肉类掺杂掺假的高光谱成像检测研究进展

姜洪喆1,蒋雪松1,杨一2,3,胡逸磊1,陈青1,施明宏1,周宏平1*

1(南京林业大学 机械电子工程学院,江苏 南京,210037)2(北京农业智能装备技术研究中心,北京,100097) 3(国家农业智能装备工程技术研究中心,北京,100097)

摘 要 肉类的掺杂掺假是国内外普遍关注的公共安全问题,对社会经济、健康、环境等方面具有潜在影响。近年来,不法商家为牟取暴利导致肉类掺杂掺假现象层出不穷、多种多样,针对此类问题研究行之有效的检测技术与方法以保障肉品真实性具有重要意义。高光谱成像技术以快速、非侵入、图谱合一等优势在食品农产品检测领域发展迅速,不仅可同时提取图像及光谱特征信息,还具备让肉类掺杂掺假“快速现形”的能力,具有较好的未来市场应用前景。该文介绍了肉类掺杂掺假现状,简述了高光谱成像原理及相关研究中数据解析方法,在探讨现有肉类掺杂掺假定性判别及定量预测研究进展基础上展望进一步研究突破方向,以期为相关肉品市场监管办法提供参考,也为其他类农产品掺假检测研究提供方法和思路借鉴。

关键词 高光谱成像;肉品;掺杂掺假;数据解析;可视化

肉类主要包括畜肉、禽肉及鱼虾蟹贝类等,其营养物质丰富,是人类蛋白质、脂肪、维生素等必需物质的优质来源[1]。随着消费者生活水平的提高及饮食结构的改变,动物源蛋白质在饮食中比例逐年提升。20世纪90年代以来,世界人口对于肉类的消费量增长迅猛,仅2000—2015年即由22 499.8万t增加到31 928.4万t,年均增长达2.4%[2]。在巨大商业利益驱使下,如2013年“马肉风波”与2017年巴西腐肉等事件,以假乱真、以次充好的肉类掺杂掺假现象屡见不鲜[3]。这些不法行为不仅对消费者健康与切身利益造成威胁,甚至对整个行业的健康发展造成不良影响,已成为全球普遍关注的公共问题。因此,建立快速准确的肉类掺杂掺假检测机制对于肉类品质及安全的有效监管尤为重要。目前,将高光谱成像技术应用于肉类掺杂掺假检测中可以实现样品无损、准确以及快速检测,已成为食品、农产品检测应用领域的一个重要研究方向。

1 肉类掺杂掺假检的测研究现状

肉类掺杂掺假形式多种多样,且更具技术化及隐形化,常见的形式主要包括4种[4]:(1)冒充:使用价格低廉的肉类充当高价肉,如鸭肉或者鸡肉冒充牛羊肉等;(2)替换:利用冷藏的同种肉类替换鲜肉,如变质肉、僵尸肉等;(3)混入:一般借助肉糜破坏纤维形态结构,将廉价劣质肉类或内脏混入原料肉中以掩人耳目,如肉馅中掺入血脖肉、碎内脏等;(4)添加:通过添加非肉源性物质实现增重、着色、提味等目的,如“注胶虾”、“注水肉”、肉中掺入大豆蛋白等。然而,在GB 2760—2011《食品安全国家标准食品添加剂使用标准》中明文规定禁止这种添加行为。肉类的掺杂掺假在健康、道德、宗教和经济等方面对消费者构成了严重威胁。因此,消费者对肉类进行检测以获得实际信息的需求和意愿逐年上涨[5]

依靠感官或形态学的传统检测方式存在主观性强及易误判等弊端。目前,客观仪器分析技术主要包括聚合酶链式反应(polymerase chain reaction, PCR)法[6]、电泳分析法[7]、质谱分析法[8]、酶联免疫吸附测定(enzyme linked immunosorbent assay, ELISA)法[9]、色谱分析法[10]、元素分析和同位素分析法[11]等。它们虽然具有较好的重复性及检测精度,但具有破坏性、需专业人士操作、费时费力、需复杂前处理等缺陷,很难实现大样本量的现场快速检测。近年来快速光谱检测技术在肉类掺杂掺假检测中已展现出巨大潜力,如拉曼光谱[12]、激光诱导击穿光谱[13]、太赫兹光谱[14]、紫外-可见光谱[15]、近红外光谱[16]、中红外光谱[17]和傅里叶变换红外光谱[18]等,但掺假分布并不一定均匀,单或多点检测不能充分代表整个样品信息,且不具备令其“快速现形”的能力。高光谱成像技术(hyperspectral imaging, HSI)可以同时获取被测目标光谱和图像信息,其光谱信息能够鉴定内部有机物化学成分。通过获取的图像信息可以很好地反映样品中复杂的非均质特征信息,满足快速检测以及可视化等需求。

2 高光谱成像的基本原理与数据解析

2.1 高光谱成像技术

高光谱成像技术是融合光学、电子学、计算机科学、信息处理以及统计学等领域的光电检测技术,主要应用于如森林探火、地质勘探以及海洋监测等航空遥感领域,正逐步在农业、食品、环境、工业、医药等领域快速地发展应用[19]。高光谱图像数据采集包括点扫描、线扫描和面扫描3种(图1-a),点扫描:逐像素采集光谱后进行拼接,常见于微观尺度扫描检测中;线扫描:逐行扫描获取每一行像素点光谱并逐行拼接,线扫描尤其适合传送装置上动态检测,也是食品农产品检测的常用模式;面扫描在光谱维逐波长对图像依次扫描拼接,一般用于少波长多光谱成像系统中。高光谱图像不仅包括样品二维空间信息(xy),还具有随波长分布的每个像素点的光谱信息(λ),最终获得立方体数据(xyλ),如图1-b。较之传统机器视觉以及近红外光谱,高光谱可同时获取目标更为丰富的内部生化及外部物理结构等信息。

a-高光谱图像采集模式;b-高光谱图像数据立方体示意图
图1 高光谱成像技术的数据采集
Fig.1 Data acquisition of hyperspectral imaging technology

2.2 高光谱数据的前处理

原始高光谱图像经过黑白校正后,为去除背景、边缘等像素点光谱信息,常利用高反射率波段图像扣除低反射率波段图像得到波段运算图像,并结合合适阈值提取部分像素点生成感兴趣区域(region of interest, ROI)。ROI中平均光谱最终作为每个样品的光谱,用于后续分析研究,也有部分研究通过PC变换、点云分布、图像增强等方法获取ROI提取光谱信息[20]。为消除无用信息和环境条件及仪器所带来的图谱噪声,卷积平滑、导数以及标准正态变量变换等都常用于光谱的预处理。高光谱提取出的光谱数据量庞大,存在大量的冗余信息,需要进行有用信息的提取以缩减计算。文献中的系列特征变量提取方法包括:竞争性自适应加权、连续投影、无信息变量消除、回归系数、主成分载荷、二维相关光谱、野草算法以及遗传算法等。

2.3 模型的建立与评价

模型是数据分析研究工作中重要的内容,肉类掺杂掺假的高光谱信息作为自变量对应掺入梯度作为因变量,突出其内在线性或非线性联系,构建定性判别或定量预测模型,预测后续未知样本,并基于预测结果给予模型优劣的评价。如偏最小二乘回归(partial least squares regression, PLSR)、逐步回归(stepwise regression, SR)等定量预测模型方法以及线性判别分析(linear discriminant analysis, LDA)和支持向量机(support vector machine, SVM)等定性判别方法均得到了广泛应用。目前应用包括卷积神经网络(convolutional neural networks, CNN)、递归神经网络以及无监督的预培训网络等深度学习方法自动提取特征,也是当前模型建立中的热点。建立模型评价要有真实掺假梯度与预测值之间的相关系数(R)以及决定系数(R2)、均方根误差(RMSE)、剩余预测偏差等,一般模型预测集误差越小,相关或决定系数越大,总体模型性能越好,训练集与预测集的评价参数越接近说明模型越稳定。

检测限(limit of detection, LOD)是衡量某一种检测技术方法能力的重要指标,部分检测研究中会进行LOD计算以评价高光谱成像技术结合化学计量学建模方法的灵敏度[21]。JIANG等[22]对牛肉糜中掺入鸭肉糜的高光谱成像进行检测,LOD为7.59%。王伟等[23]应用高光谱成像对掺入牛肉糜中3种大豆蛋白进行检测,LOD达到0.53%、0.58%和1.02%。JIANG等[24]对掺入猪肉中血脖肉含量进行高光谱成像检测,LOD限达6.50%。考虑到肉类掺杂掺假均是以盈利为目的,一般掺假比例都会高于10%,使用高光谱成像在肉类掺杂掺假检测中是实际可行的。

2.4 高光谱数据的后处理

与传统的近红外光谱相比,高光谱成像的主要优势在于能够反映空间分布信息,建立简化的多变量模型可以预测多光谱图像每个像素点的值,以达到观测整个图像品质或化学成分分布的目的[25]。而掺杂掺假情况一般用肉眼是难以观测到的,为了快速直观地观察肉类掺杂掺假的空间分布,研究人员一般将优选的简化模型应用到特征波长下的多光谱图像中,预测每个像素点的掺杂掺假情况,最终得到可视化的预测分布图,给清晰直观地展示出掺杂掺假状况提供了一种方法。

3 肉类掺杂掺假高光谱检测研究进展

3.1 冒充和替换

使用不同产地、种属、状态的肉类进行冒充或替换是不法商家常用的手段,目前常通过动物源成分或某一指标如挥发性盐基氮、细菌总数及水分含量等进行检测鉴别。爱尔兰都柏林大学KAMRUZZAMAN等[26]利用近红外波段(900~1 700 nm)高光谱成像技术对猪、牛、羊3类红肉进行整块类别划分,选取6个波长结合PLS-DA建模方法得到识别总准确率为98.67%。奥克兰理工大学的AL-SARAYREH等[27]将新鲜、冷冻、解冻、包装和非包装多种形式猪、牛、羊肉拼接,利用HSI结合深度CNN得到了总体94.4%的划分准确率。最近研究[28]发现快照HSI结合3D-CNN同样可以获取96.9%以上准确率,这为未来便携仪器开发及实时获取红肉真伪信息提供可能。华南理工大学XIONG等[29]分别提取散养鸡和肉鸡肉高光谱主成分得分图像的光谱和图像纹理信息,图谱信息结合利用SVM建模最优判别准确率达93.33%。宁夏大学王靖等[30]采集银川、固原、盐池3个产地羊肉高光谱图像,发现CARS提取波长结合PLS-DA建模方法得到的预测集准确率最高为84.21%。王彩霞等[31]对荷斯坦牛、秦川牛、西门塔尔牛3种牛肉高光谱图像数据进行采集分析,结果显示CARS提取波长结合SVM建模预测集准确率为98.82%。综上,对于此类肉类冒充和替换,高光谱成像可以较好地识别和划分(准确率>84%),以往对于肉类冒充和替换案例中,不同肉类蛋白质的不同吸收带是光谱检测能力的最大贡献来源[11],未来还可以结合点云或显微尺度进行信息挖掘,以达到进一步提升识别精度和模型稳定性的目的。

3.2 混入

混入的检测研究目前较多,常见于肉糜状态下的混入检测。肉糜是最受欢迎的形式之一,是多类肉制品的主要成分,如汉堡、馅饼、肉丸、香肠以及包子、饺子和馄饨肉馅等。由于肉糜消除了基本的形态差异和特征,消费者难以通过感官观测出异样,因此原料肉糜中常被混入廉价肉糜牟取利益。表1就肉糜混入的高光谱检测研究进行了总结,所有研究中模型的预测精度均很高,高光谱成像检测具有巨大应用潜力。表中大部分研究利用包含可见光的400~1 000 nm波段,原因是借助不同肉类血红蛋白和肌红蛋白含量以及结构差异对光散射的影响完成检测鉴别[32]

表1 高/多光谱成像在廉价肉混入原料肉检测的应用
Table 1 Application of hyper/multi-spectral imaging in detecting raw meats adulterated with cheap meats

掺杂掺假原料肉波段范围/nm建模方法 模型性能评价参考文献猪肉、内脏羊肉910~1 700PLSR、MLRR2cv≥0.98[33]内脏羊肉910~1 700PLSRR2cv=0.97, RMSECV=1.84%[34]猪肉羊肉390~1 040PLSRR2p=0.96, RMSEP=6.10%[35]猪肉牛肉405~970PLS-DA、LDA98.48%[36]变质牛肉牛肉496~1 000PLSR、SVM、LS-SVM、ELMR2p=0.95, RMSEP=5.67%[37]马肉牛肉400~1 000PLSRR2p=0.98, RMSEP=2.20%[38]马肉牛肉405~970PLS-DA、SVM95.31%[39]猪肉牛肉400~1 000PLSR、PCR、MLRRp=0.985, SEP=4.172%[40]猪肉牛肉400~1 000PLSR、PCR、MLRR2p=0.98, RMSEP=4.23%[41]鸭肉牛肉400~1 000PLSR、PCRR2p=0.96, RMSEP=6.58%[22]鸡肉牛肉400~1 000PLSRR2p=0.97, RMSEP=2.61%[42]血脖肉猪肉400~1 000PLSRR2p=0.91, RMSEP=13.93%[24]猪肉、鸡肉牛肉400~1 000PLSRRp=0.972 1/0.987 8, RMSEP=2.03%/1.26%[43]鸡肉牛肉900~1 700PLSR、MLRR2p=0.97, RMSEP=5.31%[44]鸭肉羊肉400~1 000PLSRR2p=0.98, RMSEP=2.51%[45]猪肉牛肉400~900PLSRR2p=0.95, SEP=3.29%[46]

3.3 非肉源添加物

非肉源添加物大部分是为增重牟利,常见的如注入食用胶溶液、大豆蛋白等,虽然少量添加物能提升肉类的质地和流变特性并改善其口感,但过多添加一方面严重侵犯了消费者权益,另一方面因人体肠胃无法吸收,长期食用会阻碍营养物质吸收,很容易造成营养不良,更严重的会引起强烈的过敏症状。许多国家对于此类添加物有明确规定,如巴西法律规定汉堡中大豆蛋白添加量不能超过7.5%。检测肉制品中未声明的非肉源添加物具有很重要的现实意义,相关研究结果汇总如表2所示。而此类物质相比于肉类掺假因具有不同的蛋白质、碳水化合物以及水分含量等,因此更易被高光谱检测出来[47]

表2 高光谱成像检测肉类中非肉源添加物的方法比较
Table 2 Comparison of studies on detecting non-meat additives in raw meats using hyperspectral imaging

掺杂掺假原料肉波段范围/nm建模方法模型性能评价参考文献卡拉胶鸡肉400~1 000PLSRR2p♂=0.85[48]大豆分离蛋白牛肉900~1 700MLR、PLSRRp=0.95[49]3种大豆蛋白鸡肉400~1 000PLSRR2p♂>0.97[23]明胶对虾900~1 700LS-SVMR2p♂=0.965[50]卡拉胶猪肉900~1 700MLR、PLSRRp≥0.92[51]水牛肉405~970 PLSRRp=0.946, SEP=0.618%[52]

4 前景与展望

肉类产品长期面临着不法商家各类掺杂掺假问题,基于高光谱成像技术的快速检测是可行的,但肉类掺杂掺假现象多种多样、层出不穷,目前数据挖掘、模型建立以及商业化应用基础还不够系统、成熟。首先,不应仅针对某一种现象进行研究,未来还需有针对性的图谱数据融合以及人工智能深度学习算法的尝试,深度挖掘指示各类肉品的指纹特征,筛选出适用于检测多种或某一类掺杂掺假的数据信息;其次,目前构建模型的数据库还是研究者自行构建,模型稳健性还不够,模型的优化更新还需要巨大样本量数据库补充,距离商业化应用还有一段距离;再次,超立方体高光谱数据较大,图像和光谱处理速度慢,开发经济简单的数据处理方法和低成本、易操作、少变量的多光谱系统是未来发展的重点;最后,仍需通过优化应用条件,建立应用方法,研发配套大型装备或小型便携设备,最终为我国肉类掺杂掺假现象的快速实时检测鉴别提供关键技术与装备,以提升监管水平。

参考文献

[1] 周光宏, 李春保, 徐幸莲.肉类食用品质评价方法研究进展[J].中国科技论文在线, 2007, 2(2):75-82.

ZHOU G H, Li C B, XU X L.Research progress of meat edible quality evaluation methods[J].Sciencepaper Online, 2007, 2(2):75-82.

[2] 陈加齐, 魏晓娟, 朱增勇, 等.近年来全球畜产品消费趋势分析及未来展望[J].农业展望, 2017, 13(1):70-76.

CHEN J Q, WEI X J, ZHU Z Y, et al.Consumption trend of global livestock products and its future prospects[J].Agricultural Outlook, 2017, 13(1):70-76.

[3] PREMANANDH J.Horse meat scandal-a wake-up call for regulatory authorities[J].Food Control, 2013, 34(2):568-569.

[4] BALLIN N Z.Authentication of meat and meat products[J].Meat Science, 2010, 86(3):577-587.

[5] SENTANDREU M, SENTANDREU E.Authenticity of meat products:Tools against fraud[J].Food Research International, 2014, 60:19-29.

[6] HE H N, HONG X, FENG Y S, et al.Application of quadruple multiplex PCR detection for beef, duck, mutton and pork in mixed meat[J].Journal of Food and Nutrition Research, 2015, 3(6):392-398.

[7] MAZORRA-MANZANO M A, TORRES-LLANEZ M J, GONZALEZ-CORDOVA A F, et al.A capillary electrophoresis method for the determination of hydroxyproline as a collagen content index in meat products[J].Food Analytical Methods, 2012, 5(3):464-470.

[8] BLACK C, CHEVALLIER O P, COOPER K M, et al.Rapid detection and specific identification of offals within minced beef samples utilising ambient mass spectrometry[J].Scientific Reports, 2019, 9(1):6 295.

[9] MACEDO-SILVA A, BARBOSA S F C, ALKMIN M G A, et al.Hamburger meat identification by dot-ELISA[J].Meat Science, 2000, 56(2):189-192.

[10] CRIADO M, CASTRO-RUBIO F, GARCIA-RUIZ C, et al.Detection and quantitation of additions of soybean proteins in cured-meat products by perfusion reversed-phase high-performance liquid chromatography[J].Journal of Separation Science, 2005, 28(9-10):987-995.

[11] HASSOUN A, MAGE I, SCHMIDT W F, et al.Fraud in animal origin food products:Advances in emerging spectroscopic detection methods over the past five years[J].Foods, 2020, 9:1069.

[12] BOYACI I H, TEMIZ H T, UYSAL R S, et al.A novel method for discrimination of beef and horsemeat using Raman spectroscopy[J].Food Chemistry, 2014, 148:37-41.

[13] VELIOGLU H M, SEZER B, BILGE G, et al.Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS) [J].Meat Science, 2018, 138:28-33.

[14] 齐亮, 赵茂程, 赵婕, 等.基于太赫兹光谱分析的猪肉K值无损检测方法[J].农业机械学报, 2017, 48(12):346-353.

QI L, ZHAO M C, ZHAO J, et al.Non-destructive detection method of K value in pork with Terahertz spectroscopy[J].Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(12):346-353.

[15] ALAMPRESE C, CASALE M, SINELLI N, et al.Detection of minced beef adulteration with turkey meat by UV-vis, NIR and MIR spectroscopy[J].LWT- Food Science and Technology, 2013, 53(1):225-232.

[16] ZHAO M, O′DONNELL C, DOWNEY G.Detection of offal adulteration in beefburgers using near infrared reflectance spectroscopy and multivariate modelling[J].Journal of Near Infrared Spectroscopy, 2013, 21(4):237-248.

[17] MEZA-MRQUEZ O G, GALLARDO-VELZQUEZ T, OSORIO-REVILLA G.Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef[J].Meat Science, 2010, 86(2):511-519.

[18] ROHMAN A, SISMINDARI, ERWANTO Y, et al.Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy[J].Meat Science, 2010, 88(1):91-95.

[19] 高泽东, 郝群, 刘宇, 等.高光谱成像与应用技术发展[J].计测技术, 2019, 39(4):24-34.

GAO Z D, HAO Q, LIU Y, et al.Hyperspectral imaging and application technology development[J].Metrology and Measurement Technology, 2019, 39(4):24-34.

[20] 刘海, 郑福平, 熊振海, 等.高光谱成像技术在肉品品质评价中的应用[J].食品科学, 2018, 39(11):276-283.

LIU H, ZHENG F P, XIONG Z H, et al.Application of hyperspectral imaging technology in meat quality evaluation[J].Food Science, 2018, 39(11):276-283.

[21] BILGE G, VELIOGLU H M, SEZER B, et al.Identification of meat species by using laser-induced breakdown spectroscopy[J].Meat Science, 2016, 119:118-122.

[22] JIANG H Z, WANG W, ZHUANG H, et al.Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef[J].Food Analytical Methods, 2019, 12(10):2 205-2 215.

[23] 王伟, 姜洪喆, 贾贝贝, 等.基于高光谱成像的生鲜鸡肉糜中大豆蛋白含量检测[J].农业机械学报, 2019, 50(12):357-364.

WANG W, JIANG H Z, JIA B B, et al.Detection of soybean protein content in fresh minced chicken meat using hyperspectral imaging[J].Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(12):357-364.

[24] JIANG H Z, CHENG F N, SHI M H.Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging[J].Foods, 2020, 9:154.

[25] 杨君荣, 汪希伟, 赵茂程, 等.农产品品质光谱成像的空间预测规律[J].发光学报, 2018, 39(4):580-588.

YANG J R, WANG X W, ZHAO M C, et al.Law of spatial prediction of agro-product qualities based on spectral imaging[J].Chinese Journal of Luminescence, 2018, 39(4):580-588.

[26] KAMRUZZAMAN M, BARBIN D, ELMASRY G, et al.Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat[J].Innovative Food Science and Emerging Technologies, 2012, 16:316-325.

[27] AL-SARAYREH M, REIS M M, WEI Q Y, et al.Detection of red-meat adulteration by deep spectral-spatial features in hyperspectral images[J].Journal of Imaging, 2018, 4(5):63.

[28] AL-SARAYREH M, REIS M, WEI Q Y, et al.Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat[J].Food Control, 2020, 117:107332.

[29] XIONG Z J, SUN D W, PU H B, et al.Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats[J].LWT-Food Science and Technology, 2015, 60(2):649-655.

[30] 王靖, 丁佳兴, 郭中华, 等.基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J].食品工业科技, 2018, 39(2):250-254;260.

WANG J, DING J X, GUO Z H, et al.Identification of geographical origins of mutton in Ningxia based on the near infrared hyperspectral imaging technique[J].Science and Technology of Food Industry, 2018, 39(2):250-254.

[31] 王彩霞, 王松磊, 贺晓光, 等.基于可见/近红外高光谱成像技术的牛肉品种鉴别[J].食品工业科技, 2019, 40(12):241-247.

WANG C X, WANG S L, GUO X G, et al.Identification of beef breeds based on the Vis/NIR hyperspectral imaging technique[J].Science and Technology of Food Industry, 2019, 40(12):241-247.

[32] SILVA S, GUEDES C, RODRIGUES S, et al.Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats:A review[J].Foods, 2020, 9:1 074.

[33] KAMRUZZAMAN M, SUN D W, ELMASRY G, et al.Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis[J].Talanta, 2013, 103:130-136.

[34] KAMRUZZAMAN M, HAQUE M E, ALI M R.Hyperspectral imaging technique for offal quantification in minced meat[J].Journal of the Bangladesh Agricultural University, 2014, 12(1):189-194.

[35] 刘友华, 白亚斌, 邱祝福, 等.基于高光谱图像技术和波长选择方法的羊肉掺假检测方法研究[J].海南师范大学学报(自然科学版), 2015, 28(3):265-269.

LIU Y H, BAI Y B, QIU Z F, et al.Hyperspectral imaging technology and wavelength selection method for nondestructive detection of mutton adulteration[J].Journal of Hainan Normal University (Natural Science), 2015, 28(3):265-269.

[36] ROPODI A I, PAVLIDIS D E, MOHAREB F, et al.Multispectral image analysis approach to detect adulteration of beef and pork in raw meats[J].Food Research International, 2015, 67:12-18.

[37] ZHAO H T, FENG Y Z, CHEN W, et al.Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging[J].Meat Science, 2019, 151:75-81.

[38] KAMRUZZAMAN M, MAKINO Y, OSHITA S, et al.Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef[J].Food and Bioprocess Technology, 2015, 8(5):1 054-1 062.

[39] ROPODI A I, PANAGOU E Z, NYCHAS G J E.Multispectral imaging (MSI):A promising method for the detection of minced beef adulteration with horsemeat[J].Food Control, 2017, 73:57-63.

[40] KAMRUZZAMAN M, MAKINO Y, OSHITA S.Hyperspectral imaging in tandem with multivariate analysis and image processing for non-invasive detection and visualization of pork adulteration in minced beef[J].Analytical Methods, 2015, 7(18):7 496-7 502.

[41] 白亚斌, 刘友华, 丁崇毅, 等.基于高光谱技术的牛肉-猪肉掺假检测[J].海南师范大学学报(自然科学版), 2015, 28(3):270-273.

BAI Y B, LIU Y H, DING C Y, et al.Quantitative detection of beef-pork adulteration by hyperspectral imaging[J].Journal of Hainan Normal University (Natural Science), 2015, 28(3):270-273.

[42] KAMRUZZAMAN M, MAKINO Y, OSHITA S.Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning[J].Journal of Food Engineering, 2016, 170:8-15.

[43] 孙宗保, 王天真, 李君奎, 等.高光谱成像的牛肉丸掺假检测[J].光谱学与光谱分析, 2020, 40(7):2 208-2 214.

SUN Z B, WANG T Z, LI J K, et al.Detecting adulterated beef meatball using hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2020, 40(7):2 208-2 214.

[44] 朱亚东, 何鸿举, 王魏, 等.高光谱成像技术结合线性回归算法快速预测鸡肉掺假牛肉[J].食品工业科技, 2020, 41(4):184-189.

ZHU Y D, HE H J, WANG W, et al.Quick detection of beef adulteration using hyperspectral imaging technology combined with linear regression algorithm[J].Science and Technology of Food Industry, 2020, 41(4):184-189.

[45] ZHENG X C, LI Y Y, WEI W S, et al.Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging[J].Meat Science, 2018, 149:55-62.

[46] 杨清华, 彭彦昆, 郑晓春.基于阈值选取高光谱感兴趣区域的牛肉掺假检测[J].食品安全质量检测学报, 2018, 9(11):2 710-2 715.

YANG Q H, PENG Y K, ZHENG X C.Detection of adulterated beef based on selecting hyperspectral region of interest with threshold[J].Food Safety and Quality Detection Technology, 2018, 9(11):2 710-2 715.

[47] RADY A, ADEDEJI A A.Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats[J/OL].Food Analytical Methods, 2020.DOI:10.1007/S12161-020-0719-1.

[48] ZHANG Y, JIANG H Z, WANG W.Feasibility of the detection of carrageenan adulteration in chicken meat using visible/near-infrared (Vis/NIR) hyperspectral imaging[J].Applied Sciences, 2019, 9(18):3 926.

[49] 何鸿举, 朱亚东, 陈岩, 等.基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J/OL].食品工业科技, http://kns.cnki.net/kcms/detail/11.1759.TS.20200408.1544.035.html.

HE H J, ZHU Y D, CHEN Y, et al.Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J/OL].Science and Technology of Food Industry, http://kns.cnki.net/kcms/detail/11.1759.TS.20200408.1544.035.html.

[50] WU D, SHI H, HE Y, et al.Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn[J].Journal of Food Engineering, 2013, 119(3):680-686.

[51] 何鸿举, 朱亚东, 王魏, 等.基于近红外高光谱成像快速无损检测注胶肉研究[J].食品工业科技, 2020, 41(10):219-223.

HE H J, ZHU Y D, WANG W, et al.Rapid nondestructive detection of glue-injected meat by NIR hyperspectral imaging technology[J].Science and Technology of Food Industry, 2020, 41(10):219-223.

[52] LIU JINXIA, CAO YUE, WANG QIU, et al.Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis[J].Food Chemistry, 2016, 190:938-943.

The progress of the detection of meats adulteration using hyperspectral imaging

JIANG Hongzhe1, JIANG Xuesong1, YANG Yi2,3, HU Yilei1, CHEN Qing1
SHI Minghong1, ZHOU Hongping1*

1(College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China) 2(Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China) 3(National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China)

Abstract Meat adulteration is a public safety issue widely concerned at home and abroad, which has a potential impact on social economy, health and environment. In recent years, meat adulteration has emerged endlessly in a variety of ways due to the huge profits pursued by unscrupulous merchants. It is urgent to develop effective techniques and methods to ensure the authenticity of meat products. Hyperspectral imaging is a fast and non-invasive technique that combines spectra with images, and is developing rapidly in the field of food and agricultural products detection. Not only spectral and imaging characteristics can be extracted from hyperspectral images at the same time, but also it is capable to make a ‘quick appearance’ for meat adulteration. Therefore, hyperspectral imaging has good market application prospects in the future. In this study, the current status of meat adulteration was firstly introduced, and then the principle of hyperspectral imaging and data analysis methods in related studies were briefly described. After that, further breakthrough directions were prospected based on the discussion for research progress on existing researches for qualitative discrimination and quantitative prediction related to meat adulteration. The results are expected to help provide references and ideas for supervision measures of the meat market and studies of adulteration detection for other agricultural products.

Key words hyperspectral imaging;meats;adulteration;data analysis;visualization

DOI:10.13995/j.cnki.11-1802/ts.025254

引用格式:姜洪喆,蒋雪松,杨一,等.肉类掺杂掺假的高光谱成像检测研究进展[J].食品与发酵工业,2021,47(6):300-305.JIANG Hongzhe, JIANG Xuesong, YANG Yi, et al.The progress of the detection of meats adulteration using hyperspectral imaging[J].Food and Fermentation Industries,2021,47(6):300-305.

第一作者:博士,讲师(周宏平教授为通讯作者,E-mail:hpzhou@njfu.edu.cn)

基金项目:南京林业大学引进高层次和高学历人才留学回国人员科研启动基金(163040114)

收稿日期:2020-08-03,改回日期:2020-09-10