET-HT40组BSDF颗粒细小均匀,与粒径结果一致。颗粒尺寸的减小和比表面积的增加促进了酶的水解和DF结构的崩解[5]。CK、ET和HT组BSDF呈球状,ET-HT组呈片状,有孔隙结构出现。这可能是在高温高压条件下糖苷键断裂,分子颗粒减小,纤维素酶的水解导致BSDF表面的纤维素颗粒松散,分子质量和聚合度降低[19]。有研究发现挤压处理后BSDF为片状,有浅裂纹和深裂纹,酶解处理后有多块碎片和层状结构,而挤压结合酶解处理后BSDF表面结构呈蜂窝状[9]。也有研究发现酶解后BSDF呈蜂窝状结构,有较多的孔洞和裂纹,有助于葡萄糖等的扩散[21]。BSDF微观结构的改变使得BSDF更容易与水接触,从而提高BSDF的水溶性和保水能力[20]。HT和ET-HT组BSDF表面可见少量块状和球状物质,可能是残留的蛋白质颗粒[22]

a-CK;b-ET;c-HT20;d-HT40;e-ET20;f-ET-HT40
图2 BSDF的SEM图(×1 000)
Fig.2 The SEM photograph of BSDF

2.3 不同处理对BSDF色泽的影响

不同处理后BSDF的色泽变化如表1所示,各改性组的L*显著降低(P<0.05),a*值显著升高(P<0.05),表明各改性处理后BSDF颜色均变暗、变红。HT组的a*值显著大于ET组(P<0.05),L*显著小于ET组(P<0.05),ET-HT40组的L*(54.26±0.64)值最小,ET-HT20组有最大的a*值(9.63±0.17)。ET、HT组的b*升高,ET-HT组的b*略有下降。HT20组的b*(20.43±0.68)最大。各改性组BSDF的ΔE均大于1.5,ET-HT40组BSDF的ΔE达到11.11±0.56,表明改性后BSDF颜色变化显著。这可能是在高温高压条件下,纤维素降解产生的糖类与BSDF中的某些物质产生美拉德反应,出现明显的褐变,导致色泽变暗,红黄度增加[23]。改性后BSDF颜色较深,可以添加在肉类制品或棕色面包等食品中,具有较好的潜在应用价值。

表1 不同处理方式对BSDF颜色的影响
Table 1 Effects of different treatments on the colors of BSDF

处理方式L∗a∗b∗ΔECK64.97±0.81e6.19±0.38a19.66±0.96ab—ET63.38±0.79d8.15±0.07b19.75±0.45b2.66±0.33aHT2058.65±0.37c9.09±0.17cd20.43±0.68b7.04±0.19bHT4056.17±0.31b9.47±0.22d20.18±0.29b9.41±0.19cET-HT2056.18±0.21b9.63±0.17d18.46±0.36a9.48±0.21cET-HT4054.26±0.64a8.83±0.38c18.41±0.29a11.11±0.56d

注:—表示无,不同小写字母表示差异显著(下同)

2.4 不同处理对BSDF 的WHC,SC和OHC的影响

由表2可知,改性后BSDF的WHC、SC和OHC均有所提升。ET组的WHC显著增加(P<0.05),HT组的SC显著提升(P<0.05),ET-HT组的WHC和SC较对照组均显著提升(P<0.05)。HT组和ET组的WHC无显著差异(P>0.05),SC显著提升(P<0.05)。ET-HT20组的WHC((5.29±0.17) g/g)和SC((13.22±0.12) mL/g)最大,可能是纤维素酶解以及高温高压的作用使BSDF疏松多孔,羧基、羟基和氨基等亲水基团更多的暴露,粒径减小,较高的WHC与减小的粒径也有关系[18]

改性后BSDF的OHC较对照均显著提升(P<0.05),各改性组间OHC无显著差异(P>0.05),ET-HT40组OHC((8.35±0.03) g/g)最高。OHC与BSDF的表面性质、疏水性和总电荷密度有关,高温蒸煮和酶解过程中各种力和酶的作用使得BSDF原本紧密的结构变得变得松散,孔隙增多,更多的亲脂基团暴露,油容易渗透到DF分子中被结合,使持油力得到改善[24]

HT20组和ET-HT20组BSDF的WHC、SC和OHC较HT20和ET-HT20组均有所下降。郑刚等[25]发现高压蒸煮15 min后苹果DF的膨胀性升高,30、45 min处理后又下降。这可能是随时间的延长,酶解后产生的葡聚糖等SDF被进一步降解,一些活性基团和孔隙结构被破环,致使其持水和持油能力下降[26]。较高的WHC、SC和OHC可以改变食品的黏度和质地,与降低血清胆固醇、改善血糖控制和肠道发酵等多种功能性质有关[27]

表2 不同处理方式对BSDF的WHC,SC和OHC的影响
Table 2 Effects of different treatments on the WHC,
SC and OHC of BSDF

处理方式WHC/(g·g-1)SC/(mL·g-1)OHC/(g·g-1)CK3.83±0.01a7.48±0.48a3.82±0.18aET4.97±0.13c8.05±0.05a8.32±0.18bHT20 4.81±0.23bc11.52±0.03c7.34±0.16bHT404.30±0.30b11.60±0.15c7.16±0.88bET-HT205.29±0.17c13.22±0.12d8.35±0.03bET-HT405.08±0.10c10.20±0.20b8.02±0.04b

2.5 不同处理对BSDF热重的影响

不同处理后BSDF的热分解过程如图3所示,BSDF的热分解大致分为3个阶段:50~200 ℃、200~400 ℃、400~600 ℃。这与人参渣DF的热分解过程相似[14]。在50~200 ℃的热分解范围内是水在120 ℃条件下蒸发。ET组BSDF有明显的失水峰,HT和ET-HT组无明显的失水峰。在200~400 ℃可能是果胶和半纤维素的分解,在400~600 ℃的可能是木质素和纤维素的分解。不同处理后BSDF的最大热分解温度都在300 ℃左右,ET-HT20组BSDF的最大失重率为0.43%/min,大于其他组。HT20组BSDF的最大失重率(0.39%/min)最小。各种改性处理后BSDF的热稳定性较对照均提高。HT20和HT40改性的BSDF残留率分别为26.49%和27.16%,高于ET改性BSDF的残留率24.20%,ET-HT20组BSDF的热稳定性最高,残留率为27.31%。BSDF较高的热稳定性,可能与其较高的结晶度和降解温度有关[21]

a-CK;b-ET;c-HT20;d-HT40;e-ET20;f-ET-HT40
图3 不同处理方式BSDF的热重分析图
Fig.3 Thermal analysis of BSDF in different treatments

2.6 不同处理后BSDF红外光谱分析

不同处理BSDF的红外光谱如图4所示,处理组与CK组BSDF的光谱分布相似,但在相应波长处的吸收强度有变化。在1 041 cm-1处的峰值是糖苷键所致[28],ET、HT、ET-HT组BSDF在此处峰的强度小于CK组,说明改性后BSDF中的部分糖苷键断裂。BSDF在1 225 cm-1和1 375 cm-1处出现较小的峰,与C=O拉伸振动[29]和C-H弯曲有关[16]。在1 640 cm-1的峰是结合水和一些羧酸基团、酯羰基(—COOR)所致,表明醛酸的存在[6]。有研究认为甘蔗DF在1 646 cm-1的峰是多糖和半纤维素中的C=O拉伸振动或木质素中酯基团所引起[30]。在2 928 cm-1处的峰是由木质素、纤维素和半纤维素中C-H伸缩振动引起的[31]。BSDF在3 402 cm-1附近均有较强的宽峰,主要是O—H键的延伸所致,是多糖组分的特征吸收峰[15,32]。总体来说,BSDF的红外图谱特征吸收峰的峰型和基本位置未发生特别明显的变化,改性对BSDF主要官能团没有较大影响。LUO等[22]发现酶解后BSDF的吸收峰与未处理组基本一致,BSDF的基本结构没有被破坏。

图4 不同处理方式BSDF的红外光谱图
Fig.4 The FT-RI of BSDF by different treatments

3 结论

本文研究了纤维素酶解、高温蒸煮、高温蒸煮协同纤维素酶处理对BSDF结构和理化性质的影响。研究结果表明,改性后的BSDF颜色偏暗、偏红和偏黄,高温蒸煮协同纤维素酶处理BSDF具有最小的粒径,BSDF的持水力、膨胀力和持油力得到改善。通过热重、扫描电镜和红外光谱分析,高温蒸煮协同纤维素酶处理BSDF成片状,颗粒减小,热稳定性增强,主要官能团结构未发生改变。综上所述,高温蒸煮结合纤维素酶处理有效地改善了BSDF的结构和理化性质,是一种绿色有效的方法,可以为今后BSDF的开发利用提供新的参考。

参考文献

[1] ZENG Heng,CHEN Jiwang,ZHAI Jinling,et al. Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber[J].LWT-Food Science and Technology,2016,73:425-431.

[2] LUO Xianliang,WANG Qi,ZHENG Baodong,et al. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice[J]. Food and Chemical Toxicology,2017,109:1 003-1 009.

[3] LI Xiufen,GUO Juan,JI Kailong,et al. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota[J]. Scientific Reports,2016,6:1-11.

[4] ZHENG Jiong,WU Jiahao,DAI Yaoyi,et al. Influence of bamboo shoot dietary fiber on the rheological and textural properties of milk pudding[J]. LWT-Food Science and Technonlogy,2017,84:364-369.

[5] MO Yang,WU Liangru,CAO Chongjiang,et al. Improved function of bamboo shoot fibre by high-speed shear dispersing combined with enzyme treatment[J].International Journal of Food Science and Technology,2019,54:844-853.

[6] YAN Jingkun,WU Lixia,CAI Wudan,et al. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran[J]. Food Chemistry,2019,298:1-9.

[7] HUMA B U A,FARHAN S,AFTAB A.et al. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review[J]. Journal of food processing and preservation,2019,43:1-12.

[8] 孙静,邵佩兰,徐明.高温蒸煮结合酶解改性枣渣膳食纤维[J].食品工业科技,2017,38(23):137-142.

[9] SONG Yu,SU Wei,MU Yingchun. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J]. International Journal of Food Properties,2018,21(1):1 219-1 232.

[10] CHEN Bifen,CAI Yongjian,LIU Tongxun,et al. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments[J]. Food Hydrocolloids,2019,93:167-175.

[11] TEM T D, VASANTHAN T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking[J]. Food Hydrocolloids,2019,89:773-782.

[12] 周丽珍,刘冬,李艳,等.高温蒸煮结合酶解改性豆渣膳食纤维[J]食品研究与开发,2011,32(1):27-30.

[13] CHEN Huanhuan,ZHAO Chunmei,LI Jie,et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT-Food Science and Technology,2018,93:204-211.

[14] HUA Mei,LU Jiaxi,QU Di,et al. Structure,physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue:A potential functional ingredient[J]. Food Chemistry,2019,286:522-529.

[15] XUE Zihan,CHEN Yue,JIA Yanan,et al. Structure, thermal and rheological properties of different soluble dietary fiber fractions from mushroom Lentinula edodes (Berk.) Pegler residues[J]. Food Hydrocolloids,2019,95:10-18.

[16] YANG Bing,WU Qunjun,SONG Xue,et al. Physicochemical properties and bioactive function of Japanese grape (Hovenia dulcis) pomace insoluble dietary fibre modified by ball milling and complex enzyme treatment[J]. International Journal of Food Science and Technology,2019,54:2 363-2 373.

[17] 刘成梅,蓝海军,涂宗财,等.复合稳定剂对膳食纤维在微射流瞬时高压下团聚性的影响[J].食品科学,2007,28(8):33-36.

[18] HAN Wen,MA Sen,LI Li,et al. Influence of wheat starch on the structural changesand size distribution of gluten induced by adding wheat bran dietary fiber[J].Starch,2018:70.

[19] XIE Fengying,ZHAO Tian,WAN Hongchen,et al. Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization[J].2019,9:1 270-1 280.

[20] IKRAM U,YIN Tao,XIONG Shanbai,et al. Effects of thermal pre-treatment on physicochemical properties of nanosized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,237:18-26.

[21] WANG Caihong,MA Yilong,ZHU Danye,et al. Physicochemical and functional properties of dietary fiber from Bamboo Shoots (Phyllostachys praecox)[J]. Emirates Journal of Food and Agriculture,2017,29(7):509-517.

[22] LUO Xianliang,WANG Qi,FANG Dongya,et al. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties[J]. International Journal of Biological Macromolecules,2018,120:1 461-1 467.

[23] 张明,马超,吴茂玉,等.蒸汽爆破压力对西兰花老茎膳食纤维品质及理化特性的影响[J/OL].食品工业科技:1-11[2020-02-18].http://kns.cnki.net/kcms/detail/11.1759.TS.20190801.1001.004.html.

[24] JIA Mengyun,CHEN Jiajun,LIU Xiaozhen,et al. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation[J]. Food Hydrocolloids,2019,94:468-474.

[25] 郑刚,何李,赵国华.高压蒸煮对苹果膳食纤维理化特性及发酵性能的影响[J].食品与发酵工业,2009,35(5):90-93.

[26] 王佳,张颜笑,郑炯.酶解处理对竹笋膳食纤维理化特性的影响[J].食品与发酵工业,2016,42(9):104-108.

[27] DONG Jilin,WANG Lei,LU Jing,et al. Structural,antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran[J]. Journal of the science of food and agriculture,2019,99:3 886-3 894.

[28] KABIR M M,WANG H,LAU K T,et al. Effects of chemical treatments on hemp fibre structure[J]. Applied Surface Science,2013,276:13-23.

[29] CHEN Huanhuan,LI Jie,YAO Ruixue,et al. Mechanism of lipid metabolism regulation by soluble dietary fibre from micronized and non-micronized powders of lotus root nodes as revealed by their adsorption and activity inhibition of pancreatic lipase[J]. Food Chemistry,2019,305:125 434-125 442.

[30] GILLPEZ D I,LOISCORREA J A,SNCHEZPARDO M E,et al. Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments[J]. Industrial Crops & Products,2019,135:159-169.

[31] ANUPAMA K, MANDEEP S. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization[J]. Carbohydrate Research,2011,346:76-85.

[32] ZHANG Mengyun,LIAO Aimei,KIRAN T,et al. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution[J]. Food Chemistry,2019,297:124 983-124 992.