贵州代表性茶树品种茶青萎凋期游离氨基酸动态分析及评价

潘科1*,李琴2,方仕茂1,戴宇樵1,冉乾松2,刘忠英1,杨婷1

1(贵州省茶叶研究所,贵州 贵阳,550006)2(贵州大学 茶学院,贵州 贵阳,550025)

该研究对福鼎、金观音和黔茶1号3个贵州代表性品种萎凋处理,基于高效液相色谱分析不同萎凋期茶鲜叶中游离氨基酸含量动态变化,结合味道活性值和特殊氨基酸分析,探究不同品种萎凋期游离氨基酸差异,增加对品种适制性的理解。结果表明,萎凋期间游离氨基酸含量总体呈上升趋势;必需氨基酸占比均值黔茶1号最高(33.200%),金观音次之(31.451%),福鼎最低(24.666%);药用氨基酸占比均值以黔茶1号最高(48.234%),福鼎次之(41.412%),金观音最低(40.971%)。鲜味氨基酸占比均值:黔茶1号(26.19%)>福鼎(25.14%)>金观音(22.23%);甜味氨基酸占比均值:黔茶1号(22.47%)>福鼎(15.63%)>金观音(13.70%);苦味氨基酸占比均值:黔茶1号(27.23%)>金观音(26.53%)>福鼎(20.45%)。由茶氨酸、谷氨酸构成的鲜味,丙氨酸、丝氨酸构成的甜味及组氨酸、蛋氨酸构成的苦味与萎凋时间呈相关性。研究明确了萎凋期品种间差异和不同呈味氨基酸变化规律,为改进萎凋工艺提升贵州绿茶品质提供理论依据。

关键词 萎凋;游离氨基酸;黔茶1号;福鼎;金观音

游离氨基酸可被人体直接吸收,其含量和成分能反映食品的营养价值,可参与人体的新陈代谢、生长、免疫,同时作为重要的呈味物质体现出鲜、甜、酸、苦及涩等味感,这些多样的味感形成了食物丰富的味觉层次[1]。游离氨基酸是许多其他化合物前体,如苯丙氨酸是类黄酮及部分挥发性物质的前体[2]。游离氨基酸与糖类物质在热的作用下发生美拉德反应,生成的羰氨化合物对干茶香气和色泽产生影响,如茶氨酸和D-葡萄糖或其他单糖,在150~160 ℃反应可生成吡嗪和呋喃衍生物[3]。除美拉德反应外,氨基酸还可经斯却克尔反应降解生成相应醛类、醇类,影响香气品质[4]。可见,游离氨基酸与茶叶品质有密切联系。

目前国内外关于茶叶游离氨基酸提取及检测,加工过程变化分析,保健功能等方面已有较多研究。ZHAO等[5]运用领苯二甲醛衍生方法可同时检测茶叶中21种游离氨基酸。彭影琦等[6]研究发现,L-茶氨酸可通过增加肠道绒毛高度、提高绒毛高度与隐窝深度比值来改善小鼠肠道形态结构,同时可促进十二指肠、空肠对氨基酸的吸收利用。传统茶叶按加工工艺分为六大类,萎凋是茶叶加工中极其基础且关键的工序[7],加工中常根据不同成茶品质设置萎凋处理,为后期加工物质转化奠定基础。福鼎大白为贵州省主要栽种品种,金观音为大量引入贵州省的乌龙茶栽种品种[8],黔茶1号是贵州省自主选育优良品种[9]。目前关于萎凋期游离氨基酸差异和不同呈味氨基酸变化规律的研究尚不多,明确主栽品种萎凋期规律可增进对品种适制性理解。本研究特选取3个代表性栽培品种探究萎凋叶游离氨基酸组成、含量和变化趋势,为改进萎凋工艺提升贵州绿茶品质提供理论依据。

1 材料与方法

1.1 样品来源

供试材料来源于贵州茶叶研究所种质资源圃分别是福鼎、金观音及黔茶1号。

1.2 仪器与试剂

冷冻干燥机,浙江双嘉仪器有限公司;超声波清洗机,昆山市超声仪器有限公司;分析天平,赛多利斯科学仪器有限公司;高效液相色谱仪及荧光检测器,美国Waters公司;恒温水浴锅,天津市泰斯特仪器有限公司。

Waters AccQ.Tag化学试剂包:硼酸缓冲液,衍生剂粉末,衍生剂稀释液,混合氨基酸水解标样,美国Waters公司。

1.3 试验方法

1.3.1 萎凋处理

于2019年7月下旬早上采收一芽二叶鲜叶,相对湿度60%,25 ℃条件下恒温萎凋,薄摊2~3 cm,每隔3 h取1次样。

1.3.2 游离氨基酸的测定

精确称取0.1 g(±0.000 5 g)茶粉,置于15 mL离心管中,移液管取10 mL纯水。在100 ℃水浴中浸提45 min,每隔10 min振荡1次。冷却至室温,将得到的氨基酸提取液用0.45 μm水系滤头过滤,制成待衍生样品。

1.3.2.1 样品游离氨基酸衍生

制备衍生试剂:用Waters AccQ.Tag化学试剂包中衍生剂稀释液1 mL溶解衍生试剂粉末,置于预热55 ℃的加热装置,直至粉末完全溶解,加热时间不超过10 min。样品制备:洁净枪头吸取10 μL氨基酸提取液于内衬管,换洁净枪头吸取70 μL硼酸缓冲液注入内衬管,涡旋混合;再取清洁枪头吸取20 μL衍生试剂注入内衬管,立即涡旋混合10 s,室温放置1 min,在55 ℃加热装置下加热10 min,等待进样。

1.3.2.2 氨基酸分析

衍生后,氨基酸带有发光基团,使用配备荧光检测器的高效液相色谱仪进行检测。检测波长为,激发波长250 nm,入射波长395 nm。检测温度25 ℃,进样量10 μL。流动相:A相:体积比1∶10稀释浓缩液A(AccQ.Tag洗脱液),0.22 μm滤膜抽滤;B相:色谱纯级别乙腈;C相:屈臣氏蒸馏水。流动相均要进行15 min超声脱气处理。流速设为1 mL/min,梯度洗脱条件如下:0 min:100%A;17 min:91%A,5%B,4%C;24 min:80%A,17%B,3%C;32 min:68%A,20%B,12%C;34 min:68%A,20%B,12%C;35 min:60%B,40%C;38 min:100%A;45 min:100%A。

1.3.3 味道强度值的计算

味道强度值(taste active value,TAV)为呈味物质测定值与呈味物质味觉阈值的比值[10]

1.3.4 特殊氨基酸分析

脯氨酸是一种小分子的相容渗透剂,是水溶性最大的氨基酸。作为植物细胞内的有机渗透调节物质, 脯氨酸是分布最广泛的一种。干旱、高盐、高温、冰冻、氧化及重金属等非生物胁迫条件都会导致植物体内脯氨酸含量的增加,大量积累的脯氨酸可维持胞液的渗透平衡,减轻逆境胁迫对细胞的伤害[11]。萎凋使新梢离体后长时间进行水分胁迫,期间脯氨酸要通过渗透调节调节生化反应。茶氨酸是茶树特征氨基酸,约占游离氨基酸总量50%以上,极易溶于水,水溶液呈鲜味和甜味其鲜甜味高于谷氨酰胺和天冬氨酸,对茶汤苦涩味具有缓解作用且对甜味具有增强作用,它由谷氨酸和乙胺合成,水解后又生成谷氨酸和乙胺,乙胺部分参与合成儿茶素[12]

1.4 数据统计与分析

1.4.1 数据统计

Excel 2010进行数据统计,Origin进行图表制作,SPSS 2018进行单因素方差分析,以P<0.05定义为差异有统计学意义。

2 结果与分析

2.1 萎凋叶叶相变化

茶树离体新梢经萎凋缓慢失水,叶相发生显著变化,如图1所示(选取0至12 h)。叶质由饱满硬挺转至柔软,叶色由鲜绿转向深绿甚至更暗。品种使叶质差异失水程度具有差异,失水能力强弱使叶片卷曲程度大小不一。福鼎和黔茶1号在9 h时,叶缘大幅背卷,金观音则发生在6 h。取样间隔时间短, 因12 h 后叶片颜色失绿转向灰白略带棕褐,且各时间节点间样品图片已无明显区别,特选取12 h以及之前样品以便观察萎凋叶状态。

2.2 不同品种萎凋期游离氨基酸变化规律

由表1~表3可知,福鼎、金观音和黔茶1号在萎凋期均检出天冬氨酸(aspartic acid,Asp)、丝氨酸(serine,Ser)、谷氨酸(glutamic acid,Glu)、甘氨酸(glycine,Gly)、组氨酸(phenylalanine,His)、精氨酸(arginine,Arg)、苏氨酸(threonine,Thr)、丙氨酸(alanine,Ala)、脯氨酸(proline, Pro)、茶氨酸(theaine,Thea)、半胱氨酸(cysteine,Cys)、酪氨酸(tyrosine,Tyr)、缬氨酸(valine, Val)、蛋氨酸(methionine,Met)、赖氨酸(lysine, Lys)、异亮氨酸(isoleucine,Ile)、亮氨酸(leucine,Leu)、苯丙氨酸(phenylalanine,Phe)共计18种游离氨基酸。福鼎游离氨基酸总量以15 h为转折点后呈上升趋势,金观音分别在6 h和18 h有所下降,黔茶1号在12 h到达总含量小高峰,后有所降低,三者游离氨基酸随着萎凋时间延长有所增加,均在萎凋24 h达到最大值,与JABEEN等[13]和SAPTASHISH等[14]研究结果一致,且游离氨基酸总量在3.938~43.309 mg/g。总体来看福鼎含量最高,金观音次之,黔茶1号最低。从氨基酸组分来看,茶叶特征氨基酸——茶氨酸含量明显高于其他17种游离氨基酸,含量在0.732~13.699 mg/g,其次是谷氨酸,含量范围在0.922~5.305 mg/g。

福鼎 0 h福鼎 3 h福鼎 6 h福鼎 9 h福鼎 12 h 金观音0 h 金观音3 h金观音6 h金观音9 h金观音12 h黔茶1号0 h黔茶1号3 h黔茶1号6 h黔茶1号9 h黔茶1号12 h

图1 萎凋叶叶相变化
Fig.1 Changes in leaf phase of withered leaves

表1 福鼎不同萎凋时间游离氨基酸含量 单位:mg/g

Table 1 Free amino acid content in Fuding with different time of withering

名称0 h3 h6 h9 h12 h15 h18 h21 h24 hAsp0.964±0.17d1.683±0.135c1.696±0.056c1.592±0.214c2.289±0.211b2.267±0.403b2.727±0.036a2.761±0.177a2.169±0.008bSer0.693±0.122g1.169±0.127g1.312±0.246fg1.937±0.263f3.443±0.15e4.900±0.316d5.82±0.767c7.866±0.311b9.023±0.528aGlu3.982±0.168de5.075±0.586abc4.616±0.266bcd3.662±0.039f4.823±0.4abc4.442±0.539cd5.097±0.079ab5.305±0.229a4.862±0.028abcGly0.089±0.007a0.086±0.002a0.080±0.004a0.080±0.006a0.053±0.002b0.055±0.01b0.025±0.003c0.018±0.011c0.005±0.004dHis0.666±0.227cd0.346±0.015cd0.702±0.198cd0.891±0.327c1.955±0.288a1.481±0.258b1.333±0.076b1.667±0.226ab1.971±0.137aArg0.086±0.041cd0.038±0.02cd0.161±0.049cd0.186±0.053c0.398±0.068ab0.322±0.095b0.386±0.123ab0.518±0.024a0.418±0.059abThr0.274±0.05c0.416±0.031b0.417±0.075b0.506±0.059b0.673±0.054a0.657±0.095a0.639±0.077a0.703±0.058a0.729±0.05aAla0.027±0.012f0.064±0.025f0.306±0.015e0.290±0.091e0.455±0.064d0.646±0.088c0.706±0.128bc0.821±0.013b1.002±0.008aPro0.047±0.005f0.176±0.016ef0.250±0.02de0.403±0.023d0.611±0.026d0.916±0.089c1.098±0.112bc1.213±0.113b1.475±0.222aThea7.862±0.688d4.476±0.25e7.084±0.425d8.460±0.569d13.699±1.319a9.059±0.637cd11.602±2.727ab11.618±1.461ab11.272±0.471bcCys0.026±0.005ab0.028±0.001ab0.025±0.003ab0.030±0.004a0.010±0.006d0.030±0.002a0.022±0.002bc0.017±0.002c0.023±0bcTyr0.377±0.054c0.151±0.06d0.319±0.053cd0.478±0.105bc0.635±0.128b0.479±0.093bc0.660±0.13b0.613±0.13b1.211±0.05aVal0.025±0.016h0.110±0.019gh0.206±0.041gh0.411±0.062f0.708±0.05e0.987±0.074d1.261±0.018c1.382±0.088b1.610±0.077aMet1.502±0.056ab1.565±0.09a1.365±0.013b0.777±0.045e1.103±0.036c0.947±0.145d0.996±0.041cd1.024±0.029cd0.630±0.104eLys0.064±0.032i0.289±0.036h0.38S±0.119fg0.548±0.083f1.040±0.099e1.266±0.182d1.683±0.011c1.828±0.139ab2.009±0.004aIle0.075±0.012f0.018±0.012f0.077±0.025f0.213±0.038f0.379±0.027d0.593±0.033c0.69±0.099c0.924±0.048b1.080±0.078aLeu0.014±0.008g0.156±0.021f0.220±0.04f0.404±0.069e0.608±0.037d0.798±0.069c0.873±0.122c1.054±0.053b1.242±0.074aPhe0.308±0.047e0.036±0.015e0.273±0.04e0.830±0.153d1.417±0.278c1.777±0.128b2.372±0.187a2.318±0.118a2.580±0.145a必需/%19.502 19.612 20.436 23.462 24.865 28.508 27.717 27.684 30.212 药用/%43.237 57.161 46.747 39.437 36.052 39.066 39.009 37.069 34.927总含量17.081±1.115 15.883±1.255 19.489±0.929 21.699±1.173 34.297±2.713 31.622±2.783 37.991±3.2 41.649±1.828 43.309±0.817

注:必需:必需氨基酸总量占游离氨基酸总量的百分比;药用:药用氨基酸总量占游离氨基酸总量的百分比(下同)

表2 金观音不同萎凋时间游离氨基酸含量 单位:mg/g

Table 2 Free amino acid content of Jinguanyin at different withering time

名称0 h3 h6 h9 h12 h15 h18 h21 h24 hAsp1.106±0.046e1.365±0.192e1.531±0.206cde1.967±0.312bcd2.06±0.364abc2.622±0.527a2.068±0.282abc2.352±0.269ab2.129±0.206abSer0.798±0.06d1.015±0.232d1.224±0.056de1.812±0.206cd2.461±0.309c3.68±0.445b4.148±0.431b5.654±0.222a5.777±0.22aGlu3.661±0.193c3.840±0.577ab3.930±0.292ab4.759±0.669a3.161±0.509cd3.903±0.742ab3.652±0.536c3.134±0.357cd3.310±0.526cdGly0.055±0.004a0.065±0.016a0.067±0.015a0.073±0.008a0.052±0.006ab0.032±0.012bc0.020±0.011c0.018±0.003c0.012±0.012cHis1.157±0.54c1.654±0.588bc1.249±0.164c1.38±0.26bc1.878±0.189b1.989±0.191b1.730±0.209bc2.657±0.123a2.737±0.12aArg0.008±0.009f0.011±0.008f0.02±0.013f0.068±0.021e0.083±0.012de0.173±0.01bc0.112±0.023d0.197±0.017ab0.219±0.011aThr0.326±0.02g0.414±0.073f0.475±0.052ef0.554±0.051de0.671±0.033abc0.703±0.029ab0.634±0.016bcd0.743±0.006a0.748±0.023aAla0.067±0.055d0.029±0.017d0.054±0.011d0.294±0.047c0.332±0.033c0.457±0.064ab0.427±0.066b0.456±0.028ab0.519±0.028aPro0.034±0.008f0.149±0.066ef0.232±0.012e0.397±0.033d0.551±0.046c0.765±0.093b0.804±0.035b1.058±0.066a1.086±0.093aThea6.909±0.076d9.682±0.394b7.430±0.363cd7.002±0.028d8.089±0.327b7.801±0.251b6.972±0.303d10.548±0a11.030±0.751aCys0.015±0.007ab0.022±0.002a0.017±0.001ab0.015±0.007ab0.010±0.009b0.009±0.006b0.013±0.005ab0.015±0.006ab0.007±0.002bTyr0.349±0.008d0.132±0.027e0.154±0.029e0.360±0.048d0.559±0.102c0.621±0.024bc0.351±0.121d0.784±0.18ab0.931±0.071aVal0.006±0.003f0.125±0.041f0.274±0.022e0.453±0.057d0.665±0.077c0.925±0.115ab0.917±0.073ab1.188±0.059a1.238±0.04aMet3.265±0.12a2.717±0.319b2.391±0.329bc2.407±0.297bc2.071±0.186cd2.156±0.188c1.489±0.134ef1.686±0.063de1.457±0.033efLys0.092±0.009e0.246±0.048e0.471±0.056d0.692±0.105c0.873±0.14c1.361±0.012a1.07±0.115b1.365±0.097a1.447±0.107aIle0.036±0.004f0.098±0.042f0.233±0.016e0.390±0.043d0.577±0.07c0.798±0.11b0.785±0.076b1.012±0.045a1.055±0.042aLeu0.062±0.012g0.210±0.057f0.328±0.022f0.549±0.066e0.707±0.077d0.917±0.129bc0.866±0.081c1.023±0.045ab1.078±0.041aPhe0.445±0.001d0.255±0.076de0.105±0.018e0.146±0.082e0.381±0.095d0.735±0.151c0.76±0.177c1.271±0.129b1.600±0.167a必需/%31.278 26.665 28.219 29.785 33.326 34.450 32.128 33.398 33.806 药用/%49.169 40.139 44.570 47.266 39.499 42.232 38.735 33.643 33.489 总含量18.392±0.8122.028±2.15220.183±1.0423.316±1.97925.179±1.47729.649±2.00326.818±1.12535.159±1.00436.38±1.79

表3 黔茶1号不同萎凋时间游离氨基酸含量 单位:mg/g

Table 3 Free amino acid content of Qiancha No.1 at different withering time

名称0 h3 h6 h9 h12 h15 h18 h21 h24 hAsp0.660±0.192bcd0.307±0.227d0.523±0.203cd0.77±0.177bc1.211±0.309a0.486±0.061cd0.888±0.287abc0.818±0.201abc1.002±0.173abSer0.486±0.178cd0.188±0.161d0.446±0.119d0.764±0.274cd2.426±0.984bc2.076±0.627bcd2.89±0.608b3.532±0.701ab5.148±0.932aGlu2.459±0.155a0.922±0.547c1.179±0.23bc1.361±0.511bc2.346±0.962a1.037±0.12c1.349±0.383bc1.345±0.361bc2.038±0.322abGly0.077±0.009c0.111±0.004a0.109±0.003a0.105±0.008ab0.077±0.011c0.084±0.002bc0.071±0.007cd0.051±0.006de0.031±0.016eHis0.302±0.137def0.149±0.113f0.102±0.077f0.211±0.161ef1.155±0.154a0.435±0.204de0.565±0.113cd0.718±0.05bc0.946±0.207abArg0.037±0.036c0.038±0.025c0.027±0.019c0.024±0.018c0.245±0.024a0.052±0.004c0.114±0.015b0.149±0.038b0.247±0.05aThr0.169±0.069cde0.065±0.051e0.114±0.041de0.171±0.078cde0.467±0.193a0.263±0.099bcd0.328±0.077bc0.429±0.091ab0.451±0.11abAla0.066±0.012c0.054±0.049c0.102±0.012c0.072±0.025c0.317±0.06ab0.055±0.029c0.224±0.119b0.384±0.008c0.403±0.067aPro0.347±0.11cde0.059±0.056f0.13±0.023ef0.257±0.088def0.24±0.112def0.432±0.164cd0.589±0.167bc0.759±0.166b1.278±0.194aThea2.295±0.453bc0.813±0.623d0.88±0.002d0.732±0.515d3.157±0.546ab0.419±0.323d0.517±0.168d2.107±0.058c3.741±0.687aCys0.025±0.009a0.042±0.007a0.04±0.004a0.04±0.004a0.029±0.011a0.038±0.007a0.035±0.006a0.04±0.005a0.029±0.004aTyr0.421±0.06ab0.466±0.098ab0.336±0.085ab0.254±0.098bc0.286±0.224ab0.169±0.185bc0.099±0.125c0.436±0.143ab0.577±0.244aVal0.019±0.027e0.036±0.026de0.062±0.032de0.181±0.085cde0.622±0.288ab0.436±0.164bcd0.572±0.16bc0.707±0.172ab0.99±0.197aMet0.771±0.016a0.173±0.147cd0.19±0.058cd0.172±0.074cd0.52±0.057b0.106±0.008d0.164±0.036cd0.213±0.065cd0.304±0.095cLys0.031±0.009e0.038±0.03e0.066±0.023e0.203±0.089de0.629±0.282bc0.45±0.185cd0.807±0.079ab0.707±0.093abc0.977±0.126aIle0.062±0.016e0.064±0.027e0.017±0.007e0.083±0.056de0.275±0.11bcd0.267±0.112cd0.375±0.127bc0.465±0.142b0.669±0.14aLeu0.021±0.026e0.038±0.027e0.057±0.031e0.146±0.076de0.692±0.126ab0.348±0.141cd0.476±0.154bc0.576±0.135ab0.792±0.165aPhe0.395±0.041d0.375±0.081d0.165±0.091ef0.082±0.069f1.105±0.14b0.268±0.012de0.642±0.11c1.027±0.064b1.722±0.069a必需/%25.640 36.737 25.295 27.442 36.574 37.453 37.959 36.756 34.940 药用/%56.367 62.711 58.325 55.377 45.002 40.434 43.064 36.799 36.028 总含量8.642±0.9293.937±1.1714.545±0.6265.628±1.80115.797±3.6937.419±1.94710.705±2.20714.46±2.28121.346±2.774

必需氨基酸(essential amino acid,EAA)是蛋白质合成,组织修复和营养吸收需要的,包括Thr、Cys、Val、Met、Ile、Leu、Tyr、Phe、His和Lys[15]。3个品种中EAA在萎凋期间总体呈上升趋势,占氨基酸总量的19.502%~37.959%。必需氨基酸占比均值为整个萎凋期必需氨基酸占比总值与取样数的比值,黔茶1号最高(33.200%),金观音次之(31.451%),福鼎最低(24.666%)。黔茶1号分别在3、12、15、21 h接近37%,18 h达到最大37.959%,占比接近世界卫生组织和联合国粮农组织提出的40%营养标准[16],说明黔茶1号所含游离氨基酸具有较高营养价值。金观音在15 h为最大值34.450%,福鼎在24 h为最大值30.212%。

自然界中氨基酸有20多种,其中Glu、Asp、Arg、Gly、Phe、Tyr、Met、Leu、Lys称为药用氨基酸[17]。药用氨基酸含量占总氨基酸百分比为33.489%~62.711%,萎凋期间总体呈下降趋势,前期占比高后期占比降低。药用氨基酸占比均值为整个萎凋期药用氨基酸占比总值与取样数的比值,以黔茶1号最高(48.234%),福鼎次之(41.412%),金观音最低(40.971%)。黔茶1号和福鼎在萎凋3 h为最大值,金观音最大值在0 h。

2.3 不同品种萎凋期呈味氨基酸动态变化及分析

食物中的氨基酸由游离态和非游离态组成,游离态氨基酸对滋味构成起到重要作用,可分为鲜味(Asp、Glu)、甜味(Ala、Gly、Ser和Thr)和苦味(His、Met、Val、Arg、Ile、Leu、Phe和Tyr)[16]。如表4所示,福鼎鲜味氨基酸占比在3 h达到最大值,为42.55%,萎凋24 h时最低,为16.24%。甜味氨基酸占比随萎凋时间推移而增加,在0 h为最小值,24 h为最大值,分别是6.34%和24.84%。苦味氨基酸总体呈上升趋势,在15 h和24 h占比较高,分别为23.35%和24.80%。金观音鲜味氨基酸变化趋势先增后降,在9 h为最大值28.85%,24 h最小值为14.95%,甜味氨基酸占比的最大值最小值分别在0 h和24 h,最大值为19.39%,最小值为6.78%。苦味氨基酸占比呈现阶段性变化,0 h为最大值28.97%,由3 h的23.62%升至15 h的28.04%,后有所降低,24 h达到28.35%。黔茶1号鲜味氨基酸占比最大值在9 h,为37.85%,以9 h为转折点在24 h降至最低为14.24%,甜味氨基酸占比变化趋势不同于福鼎和金观音,以15 h(33.40%)为转折点先升后降,苦味氨基酸占比分别在0 h至3、9、12 h有增幅,12 h后无明显变化趋势。

黔茶1号和金观音鲜味氨基酸占比变化趋势为先升后降,福鼎随萎凋时间增加而降低,占比均值:黔茶1号(26.19%)>福鼎(25.14%)>金观音(22.23%)。福鼎和金观音甜味氨基酸占比呈上升趋势,黔茶1号呈先升后降趋势,占比均值:黔茶1号(22.47%)>福鼎(15.63%)>金观音(13.69%)。三者在苦味氨基酸占比变化不尽相同,福鼎总体呈上升趋势,金观音呈阶段性变化,先升后降趋势,黔茶1号在12 h保持相对稳定,占比均值:黔茶1号(27.23%)>金观音(26.53%)>福鼎(20.44%)。

表4 不同品种萎凋期呈味氨基酸变化
Table 4 Changes of flavor amino acids in different varieties during withering period

品种占比分类0 h3 h6 h9 h12 h15 h18 h21 h24 h均值鲜味/%28.9642.5532.3924.2120.7321.2220.5919.3716.2425.14 福鼎 甜味/%6.3410.9310.8512.9613.4819.7918.9322.5924.8415.63 苦味/%17.8715.2417.0519.322123.3522.5622.8124.820.44鲜味/%25.9223.6327.0628.8520.7322.0121.3315.614.9522.23 金观音 甜味/%6.786.919.0211.7213.9616.4319.519.5419.3913.69 苦味/%28.9723.6223.5524.6727.4928.0426.1427.9228.3526.53鲜味/%36.0931.2137.4537.8522.5220.5220.914.9614.2426.19 黔茶1号甜味/%9.2310.6116.9519.7520.8133.432.8230.428.2622.47 苦味/%23.463421.0320.5131.0128.0428.0929.6629.2727.23

2.4 萎凋期间呈味氨基酸分析

TAV值常用于衡量呈味物质对滋味贡献度,TAV值大于1认为对滋味有贡献,小于1则认为对滋味构成不做出贡献[18]。茶氨酸作为鲜味主要贡献因子,味觉阈值为0.06%[19],如表1~表3所示,茶氨酸含量从高到低依次是福鼎、金观音、黔茶1号,表明茶氨酸鲜味贡献度最大的是福鼎,其次是金观音,最小的是黔茶1号。3个品种所含呈味氨基酸TAV值如表5所示,鲜味氨基酸TAV值大于1的分别是Glu、Asp。甜味分别由Ala、Ser在萎凋12 h后做出呈味贡献,苦味主要由氨基酸His、Met参与呈味。黔茶1号鲜味主要由茶氨酸和Glu构成,12 h后甜味氨基酸Ser参与呈味,苦味主要由His构成,9 h后Val参与呈味。金观音鲜味构成在黔茶1号基础上增加Asp,12 h后Ser和15 h后Ala参与构成甜味,苦味主要由His、Met构成,Val、Ile和Phe分别在6、21 h后参与呈味。福鼎鲜味和金观音鲜味构成一致,12 h后Ala和Ser参与构成甜味,苦味主要由His和Met构成,Val、Phe、Arg和Ile分别在6、9、12和21 h参与呈味。

2.5 特殊氨基酸分析

植物生理学上常将脯氨酸作为衡量植物的抗逆性强弱指标之一,萎凋处理对离体鲜叶存在一定水分胁迫,由图2可以看出,3个品种中脯氨酸含量以福鼎最高,金观音次之,黔茶最低,据此推测福鼎品种广泛栽种与其高脯氨酸含量存在潜在关系。

茶氨酸只在茶树中有积累,且取决于品种[20]。FELDHEIM等[21]研究表明萎凋处理会引起茶氨酸含量降低,并推测可能由茶氨酸分解为谷氨酸和乙胺造成。WALLACE等[22]研究表明萎凋处理促进茶氨酸积累,并指出茶氨酸在第二叶中存在较大波动,推测前人研究由品种导致差异。本研究中茶氨酸含量随时间变化呈现升降交替变化趋势,如图3所示,福鼎和金观音存在谷氨酸合成和茶氨酸分解的动态变化,黔茶1号品种茶氨酸和谷氨酸含量则不存在这种趋势,推测可能存在其他代谢支路,有待进一步研究。

图2 三个茶树品种萎凋时期脯氨酸含量变化图
Fig.2 Changes in proline content of three tea varieties during the withering period

a-福鼎;b-金观音;c-黔茶1号
图3 三个品种谷氨酸和茶氨酸含量变化图
Fig.3 Changes in the content of glutamic acid and theanine in the three varieties

表5 不同品种不同萎凋时间呈味氨基酸TAV
Table 5 Amino acid TAV of different varieties and different withering periods

分类氨基酸TAV[15,18]0 h3 h6 h9 h12 h15 h18 h21 h24 h黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音黔茶1号福鼎金观音鲜味Asp10.660.961.110.311.681.370.521.71.530.771.591.971.212.292.060.492.272.620.892.732.070.822.762.3512.172.13glu0.327.3244.2540.6710.2556.3942.6613.151.2943.6715.1240.6852.8826.0753.5935.1211.5249.3643.3714.9956.6440.5814.9558.9534.8222.6454.0236.78甜味Ala0.60.180.070.190.150.180.080.280.850.150.20.80.820.881.260.920.151.81.270.621.961.191.072.281.271.122.781.44Gly1.30.050.050.030.070.050.040.060.050.040.060.050.040.050.030.030.050.030.020.040.010.010.030.010.010.0200.01Ser1.50.220.310.350.080.520.450.20.580.540.340.860.811.081.531.090.922.181.641.282.591.841.573.52.512.294.012.57Thr2.60.030.040.050.010.060.060.020.060.070.030.070.080.070.10.10.040.10.10.050.090.090.060.10.110.070.110.11苦味His0.27.5516.6428.923.718.6641.362.5617.5631.215.2922.2834.528.8848.8846.9610.8737.0349.7114.1433.3243.2617.9541.6766.4323.6549.2668.43Met0.92.8616.6936.280.6417.3930.190.715.1726.570.648.6426.751.9212.2523.010.3910.5223.960.6111.0716.540.7911.3718.731.137.0116.19Val0.40.120.160.040.220.690.780.391.281.711.132.572.833.884.434.162.726.175.783.577.885.734.428.647.426.1910.067.74Arg0.50.150.340.030.150.150.050.110.650.080.10.740.270.981.590.330.211.290.690.461.540.450.62.070.790.991.670.88Ile1.90.040.090.040.040.020.120.010.090.290.050.260.480.160.470.710.160.730.990.220.850.970.271.141.250.391.331.3Leu1.90.0100.020.010.040.060.020.060.090.040.110.150.190.170.20.10.220.250.130.240.240.160.290.280.220.340.3Phe0.90.490.380.550.460.040.320.20.340.130.11.020.181.361.750.470.332.190.910.792.930.941.272.861.572.133.191.98Tyr2.60.060.060.050.070.020.020.050.050.020.040.070.050.040.090.080.020.070.090.010.10.050.060.090.120.090.180.14

3 讨论与结论

“看茶做茶”的要义在于根据在制品状态进行茶叶加工。采用良好杀青条件固定萎凋期间形成的叶色才能得到以嫩绿、翠绿为优的干茶色泽,适时萎凋才能塑造成茶外形。本研究得到福鼎和金观音在6 h左右进行杀青固定品质,而黔茶1号则应在6 h左右,这与李子平等[23]研究一致。

游离氨基酸是绿茶鲜爽的主要因子,贵州主产绿茶,本研究特选取福鼎、金观音和黔茶1号具有代表性的栽培品种,在萎凋环节进行游离氨基酸动态分析,发现3个品种萎凋期间具有不同的变化趋势,黔茶1号和金观音鲜味氨基酸占比变化趋势为先升后降,福鼎随萎凋时间延长而降低。福鼎和金观音甜味氨基酸占比呈上升趋势,黔茶1号呈先升后降趋势。对于苦味氨基酸而言,福鼎总体呈上升趋势,金观音呈阶段性变化,先升后降趋势,黔茶1号在12 h保持相对稳定。游离氨基酸除呈味功能以外还具有一定营养价值,但目前针对萎凋茶叶游离氨基酸营养价值评价研究尚不多,前人研究多对加工过程或成品茶中儿茶素、咖啡碱及茶氨酸等进行深入研究,目前并没有将目光聚焦于此。本研究发现萎凋期间必需氨基酸占比总体呈上升趋势,其中黔茶1号必需氨基酸占比均值最高,金观音次之,福鼎最低。黔茶1号分别在3 h和18 h占比接近世界卫生组织和联合国粮农组织提出的40%营养标准。药用氨基酸含量占总氨基酸百分比为42%~87.5%,萎凋期间均在萎凋0 h为最大值,总体呈下降趋势,说明更为复杂的加工处理使药用氨基酸保留更少。这一结果佐证六大茶类中白茶具有较高的保健效果[24]

大部分游离氨基酸TAV值小于1,由于呈味物质存在互作作用,不代表对风味不做出贡献,可表现为协同,加和、抑制效应[25],因此滋味的构成不能单一地由浓度叠加。从氨基酸TAV值来看,金观音和福鼎的氨基酸呈味强度大于黔茶1号,可能具有更为丰富的口感,这一结论有待进一步加工成品茶进行研究。HANIFAH等[26]发现低于呈味阈值的苦味氨基酸,可增强其他氨基酸的鲜味和甜味。例如:Phe、Tyr、Arg能增加呈味的复杂性和辅助提升鲜度[10]。茶汤中其他物质同样影响茶汤鲜味、甜味及苦味呈现。余鹏辉等[27]研究发现茶氨酸与甜味强度呈正相关,儿茶素、咖啡碱、没食子酸、茶黄素、茶红素含量与黄金茶、工夫红茶甜味强度呈负相关,且儿茶素总量和茶黄素含量与甜味强度呈极显著负相关。本研究仅进行萎凋期间游离氨基酸动态变化及分析,未能系统探明其他呈味物质含量与呈味物质间的互作作用,这有待进一步研究。

生理学上常将脯氨酸作为评价抗逆性指标,萎凋对叶片造成的水分胁迫导致其含量上升,其含量以福鼎最高,这与福鼎广泛栽种存在一定联系。茶氨酸是茶叶特征氨基酸,与谷氨酸和乙胺存在动态平衡。在福鼎和金观音中存在这一明显变化趋势,在黔茶1号中则不明显,黔茶1号中是否存在其他代谢途径,是否由季节原因导致有待进一步发掘研究。

参考文献

[1] KIRIMURA J, SHIMIZU A, KIMIZUKA A, et al.Contribution of peptides and amino acids to the taste of foods[J].Journal of Agricultural and Food Chemistry, 1969, 17(4):689-695.

[2] YU W, ZHENG P C, LIU P P, et al.Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling[J].Food Chemistry, 2019, 272:313-322.

[3] 宛晓春.茶叶生物化学[M].第三版.北京:中国农业出版,2003.

WAN X C.Tea Biochemistry[M].3rd Edition.Beijing:China Agriculture Press,2003.

[4] HO C T, ZHENG X, LI S M, et al.Tea aroma formation[J].Food Science and Human Wellness, 2015, 4(1):9-27.

[5] ZHAO M, MA Y, DAI L L, et al.A high-performance liquid chromatographic method for simultaneous determination of 21 free amino acids in tea[J].Food Analytical Methods, 2013, 6(1):69-75.

[6] 彭影琦, 肖文军, 张盛, 等.L-茶氨酸对小鼠肠道形态结构及游离氨基酸的影响[J].茶叶科学, 2019, 39(1):43-54.

PENG Y Q, XIAO W J, ZHANG S, et al.Effects of L-theanine on the morphological structure and free amino acids of mouse intestine[J].Tea Science, 2019, 39(1):43- 54.

[7] JIANG H, YU F, LI Q, et al.Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves[J].Journal of Food Composition and Analysis, 2019,77:28-38.

[8] 乔大河, 郭燕,杨春,等.贵州省主要栽培茶树品种指纹图谱构建与遗传结构分析[J].植物遗传资源学报, 2019, 20(2):412-425.

QIAO D H, GUO Y, YANG C, et al.Fingerprint construction and genetic structure analysis of main cultivated tea varieties in Guizhou province[J].Journal of Plant Genetic Resources, 2019, 20(2):412-425.

[9] 杨春, 陈娟, 郭燕, 等.高产优质茶树新品种‘黔茶1号’[J].园艺学报, 2019, 46(S2):2 930-2 931.

YANG C, CHEN J, GUO Y, et al.A new high-yield and high-quality tea variety ‘Qiancha 1’[J].Acta Horticulture, 2019, 46(S2):2 930-2 931.

[10] 刘伟, 张群, 李志坚, 等.不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J].食品科学, 2019, 40(10):243-250.

LIU W, ZHANG Q, LI Z J, et al.Principal component analysis and cluster analysis of free amino acids in different varieties of daylily[J].Food Science, 2019, 40(10):243-250.

[11] 邓凤飞,杨双龙, 龚明.细胞信号分子对非生物胁迫下植物脯氨酸代谢的调控[J].植物生理学报, 2015, 51(10):1 573-1 582.

DENG F F, YANG S L, GONG M.Regulation of cell signaling molecules on plant proline metabolism under abiotic stress[J].Acta Plant Physiology, 2015, 51(10):1 573-1 582.

[12] 叶玉龙. 萎凋/摊放对茶叶在制品主要理化特性的影响[D].重庆:西南大学, 2018.

YE Y L.The influence of withering/spreading on the main physical and chemical properties of tea in-process[D].Chongqing:Southwest University, 2018.

[13] JABEEN S, ALAM S, SALEEM M, et al.Withering timings affect the total free amino acids and mineral contents of tea leaves during black tea manufacturing[J].Arabian Journal of Chemistry, 2019, 12(8):2 411-2 417.

[14] SAPTASHISH D, JOLVIS POU K R.A review of withering in the processing of black tea[J].Journal of Biosystems Engineering, 2016, 41(4):365-372.

[15] BRUNO M D P, VALTERNEY L D, OLGA L T, et al.In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate:What you eat and what you get[J].Food Chemistry, 2021,343:128 397.

[16] 云金虎, 江皓, 韩文学, 等.不同品种海棠叶茶游离氨基酸组成分析与评价[J].食品与发酵工业, 2020, 46(19):237-243.

YUN J H, JIANG H, HAN W X, et al.Analysis and evaluation of free amino acid composition of different varieties of begonia leaf tea[J].Food and Fermentation Industries, 2020, 46(19):237-243.

[17] 赵方杰, 廉喜红, 胡小平, 等.不同产地西洋参氨基酸种类及含量分析[J].西北农业学报, 2020(7):1-8.

ZHAO F J, LIAN X H, HU X P, et al.Analysis of amino acid types and content of American ginseng from different producing areas[J].Northwest Agricultural Journal, 2020(7):1-8.

[18] 王馨雨, 王蓉蓉, 王婷, 等.不同品种百合内外鳞片游离氨基酸组成的主成分分析及聚类分析[J].食品科学, 2020, 41(12):211-220.

WANG X Y, WANG R R, WANG T, et al.Principal component analysis and cluster analysis of free amino acid composition of inner and outer scales of different varieties of lily[J].Food Science, 2020, 41(12):211-220.

[19] KHAN M F I, NORHAYATI Y, AHMAD P M.Role of copper and its comlexes in biological systems[J].Inorganic Chemistry Transaction, 1998, 14(1):29-39.

[20] YU Z M, YANG Z Y.Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J].Critical Reviews in Food Science and Nutrition, 2020, 60(5):844-858.

[21] FELDHEIM W, YONGVANIT P, CUMMINGS P.Investigation of the presence and significance of theanine in the tea plant[J].Journal of the Science of Food and Agriculture, 1986, 37:527-534.

[22] WALLACE W, SECOR J, SCHRADER L E.Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation[J].Plant Physiology, 1984, 75(1):170-175.

[23] 李子平, 梁光志, 莫小燕, 等.优良茶树品种‘黔茶1号’试制性研究[J].中国热带农业, 2018(6):53-54.

LI Z P, LIANG G Z, MO X Y, et al.Study on trial production of fine tea variety ‘Qian cha No.1’[J].China Tropical Agriculture, 2018(6):53-54.

[24] 郑思梦, 赵峥山, 武慧慧, 等.白茶药理作用及保健功效研究进展[J].粮食与油脂, 2020, 33(3):16-18.

ZHEN S M, ZHAO Z S, WU H H, et al.Research progress in pharmacological and health-care effects of white tea[J].Food and Oils, 2020, 33(3):16-18.

[25] 毛世红. 基于风味组学的工夫红茶品质分析与控制研究[D].重庆:西南大学,2018.

MAO S H.Research on quality analysis and control of Gongfu black tea based on flavoromics[D].Chongqing:Southwest University, 2018.

[26] HANIFAH N L, ANTON A, KENSAKU T, et al.Umami taste enhancement of MSG/NaCl mixtures by subthreshold L-α-aromatic amino acids[J].Journal of Food Science, 2005, 70(7);s401-s405.

[27] 余鹏辉, 黄浩, 赵熙, 等.黄金茶工夫红茶的甜味量化及其与主要滋味物质相关性研究[J].食品科学, 2020,41(1):1-8.

YU P H, HAUNG H, ZHAO X, et al.The quantification of sweetness of golden tea Gongfu black tea and its correlation with main flavor substances[J].Food Science, 2020,41(1):1-8.

Dynamic analysis and evaluation of free amino acids of typical tea varieties in Guizhou during withering stage

PAN Ke1*,LI Qin2,FANG Shimao1,DAI Yuqiao1,RAN Qiansong2,LIU Zhongying1,YANG Ting1

1(Guizhou Tea Research Institute, Guiyang 550006, China)2(College of Tea Science, Guizhou University, Guiyang 550025, China)

Abstract In this study, three representative varieties of Guizhou, Fuding, Jinguanyin, and Qiancha No. 1 were treated with withering. Based on HPLC analysis of the dynamic changes of free amino acid content in fresh tea leaves at different withering stages and combined with taste activity value and special amino acids analyze, the aim of this study was to explore the change of free amino acids in different varieties during the withering period and deeply understanding the suitability of varieties. The results showed that the content of free amino acids showed an overall upward trend during withering; the average proportion of essential amino acids was Qiancha No.1 (33.200%), followed by Jinguanyin (31.451%) and Fuding (24.666%). Moreover, the medicinal amino acids of Qiancha No.1 was the highest (48.234%) and followed by Fuding (41.412%) and Jinguanyin (40.971%). Furthermore, the average proportion of umami amino acids was Qiancha No.1 (26.19%)> Fuding (25.14%)>Jinguanyin(22.23%), and the average proportion of sweet amino acids was Qiancha No.1 (22.47%)> Fuding (15.63)%)>Jinguanyin(13.70%). Besides, the average proportion of bitter amino acids was Qiancha No.1 (27.23%)>Jinguanyin(26.53%)>Fuding (20.45%). In addition, the umami taste composed of theanine and glutamic acid, the sweet taste composed of alanine and serine, and the bitter taste composed of histidine and methionine which was related to the withering time. This study clarified the differences of varieties in the withering period and the changing laws of different flavor amino acids which provide a theoretical basis for improving the withering process and enhancing the quality of Guizhou green tea.

Key words withering;free amino acids;Qiancha No.1;Fuding;Jinguanyin

DOI:10.13995/j.cnki.11-1802/ts.026073

引用格式:潘科,李琴,方仕茂,等.贵州代表性茶树品种茶青萎凋期游离氨基酸动态分析及评价[J].食品与发酵工业,2021,47(8):82-89.PAN Ke,LI Qin,FANG Shimao, et al.Dynamic analysis and evaluation of free amino acids of typical tea varieties in Guizhou during withering stage[J].Food and Fermentation Industries,2021,47(8):82-89.

第一作者:博士,副研究员(本文通讯作者,E-mail:148450502@qq.com)

基金项目:贵州省科技计划项目(黔科合服企[2019]4006)

收稿日期:2020-11-06,改回日期:2020-12-17