体外模拟发酵探究KGM和KOS与不同胃肠段微环境的影响

张琪,孙瑞,贾晓倩,张阳,钟耕*

(西南大学 食品科学学院,重庆,400715)

摘 要 不同胃肠段微环境对机体健康的影响及其与膳食纤维的相互作用是目前研究的热点。该文为探究魔芋葡甘聚糖(konjacglucomannan,KGM)和魔芋葡甘低聚糖(konjac oligosaccharides,KOS)与不同胃肠段微环境的影响,分别以KGM和KOS为碳源,采用YCFA培养基培养不同胃肠段微生物,同时做葡萄糖(glucose)和不加碳源的空白对照,测定不同发酵液pH值、黏度、菌落总数、短链脂肪酸(short-chain datty acids,SCFAs)、总糖及还原糖含量。与对照相比,随着发酵时间的延长,添加KGM和KOS的发酵液pH降低,SCFAs含量增加,菌落总数增加;KGM显著增加胃及小肠发酵液黏度,总糖和还原糖含量略有降低,大肠发酵液中还原糖含量先增加后减少。KGM和KOS可调节不同胃肠段发酵液环境,增加微生物数量及代谢产物含量,从而更有利于机体健康,为KGM和KOS的应用提供新思路。

关键词 不同胃肠段微环境;魔芋葡甘聚糖;魔芋葡甘低聚糖;体外模拟发酵

DOI:10.13995/j.cnki.11-1802/ts.022510

引用格式:张琪,孙瑞,贾晓倩,等.体外模拟发酵探究KGM和KOS与不同胃肠段微环境的影响[J].食品与发酵工业,2020,46(6):25-32.ZHANG Qi, SUN Rui, JIA Xiaoqian, et al. In vitro simulated fermentation to explore the effects of KGM and KOS on different gastrointestinal microenvironments[J].Food and Fermentation Industries,2020,46(6):25-32.

第一作者:博士研究生(钟耕教授为通讯作者,E-mail:980360686@qq.com)

基金项目:中央高校基本业务费专项资金资助(XDJK2019D029)

收稿日期:2019-10-10,改回日期:2019-12-06

In vitro simulated fermentation to explore the effects of KGM and KOS on different gastrointestinal microenvironments

ZHANG Qi, SUN Rui, JIA Xiaoqian, ZHANG Yang, ZHONG Geng*

(College of Food Science, Southwest University, Chongqing 400715,China)

ABSTRACT The influence of microorganisms in different gastrointestinal segments on body health has attracted worldwide attention. The interaction between different gastrointestinal microenvironment, konjac glucomannan (KGM) and konjac oligosaccharides (KOS) is a hot topic. KGM and KOS were used as carbon sources, respectively,and cultured microorganisms in different gastrointestinal segments using YCFA medium.At the same time, a glucose control and a blank control test without carbon source were performed. The index of pH, viscosity, colonies number, short-chain fatty acids (SCFAs), total sugar and reducing sugar of different fermentation broth were measured. The results showed that the pH of the fermentation broth added with KGM and KOS decreased, the content of SCFAs increased, and the colonies number increased compared with those of the control groups. In addition, KGM significantly increased the viscosity, slightly decreased the total sugar and reducing sugar content in gastric and small intestinal fermentation broth. While, the content of reducing sugar in large intestine fermentation broth increased first and then decreased with the extension of fermentation time. In conclusion, KGM and KOS can regulate the environment of different gastrointestinal segments. It provides a new idea for the application of KGM and KOS.

Key words different gastrointestinal microenvironments; konjac glucomannan (KGM); konjac oligosaccharides (KOS); simulated fermentation in vitro

近年来,胃肠道菌群常作为独立实体来研究[1]。随着生物信息学工具发展,人们越来越意识到胃微生物群的多样性和复杂性[2]以及对疾病的潜在诱导作用[3]。大肠与小肠微生物的种类与分布明显不同,且不同肠段所富集微生物的代谢通路也不同[4-5]。胃肠道的稳态依赖于健康的胃肠道菌群[6],其比例、数量及稳定状态与多种营养相关疾病密切相关[7-8],同时参与机体食物消化、营养代谢吸收、免疫调节、肠道稳态的维持等重要生理过程[9-10]。肠道微生物体外模拟发酵可避免机体对代谢产物的吸收,直接反映微生物的代谢状况[11]。英国LAWLEY团队证实体外培养的细菌菌落与原始样品存在72%相同的基因组序列,表明肠道细菌可以在体外培养、存活[12]。YIN等[13]研究表明,YCFA培养基能够在体外肠道微生物模拟系统中模拟人肠道微生物的组成,相似率达70%以上。

膳食纤维是肠道菌群结构和功能调控者,对肠道菌群起重要调节作用[14-16]。魔芋葡甘聚糖(konjac glucomannan,KGM)是纯天然高分子膳食纤维,是一种水溶性高黏度多糖[17]。试验证实KGM具有改善结肠微生物多样性、润肠通便、调节脂质代谢等功能[18-19]。魔芋葡甘低聚糖(konjac oligosaccharides,KOS)是以KGM为原料,经物理、化学、生物法降解而得,研究表明KOS同样具有良好肠道益生性、降血糖等作用[20]。迄今为止,应用膳食纤维调节肠道菌群主要集中在粪便及结肠内容物上,而同一个体不同部位微环境的变化未见报道。本研究分别采集小鼠胃、小肠、大肠中微生物,通过体外模拟发酵探究KGM和KOS与不同胃肠段微环境的影响,为应用KGM和KOS改善胃肠道健康提供理论依据。

1 材料与方法

1.1 试验材料

魔芋葡甘聚糖,由重庆康家客食品有限公司提供。魔芋葡甘低聚糖,采用课题组方法自制[21]

1.2 试验方法

1.2.1 内容物样本采集及胃肠微生物发酵液制备

无菌条件采集新鲜健康成年昆明种小鼠胃、小肠(空回肠)、大肠(盲结肠)内容物。与经灭菌、厌氧处理的生理盐水(质量分数10%)涡旋振荡3 min,滤液即为内容物样品。参考朱立颖[11]和ZE等[22]方法,配制含7 g/L KGM和KOS(干基)-YCFA基础发酵培养基,121 ℃高压灭菌15 min,备用。以葡萄糖(glucose,G)和不加碳源的培养基(control,C)为对照。按体积浓度10%的接种量将内容物样品接种至培养基中,37℃,80 r/min摇床振荡,获得胃肠微生物发酵液。分别于0、1、2、3 h采集胃发酵液,0、2、4、6、8 h采集小肠发酵液,0、3、6、9、12 h采集大肠发酵液。

1.2.2 发酵液相关指标测定

参考FABEK等[23]方法采用流变仪,60 mm、4°锥板夹具,37 ℃,比较200 s-1剪切速率下不同发酵液表观黏度。参考GARCA-VILLALBA等[24]方法将发酵液与50%酸性乙醇(体积比1∶1)涡旋混匀,40 W超声20 min,过0.2 μm微孔滤膜,安捷伦DB-FFAP(30 m×0.53 mm×0.5 μm)柱,进样量l μL,气相色谱仪测定发酵液中乙酸、丙酸、正丁酸、异丁酸、戊酸、异戊酸含量。pH(pH仪)、总糖含量(苯酚-硫酸法)、还原糖含量(3,5-二硝基水杨酸(DNS法)、菌落总数(平板菌落计数法)。

1.2.3 数据分析

每组试验进行3次重复,试验结果以平均值±标准差表示。采用SPSS 20.0软件进行差异显著性分析, Sigmaplot 10.0软件用于图形绘制。

2 结果与分析

2.1 不同发酵液pH

食物在胃部2~3 h就排空,小肠吸收面积大,食物可存留3~8 h,大肠停留12 h左右[25]会形成粪便。随着发酵时间的延长,不同胃肠段的不同处理组pH均显著降低(P<0.05),空白组降低幅度小(图1)。初始pH为胃<小肠<大肠,KOS的初始pH较其余分组低,由于KOS是用pH 6.0柠檬酸-柠檬酸钠缓冲液制备而成[21]。KGM组pH胃6.82(0 h)至6.78(3 h),小肠6.83(0 h)至6.42(8 h),大肠6.90(0 h)至5.70(12 h)。KOS组pH胃6.77(0 h)至6.72(3 h),小肠6.78(0 h)至6.23(8 h),大肠6.83(0 h)至4.88(12 h)。试验结果表明微生物发酵的代谢产物会改变发酵液的pH。

2.2 不同发酵液短链脂肪酸含量

短链脂肪酸(short-chain fatty acids,SCFAs)是膳食纤维细菌发酵的主要代谢产物[26]。由表1可以看出,随着发酵时间的延长,胃发酵液中只有乙酸含量增加,小肠和大肠发酵液中SCFAs均有不同程度的增加。各受拭物组发酵液SCFAs含量增加幅度显著高于空白组。KGM组胃SCFAs总量由1.437 16E-02(0 h)增加到1.724 70E-02(3 h),小肠由1.504 03E-02(0 h)增加到8.385 17E-02(8 h),大肠由2.888 50E-02(0 h)增加到1.798 89E-01(12 h)。KOS不同发酵液的变化趋势与KGM相同。肠道可迅速吸收SCFAs[27],从而调节机体健康[28-29]。本研究结果表明,KGM和KOS可促进胃肠道微生物发酵产生SCFAs。

A-胃;B-小肠;C-大肠

图1 不同发酵液pH变化

Fig.1 Different fermentation broth pH changes

注:不同小写字母表示同一分组不同发酵时间0.05水平有显著差异(P<0.05)(下同)

表1 不同发酵液短链脂肪酸含量 单位:μg/mL

Table 1 Short-chain fatty acids in different fermentation broth

分组时间/h乙酸丙酸异丁酸丁酸异戊酸戊酸总SCFAs胃对照GKGMKOS01.604 24E-02±2.944 89E-03b-----1.604 24E-02±2.944 89E-03b11.634 55E-02±8.087 99E-05ab-----1.634 55E-02±8.087 99E-05ab21.643 55E-02±2.471 30E-05ab-----1.643 55E-02±2.471 30E-05ab31.649 77E-02±2.435 96E-05a-----1.649 77E-02±2.435 96E-05a01.903 46E-02±1.423 11E-04d-----1.903 46E-021±42 311E-04d11.938 86E-02±2.149 70E-05c-----1.938 86E-02±2.149 70E-05c21.966 21E-02±3.611 46E-05b-----1.966 21E-02±3.611 46E-05b32.077 34E-02±8.197 81E-05a-----2.077 34E-02±8.197 81E-05a01.437 16E-02±6.842 12E-05d-----1.437 16E-02±6.842 12E-05d11.469 57E-02±9.759 41E-06c-----1.469 57E-02±9.759 41E-06c21.590 16E-02±4.203 45E-05b-----1.590 16E-02±4.203 45E-05b31.724 70E-02±5.100 77E-05a-----1.724 70E-02±5.100 77E-05a01.624 28E-02±2.744 46E-04d-----1.624 28E-02±2.744 46E-04d12.020 89E-02±3.982 82E-04c-----2.020 89E-02±3.982 82E-04c22.204 64E-02±6.158 14E-04b-----2.204 64E-02±6.158 14E-04b32.355 16E-02±5.037 78E-04a-----2.355 16E-02±5.037 78E-04a

续表1

分组时间/h乙酸丙酸异丁酸丁酸异戊酸戊酸总SCFAs小肠对照GKGMKOS01.410 70E-02±9.959 20E-05e--3.636 68E-03±8.034 01E-05e--1.774 37E-02±1.779 10E-04e21.559 59E-02±1.920 18E-05d--4.197 01E-03±7.894 66E-05d--1.979 30E-02±9.799 72E-05d41.906 96E-02±4.782 37E-05c--5.285 26E-03±5.665 66E-05c2.067 41E-03±3.141 93E-05c-2.642 23E-02±6.909 04E-05c63.458 64E-02±6.923 36E-04b--6.276 13E-03±6.448 85E-05b2.783 73E-03±4.980 66E-05b-4.364 62E-02±6.496 42E-04b85.703 48E-02±3.398 92E-04a-1.631 13E-03±2.261 72E-06a6.526 30E-03±6.449 17E-05a3.187 32E-03±8.329 91E-05a-6.837 95E-02±4.863 61E-04a01.070 39E-02±6.576 73E-06d--7.131 86E-03±6.336 17E-05e-1.031 56E-03±1.611 96E-06e1.886 74E-02±6.878 53E-05e21.188 67E-02±1.121 73E-04d-1.714 31E-03±4.102 96E-06d7.203 12E-03±7.598 48E-05d1.639 52E-03±6.457 65E-07d1.428 02E-03±5.324 68E-05d2.387 17E-02±7.901 84E-05d43.295 09E-02±1.396 95E-04c-1.993 58E-03±2.421 96E-05c7.363 16E-03±3.305 55E-05c2.113 53E-03±1.266 52E-05c1.735 47E-03±9.821 64E-06c4.615 66E-02±1.604 07E-04c63.966 54E-02±5.877 40E-04b-2.385 65E-03±2.161 86E-05b7.433 54E-03±5.266 36E-05b2.777 13E-03±6.905 61E-04b1.754 21E-03±7.273 61E-06b5.401 59E-02±2.457 09E-04b87.138 41E-02±1.090 37E-03a-2.491 20E-03±1.640 43E-05a7.905 99E-03±1.942 15E-05a2.796 74E-03±1.626 40E-05a1.889 29E-03±1.914 80E-05a8.646 73E-02±1.042 85E-03a08.753 57E-03±1.227 76E-04e-2.029 32E-03±4.734 37E-06e4.257 44E-03±2.226 00E-04e--1.504 03E-02±1.977 99E-04e21.122 51E-02±2.406 31E-04d-2.665 24E-03±8.910 53E-06d5.417 20E-03±5.705 44E-05d1.239 42E-03±1.182 43E-06d-2.054 70E-02±1.782 01E-04d42.352 95E-02±4.761 37E-04c-2.993 01E-03±3.373 07E-05c5.856 73E-03±5.260 08E-05c2.368 20E-03±4.508 17E-05c-3.478 08E-02±5.560 98E-04c65.133 52E-02±5.576 05E-04b-3.293 98E-03±1.622 49E-05b5.879 46E-03±2.800 54E-06b3.022 26E-03±3.937 93E-05b-6.353 09E-02±5.387 81E-04b87.015 67E-02±2.442 45E-04a-3.664 66E-03±4.599 16E-05a6.311 12E-03±4.255 73E-04a3.719 26E-03±1.718 00E-05a-8.385 17E-02±2.060 26E-04a02.122 96E-02±2.361 85E-04e-7.736 12E-04±3.183 23E-06e5.867 64E-03±3.922 63E-05e--2.787 09E-02±2.515 70E-04e22.307 53E-02±6.214 08E-05d-7.763 03E-04±1.453 50E-04d6.224 85E-03±2.215 63E-05d1.233 94E-03±1.317 77E-05d-3.131 04E-02±1.337 73E-04d43.096 66E-02±4.843 80E-04c-9.824 39E-04±5.240 69E-06c6.511 43E-03±1.015 87E-05c1.408 81E-03±4.156 22E-06c-3.986 93E-02±5.033 38E-04c65.019 99E-02±1.820 83E-04b-1.020 22E-03±3.327 68E-07b7.591 31E-03±1.622 26E-05b1.543 24E-03±4.557 76E-06b-6.035 46E-02±1.732 16E-04b87.394 94E-02±7.387 95E-05a-1.285 98E-03±1.305 86E-04a7.799 86E-03±2.361 11E-06a1.601 71E-03±1.698 33E-06a-8.463 69E-02±1.497 28E-04a

续表1

分组时间/h乙酸丙酸异丁酸丁酸异戊酸戊酸总SCFAs大肠对照GKGMKOS01.838 53E-02±4.656 95E-05e--6.262 00E-03±3.997 55E-05e--2.464 73E-02±2.035 85E-05e31.917 74E-02±3.965 38E-05d--6.408 60E-03±4.742 64E-05d--2.558 60E-02±5.935 87E-05d63.796 35E-02±1.703 75E-04c--6.529 33E-03±2.158 19E-05c--4.449 28E-02±1.804 73E-04c95.281 19E-02±3.772 39E-04b1.665 79E-03±1.508 21E-05b-6.966 95E-03±8.751 59E-05b--6.144 46E-02±4.515 15E-04b126.365 09E-02±4.557 47E-04a1.762 34E-03±2.324 06E-05a-7.239 78E-03±1.242 97E-04a--7.265 30E-02±5.910 44E-04a02.290 42E-02±5.218 32E-04e2.503 02E-03±3.948 85E-06e-5.518 25E-03±5.875 63E-05e--3.092 54E-02±5.363 17E-04e32.599 25E-02±2.341 90E-04d2.596 86E-03±1.999 53E-05d3.690 51E-03±2.195 05E-05d6.467 80E-03±6.836 80E-05d--3.874 77E-02±1.468 82E-04d64.499 12E-02±5.447 17E-04c2.998 58E-03±1.167 17E-05c4.168 03E-03±5.271 32E-05c6.735 18E-03±4.271 92E-05c--5.889 30E-02±5.610 42E-04c96.847 25E-02±4.813 39E-04b3.196 49E-03±1.398 16E-04b5.310 02E-03±1.645 45E-05b7.924 31E-03±3.533 38E-05b--8.490 33E-02±5.266 53E-04b128.053 15E-02±6.397 99E-04a3.693 92E-03±8.129 90E-06a6.042 75E-03±4.004 37E-05a8.502 07E-03±6.286 81E-04a--9.877 02E-02±1.099 34E-04a01.738 11E-02±5.010 46E-05e2.795 28E-03±1.869 91E-05e3.070 23E-03±4.596 67E-05e5.638 40E-03±4.595 36E-05e--2.888 50E-02±6.671 34E-05e31.948 15E-02±1.627 67E-04d6.000 64E-03±1.917 94E-05d3.625 24E-03±2.658 22E-05d5.852 65E-03±1.687 72E-05d--3.496 00E-02±2.171 57E-04d65.203 60E-02±5.715 12E-04c7.595 20E-03±6.956 10E-05c4.335 22E-03±4.328 74E-06c5.918 04E-03±6.314 73E-05c--6.988 44E-02±5.855 62E-04c91.333 68E-01±1.054 49E-03b1.651 54E-02±5.484 49E-05b4.570 96E-03±7.801 75E-06b6.071 90E-03±4.432 80E-05b--1.605 26E-01±1.063 79E-03b121.514 29E-01±7.897 95E-04a1.765 52E-02±5.453 74E-05a4.505 78E-03±3.526 48E-04a6.298 39E-03±8.324 53E-06a--1.798 89E-01±1.014 45E-03a02.519 74E-02±7.488 88E-06e3.128 20E-03±7.177 63E-06e-5.844 62E-03±5.802 41E-06e--3.417 02E-02±8.223 31E-06e33.077 70E-02±3.060 50E-04d4.340 39E-03±1.341 38E-05d1.905 98E-03±5.58 903E-06d5.927 40E-03±3.409 17E-06d--4.295 08E-02±3.188 12E-04d65.996 66E-02±2.056 92E-04c8.006 97E-03±1.337 70E-05c2.005 25E-03±6.451 94E-06c6.515 54E-03±1.517 56E-05c--7.649 44E-02±2.061 56E-04c91.902 32E-01±2.423 58E-04b1.269 88E-02±6.351 64E-06b2.940 29E-03±1.263 58E-06b6.735 13E-03±8.118 17E-06b--2.126 07E-01±2.441 27E-04b122.358 68E-01±3.666 60E-03a1.367 40E-02±4.227 96E-05a3.339 08E-03±4.359 58E-04a6.817 29E-03±9.185 83E-06a--2.596 99E-01±3.511 18E-03a

注:表中“-”表示未检出,不同小写字母代表差异显著(P<0.05)(下同)

2.3 不同发酵液菌落总数

胃肠道微生物是宿主不可缺少的一部分,在机体健康中扮演重要角色[30-31]。在门和属水平上,大肠间(盲肠和结肠)相似度大于小肠间(十二指肠、空肠、回肠)相似度[32-33]。固本试验采集整个胃内容物,小肠空回肠部,大肠盲结肠部作为体外发酵微生物来源。随着发酵时间的延长,菌落总数均呈上升的趋势,对照组上升幅度小,其余受拭物组上升幅度大(图2)。不同胃肠段菌落总数:大肠>小肠>胃。KGM组胃菌落总数由1.63E+04(0 h)上升到8.57E+04(3 h),小肠由3.20E+05(0 h)上升到1.93E+07(8 h),大肠由6.23E+05(0 h)上升到5.50E+08(12 h)。KOS组不同发酵液菌落总数的大小变化与KGM基本一致。同一个体因不同胃肠段pH、胃肠蠕动强度等生理状态不同,微生物数量沿消化道(胃→小肠→大肠)自上而下逐渐增多[34-35]。本试验菌落总数的结果同样表明KGM和KOS显著增加发酵液中微生物的数量,且胃<小肠<大肠。

A-胃;B-小肠;C-大肠

图2 不同发酵液菌落总数

Fig.2 Total colonies number in different fermentation broth

2.4 不同发酵液黏度

食用黏性膳食纤维可对机体产生多种有益功能[36-38]。随发酵时间延长,除KGM组,其余各个处理组发酵液的黏度无显著变化(P>0.05)(表2)。KGM组发酵液的黏度明显高于其余各组,大肠发酵9 h后发酵液黏度由116.116 7 mPa·s显著降低至37.245 mPa·s(P<0.05),发酵12 h后发酵液黏度有所增加。本试验中KGM显著增加发酵液黏度,表明KGM可对机体产生有益功能。

表2 不同发酵液黏度 单位:mPa·s

Table 2 Viscosity of different fermentation broth

时间/h胃对照GKGMKOS00.947 6±0.226 7a0.826 1±0.003 8b291.750 0±8.407 1b0.832 8±0.004 7b10.824 7±0.005 2b0.798 8±0.017 0b257.023 3±6.288 9c0.817 1±0.009 1b20.894 8±0.037 3b0.811 6±0.016 9b277.736 7±4.331 0bc0.880 4±0.050 5ab30.963±10.188 9a1.054 4±0.046 2a547.983 3±17.012 3a0.949 0±0.019 2a时间/h小肠对照GKGMKOS00.808 9±0.008 0a0.800 1±0.009 6a768.890 0±71.135 8a0.867 9±0.015 4a20.765 0±0.006 1b0.793 9±0.003 6a412.853 3±28.555 7b0.813 5±0.002 8b40.803 9±0.015 2a0.802 3±0.007 3a368.296 7±20.926 9c0.813 1±0.002 3b60.785 9±0.003 2ab0.786 4±0.020 5a208.280 0±16.085 7c0.809 9±0.001 4b80.802 8±0.011 4a0.800 6±0.002 5a324.173 3±3.146 6c0.799 0±0.006 4b时间/h大肠对照GKGMKOS01.973 5±0.525 5b0.996 5±0.067 7a116.116 7±9.272 2a1.663 8±0.326 2b31.326 1±0.188 4b1.004 1±0.090 1a104.186 7±1.816 9a3.714 2±0.615 4a61.023 0±0.065 1b0.894 4±0.055 1ab57.456 7±3.967 0b2.984 5±0.425 8a91.718 0±0.095 1b0.901 9±0.051 9ab37.245 3±0.986 5c1.083 9±0.111 1b122.108 6±0.077 5a0.824 6±0.020 8b60.113 7±3.410 0b1.818 4±0.014 7b

2.5 不同发酵液总糖含量

多糖等大分子膳食纤维常作为微生物生长繁殖的碳源和能源物质[39-40]。随发酵时间延长,各发酵液中总糖含量均显著降低(P<0.05)(图3)。含KGM胃发酵液从139.511 μg/mL(0 h)降低到134.879 μg/mL(3 h),小肠发酵液从261.329 μg/mL(0 h)降低到189.900 μg/mL(8 h),大肠发酵液从173.537 μg/mL(0 h)降低到120.203 μg/mL(12 h),KOS有同样降低趋势。表明KGM和KOS均会被不同胃肠段微生物发生不同程度的消耗,导致发酵液中总糖含量降低。

A-胃;B-小肠;C-大肠

图3 不同发酵液总糖含量

Fig.3 Total sugar contents in different fermentation broth

2.6 不同发酵液还原糖含量

还原糖是微生物代谢过程中优先利用的碳源[41],除KGM组,其余各组还原糖含量随着发酵时间的延长不断降低(图4)。大肠发酵液中KGM组还原糖含量由0.399 mg/mL(0 h)增加到0.441 mg/mL(6 h)再降低至0.381 mg/mL(12 h),KOS组由2.778 mg/mL(0 h)降低至1.592 mg/mL(12 h),G组由4.564 mg/mL(0 h)降低至2.679 mg/mL(12 h)。主要是因KGM的糖苷键会被微生物破环导致体系中还原糖含量的增加,该结果与HUANG等[42],GAO等[43]探究多糖发酵液中总糖和还原糖含量变化趋势一致。

A-胃;B-小肠;C-大肠

图4 不同发酵液还原糖含量

Fig.4 Reducing sugar contents in different fermentation broth

3 结论

不同胃肠段微生物可利用KGM和KOS来降低发酵液pH,增加SCFAs含量,增加发酵液中微生物菌落总数。同时KGM显著增加胃及小肠发酵液黏度。表明KGM和KOS可改善不同胃肠段微环境向有利于机体健康的方向发展。本研究为KGM和KOS的应用提供新的思路,为后续探究KGM和KOS与不同胃肠段微生物的具体作用机制提供理论依据。

参考文献

[1] WATT E, GEMMELL M R, BERRY S, et al. Extending colonic mucosal microbiome analysis-assessment of colonic lavage as a proxy for endoscopic colonic biopsies[J]. Microbiome, 2016, 4(1): 61-76.

[2] HUNT R H, YAGHOOBI M. The esophageal and gastric microbiome in health and disease[J]. Gastroenterol Clin North Am, 2017, 46(1): 121-141.

[3] HE C, YANG Z, LU N. Imbalance of gastrointestinal microbiota in the pathogenesis of helicobacter pylori-associated diseases[J]. Helicobacter, 2016, 21(5): 337-348.

[4] CHANG E B, MARTINEZ-GURYN K. Small intestinal microbiota: The neglected stepchild needed for fat digestion and absorption[J]. Gut Microbes, 2019, 10(2): 235-240.

[5] KASTL A J, TERRY N A, ALBENBERG L G, et al. The structure and function of the human small intestinal microbiota: current understanding and future directions[J]. Cellular and Molecular Gastroenterology and Hepatology, 2020,9(1): 1-13.

[6] MARCHRSI J R, ADAMS D H, FAVA F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut, 2016, 65(2): 330-339.

[7] BOULANGE C L, NEVES A L, CHILLOUX J, et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease[J]. Genome Medicine, 2016, 8(1): 42-54.

[8] YUICHIRO Y. Gut microbiota in health and disease[J]. Annals of Nutrition & Metabolism, 2017,71(3-4):242-246.

[9] VUIK F E R, DICKSVED J, LAM S Y, et al. Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals[J]. United European Gastroenterology Journal, 2019, 7(7): 897-907.

[10] WLODARSKA M, KOSTIC A D, XAVIER R J. An integrative view of microbiome-host interactions in inflammatory bowel diseases[J]. Cell Host & Microbe, 2015, 17(5): 577-591.

[11] 朱立颖. 一种肠道微生物体外模拟培养方法: 中国, CN201711069219.7[P]. 2017-11-03.

[12] BROWNE H P, FORSTER S C, ANONYE B O, et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016,533(7 604): 543-546.

[13] YIN Y, LEI F, ZHU L, et al. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression[J]. The ISME Journal, 2010,4(3):367-376.

[14] RAJOA M S R, SHI J, MEHWISH H M, et al. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health[J]. Food Science and Human Wellness, 2017, 6(3): 121-130.

[15] DESAI M S, SEEKATZA M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1 339-1 353.

[16] ZOU J, CHASSAING B, SINGH V, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring il-22-mediated colonic health[J]. Cell Host Microbe, 2018,23(1):41-53.

[17] WU C, LI Y, SUN J, et al. Novel konjacglucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging[J]. Food Hydrocolloids, 2020,98:105 245.

[18] BEHERA S S, RAY R C. Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review[J]. Food Reviews International, 2017,33(1):22-43.

[19] TESTER R F, Al-GHAZZEWI F H. Beneficial health characteristics of native and hydrolysedkonjac (Amorphophallus konjac) glucomannan[J]. J Sci Food Agric, 2016,96(10):3 283-3 291.

[20] 秦清娟. 魔芋葡甘低聚糖毒理学性质及肠道益生性研究[D]. 重庆:西南大学, 2015.

[21] 张迅. 珠芽魔芋葡甘低聚糖制备、性质及对AFB_1吸附能力的研究[D]. 重庆:西南大学, 2018.

[22] ZE X, DUNCAN S H, LOUIS P, et al. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon[J]. The ISME journal, 2012,6(8):1 535-1 543.

[23] FABEK H, MESSERSCHMIDT S, BRULPORT V, et al. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion[J]. Food Hydrocolloids, 2014,35:718-726.

[24] GARCA-VILLALBA R, GIMNEZ-BASTIDA J A, GARCA-CONESA M T, et al. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples[J]. J Sep Sci, 2012,35(15):1 906-1 913.

[25] BORNHORST G M, GOUSETI O, WICKHAM M S J,et al. Engineering digestion: Multiscale processes of food digestion[J]. Journal of Food Science,2016,81(3):R534-R543.

[26] DALILE B, VAN OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019,16(8):461-478.

[27] KABAT A M, SRINIVASAN N, MALOY K J. Modulation of immune development and function by intestinal microbiota[J]. Trends in Immunology, 2014,35(11):507-517.

[28] HAN X, SONG H, WANG Y, et al. Sodium butyrate protects the intestinal barrier function in peritonitic mice[J]. International Journal of Clinical and Experimental Medicine, 2015,8(3):4 000-4 007.

[29] RIOS-COVIN D, RUAS-MADIEDO P, MARGOLLES A, et al. Intestinal short chain fatty acids and their link with diet and human health[J]. Frontiers in Microbiology, 2016,7:185-187.

[30] TREMAROLI V, BCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012,489(7415):242-249.

[31] D′ ARGENIO V, SALVATORE F. The role of the gut microbiome in the healthy adult status[J]. Clinica Chimica Acta, 2015,451(Pt A):97-102.

[32] GU S, CHEN D, ZHANG J N, et al. Bacterial community mapping of the mouse gastrointestinal tract[J]. PLoS One, 2013,8(10):1-9.

[33] COSTELLO E K, LAUBER C L, HAMADY M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009,326(5 960):1 694-1 697.

[34] QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010,464(7 285):59-65.

[35] DELGADO S, CABRERA-RUBIO R, MIRA A, et al. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods[J]. Microb Ecol, 2013,65(3):763-772.

[36] GOEL A. Review: Viscous fiber reduces HbA1c, fasting glucose, and insulin resistance in type 2 diabetes[J]. Ann Intern Med, 2019,170(10):JC51.

[37] ISLAM A, CIVITARESE A E, HESSLINK R L, et al. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats[J]. Obesity,2012,20(2):349-355.

[38] PANDE S, PLATEL K, SRINIVASAN K. Anti-hypercholesterolaemic influence of dietary tender cluster beans (Cyamopsis tetragonoloba) in cholesterol fed rats[J]. Indian J Med Res, 2012,135(3):401-406.

[39] SINGH J, METRANI R, SHIWANAGOUDRA S R, et al. Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds[J]. J Agric Food Chem, 2019,67(33):9 124-9 138.

[40] ZHAO J, LIU P, WU Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2018,66(30):7 995-8 004.

[41] TIAN S, WANG J, YU H, et al. Changes in Ileal microbial composition and microbial metabolism by an early-life galacto-oligosaccharides intervention in a neonatal porcine model[J]. Nutrients, 2019,11(8):1 753-1 756.

[42] HUANG F, LIU L, ZHANG R, et al. Structural characterization and in vitro gastrointestinal digestion and fermentation of litchi polysaccharide[J]. International Journal of Biological Macromolecules, 2019,140:965-972.

[43] GAO J, LIN L, CHEN Z, et al. In vitro digestion and fermentation of three polysaccharide fractions from laminaria japonica and their impact on lipid metabolism-associated human gut microbiota[J]. Journal of Agricultural and Food chemistry, 2019,67(26):7 496-7 505.