QuEChERS-气质联用仪测定喀什石榴中70种农药残留

阿不力米提·玉麦尔1,曹续2,崔智超1,阿卜杜拉·玉苏普1*

1(喀什大学 化学与环境科学学院,新疆特色药食用植物资源化学实验室,新疆 喀什,844000)2(新疆维吾尔自治区分析测试研究院,新疆 乌鲁木齐,830000)

摘 要 建立喀什石榴中70种农药残留的快速测定方法。3个品种喀什石榴经优化后的QuEChERS技术提取和净化,根据70种农药残留特征碎片离子建立气质联用条件,在多反应监测模式下进行检测,基质匹配外标法定量分析。结果表明,在0~1.0 μg/mL质量浓度范围内,线性关系良好(R2>0.995),检出限为0.005~0.02 mg/kg。当添加量为0.01 mg/kg时,回收率为76.4%~108%,相对标准偏差为0.6%~10.4%(n=5);当添加量为0.05 mg/kg时,回收率为75.4%~107%,相对标准偏差为1.4%~11.2%(n=5);当添加量为0.1 mg/kg时,回收率为71.6%~108%,相对标准偏差为0.2%~9.7%(n=5)。该方法简便、快捷,溶剂消耗量少,灵敏度高,适用于喀什石榴类多色素含糖量高,干扰大的样品中农药残留检测。

关键词 喀什石榴;QuEChERS;三重四极杆-气质联用;农药残留

石榴(Pnnica granatum L.)属于石榴属(Punica L.)植物,落叶灌木或小乔木,是一种集生态、经济、社会效益及观赏价值与保健功能于一身的优良果树[1-6]。新疆石榴主要产于南疆的喀什、和田等地区,主要品种有喀什石榴、皮亚曼石榴等[7-8]。喀什地区夏季气候条件对石榴的生长发育有利,使得喀什石榴果实大而皮薄、营养丰富、耐贮藏[5,9-10]。有研究发现石榴具有抗氧化和抗炎症的功效,种植面积也在逐年扩大[11-12]。与此同时,农药的使用问题被更多地关注和重视。

目前常用于农残检测的方法有液相、气相、液质、气质。前处理方法主要有液液萃取、固相萃取[13-15],不过,这些检测方法均有明显的不足之处。例如:气相色谱法灵敏度低,气相色谱-质谱法易出现假阳性结果等。QuEChERS[16-17]是目前应用较为广泛的一种检测方法,其因高效、便捷、省时、试剂使用量少的显著优势深受推荐。QuEChERS技术基于吸附原理,将吸附剂加入样品提取液中,通过涡旋振荡与基质干扰物充分接触,将干扰物吸附在吸附剂上,达到样品净化的目的[18]。关于石榴中的前处理报道较少,由于样品含丰富的色素和矿物质,还有较多的易挥发性物质,存在明显的基质干扰效应[19-21]

本文在QuEChERS方法的基础上,优化了净化步骤,并与三重四极杆气质联用,检测70种农药时方法回收率较好,可应用于此类样品的农药残留检测。

1 材料与方法

1.1 材料与试剂

丙酮、乙腈、正己烷(色谱纯),美国Fisher公司;结晶乙酸钠(分析纯),天津市盛奥化学试剂有限公司;无水硫酸镁(分析纯),上海麦克林生化科技有限公司;石墨化碳(carbon-graphitized carbon,carbon-GCB),上海安谱实验科技股份有限公司;C18吸附剂,安捷伦科技(中国)有限公司;乙二胺-N-丙基硅烷(primary-secondary amine,PSA),美国Agela公司。

70种农药标准品的浓度均为1 000 μg/mL(农业部环境质量监督检验测试中心)。根据标准品的溶解度选用正己烷、丙酮溶剂配制,参照GB/T 23200.113—2018和GB 23200.8—2016方法,根据定量限的不同配成9组20 μg/mL的标准储备溶液[22],避光存放于-18 ℃冰箱中。

基质匹配标准溶液:用阴性空白样品提取液配制质量浓度为0.005、0.01、0.05、0.1、0.5、1.0 μg/mL的混合标准溶液,经0.22 μm微孔膜过滤后供仪器分析。

1.2 仪器与设备

TSQ9000气相色谱-三重四极杆串联质谱联用仪,美国Thermo Fisher;BSA2202S电子天平,德国Sartorius公司;K15高速离心机,美国Sigma公司;MS3涡旋混匀器,德国IKA公司;超声波仪,昆山市超声仪器有限公司。

1.3 实验方法

1.3.1 色谱条件

色谱柱:TG-5MS(30 m×0.32 mm×0.25 μm);进样口温度270 ℃;进样体积1.0 μL;载气:高纯氦气(99.99%);进样方式:不分流进样;流速1.0 mL/min。色谱柱升温程序:柱温40 ℃,保持1.5 min,以25 ℃/min升至180 ℃,保持1.5 min,以20 ℃/min升至280 ℃,保持6.4 min。

1.3.2 质谱条件

离子源:电子轰击(electron impact ionization, EI)源;数据采集模式:单离子检测扫描(single ion monitoring, SRM)模式;离子源温度300 ℃;传输线温度280 ℃;溶剂延迟5 min;碰撞气:氩气;电离能量70 eV。

1.3.3 样品前处理

称取10.00 g(精确至0.01 g)样品于50 mL具塞离心管中,加入3 mL水,再加入10 mL(1.0%体积分数乙酸+乙腈),涡旋混匀1 min。样品冷冻10 min后,加入3.0 g无水MgSO4、1.0 g结晶CH3COONa,迅速加盖涡旋混匀1 min,冰水浴超声提取30 min,于9 500 r/min 低温离心3 min。冷冻10 min后,取6.0 mL上清液,移入含1 000 mg MgSO4、600 mg PSA、150 mg C18、40 mg GCB的15 mL具塞离心管中,涡旋混匀1 min,以9 500 r/min低温离心1 min,上清液经0.22 μm有机滤膜过滤后,供气相色谱-质谱联用仪测定。

2 结果与分析

2.1 仪器条件优化

2.1.1 色谱条件

将进样口温度调至270 ℃,考虑到有些化合物在高温下易分解[23-24]。程序升温的设定不仅会影响到目标化合物的保留时间和峰形,最重要的是还会影响到离子化效率,从而影响灵敏度。由于目标化合物组分较多,为了在大批量检测工作中节省时间,故选用内径为0.32 mm的中等极性色谱柱,其柱容量更大,优化后的最佳升温程序可大大缩短进样时间,还可以改善其峰形。

2.1.2 质谱条件

将70种农药配制成2.0 μg/mL的混合标准溶液。农药化合物种类多,结构差异性大,将混合标准溶液进行AUTO SRM采集得到总离子流图(图1)。优化方法,选择合适的母离子及碰撞能量,再进行二级裂解,挑选3对合适的离子和碰撞能量。

图1 质量浓度均为2.0 μg/mL的70种农药混合标准
溶液在SRM模式下的总离子流图
Fig.1 Total ion chromatogram for a mixed standard
solution of the 70 pesticides (2.0 μg/mL for each) in
SRM mode

2.2 提取溶剂的选择

分析农残最常用的提取溶剂有:甲醇、乙酸乙酯、正己烷、丙酮、乙腈、石油醚等,石油醚毒性较大;正己烷对油脂类易被共萃取,但对极性大的农药很难提取出来,丙酮与水互溶,容易带入水分对仪器以及毛细管色谱柱造成损害;乙腈对农药的溶解性较好,对油脂和色素等溶解性较小,提取效率最好,同时乙腈对样品基质有较强的穿透力,从而能够获得较高的回收率。因此,选定乙腈为70种农药的提取溶剂。同时,由于70种农药的稳定性不同,为获得最大的提取效率,考察加入乙酸对提取效果的影响。本文以喀什石榴为样品基质,在0.05 mg/kg加标水平下对70种目标农药的加标回收率实验,结果显示,在提取剂乙腈中添加1.0%(体积分数)的乙酸,70种农残平均回收率较好,而仅用乙腈作为提取溶剂时,发现平均回收率比加入1.0%的乙酸低,其原因在于部分农药在乙腈中不太稳定,加入1.0%的乙酸,使有些目标化合物在酸性条件下抑制了羧基在溶液中电离成离子形态,从而提高了回收率。从图2可以看出,乙酸的添加量在1.0%时,回收率最高,之后呈下降趋势(P<0.05),因此确定添加1.0%乙酸的乙腈作为最终的提取剂(图2)。

图2 提取液中添加1.0%(体积分数)的乙酸对70种
农药平均回收率的影响
Fig.2 Effect of adding 1.0% acetic acid in extraction
solution on average recovery of 70 pesticides

2.3 吸附剂的选择优化

石榴样品基质中含有大量色素、挥发性物质等,在提取目标物时,这些物质易与待测目标物一并提取出来,形成复杂的背景干扰和基质效应,若不进一步净化,基质效应的干扰会影响到检测结果的准确性。QuEChERS常用的吸附剂有PSA、C18、GCB等。PSA具有弱的阴离子交换能力,可除去脂肪酸、部分有机酸等;C18则在排除非极性杂质方面效果良好;GCB对色素有强烈的吸附作用。本文以石榴样品为基质,在0.05 mg/kg加标水平下考察了这3种吸附剂。

2.3.1 PSA添加量的选择

在上述优化结果的基础上,以新疆石榴为试验对象,在6 mL提取液中分别添加100、200、300、600、1 000 mg PSA比较回收效果。结果表明,随着PSA的加入,提取液颜色逐渐变浅,70种农药的平均回收率也逐渐增高,这与PSA能除去样品的中糖分有关。当添加量为600 mg时,平均回收率达到92%,继续增加PSA的用量对回收率有负面的影响。故当提取液为6 mL时,PSA的添加量为600 mg较为合适,即PSA相对于提取液的添加质量浓度为100 mg/mL,回收率最高,之后呈下降趋势(P<0.05)(图3)。

图3 PSA的添加量对70种农药平均回收率的影响
Fig.3 Effect of addition amount of PSA on average
recovery of 70 pesticides

2.3.2 C18添加量的选择

在上述优化结果的基础上,以石榴为试验对象,在6 mL提取液中分别添加50、100、150、200、400 mg的C18比较回收效果。结果表明,当经C18的添加量为150 mg时,样品较干净基质干扰减少,70种农药的平均回收率达到最佳,平均回收率为94%。故当提取液为6 mL时,C18的添加量为150 mg较为合适,即C18相对于提取液的添加浓度为25 mg/mL,回收率最高,之后呈下降趋势(P<0.05)(图4)。

图4 C18的添加量对70种农药平均回收率的影响
Fig.4 Effect of addition amount of C18 on
average recovery of 70 pesticides

2.3.3 GCB添加量的选择

在上述优化结果的基础上,以石榴为试验对象,在6 mL提取液中分别添加5、10、20、40、60 mg的GCB比较回收效果。实验结果表明,GCB能有效去除石榴中的色素,使样品更加澄清,从而减小对仪器的污染,当GCB添加量为40 mg时回收率较好,平均回收率为89%,但GCB添加量逐渐增大时,其回收率明显降低。故当提取液为6 mL时,GCB的添加量为40 mg较为合适,即GCB相对于提取液的添加质量浓度为6.7 mg/mL,回收率最高,之后呈下降趋势(P<0.05)(图5)。

图5 GCB的添加量对70种农药平均回收率的影响
Fig.5 Effect of addition amount of GCB on average
recovery of 70 pesticides

综上,本文最终确定以无水PSA、C18、GCB混合作为吸附剂,其添加质量浓度分别为100、25、6.7 mg/mL。

2.4 基质效应

基质效应会对分析方法的重复性、灵敏度、准确度等产生影响,在使用EI源时更为突出,主要表现为对目标化合物的离子增强作用。基质效应=基质匹配校准曲线的斜率/溶剂标准校准曲线的斜率,比值越接近1,则基质效应越小,反之亦然。以喀什石榴为样品的基质效应(表1)。实验结果表明,石榴基质效应以增强为主,其中毒死蜱、腐霉利、丙溴磷、六六六、敌敌畏、溴氰菊酯比值在0.25~0.76有较强的基质增强效应。吡唑醚菌酯、氧乐果、苯醚甲环唑、甲胺磷比值在1.09~1.69。通常采用的基质效应消除方法有3种,一是通过稀释净化,二是采用基质匹配标准溶液做校准曲线,三是采用内标法进行校正。本文使用基质匹配标准曲线的方法来消除基质效应。

2.5 方法学验证

2.5.1 检测方法的线性范围、检出限

采用阴性石榴做空白基质将农药混合标准溶液稀释成0.005、0.01、0.05、0.1、0.2、0.5、1.0 μg/mL的标准工作液,以农药的质量浓度对应得定量离子色谱峰的面积,绘制标准曲线。以3倍的S/N计算检测方法的检出限,70种农药在0.005~1.0 μg/mL线性关系良好,相关系数R2>0.995,结果如表1所示。

表1 70种农药在皮亚勒玛石榴基质中的线性方程、基质效应、LOD和LOQ
Table 1 Linear equation, Matrix effect, LODs and LOQs of the 70 pesticides in Pialema pomegranate

序号化合物名称校准曲线相关系数R2基质效应LOD/(mg·kg-1)LOQ/(mg·kg-1)1敌敌畏y=36 222.446 1x-2 141.111 50.995 280.450.0050.0152甲胺磷y=142.441 5x-10.376 30.995 961.090.0110.0333氧乐果y=1 684.134 8x-146.391 20.995 241.690.0200.0604敌百虫y=23 686.966x-949.4330.9970.540.0140.0425甲拌磷y=55 479.032 5x-2 404.108 80.996 050.760.0090.0276Alpha-666y=36 629.738 7x-1 216.0730.995 820.140.0050.0157乐果y=10 376.237 3x-8460.995 980.920.0150.0458Beta-666y=46 750.081 1x-1 2190.997 120.190.0050.0159gamma-666y=28 691.432 8x-3630.998 460.210.0050.01510五氯硝基苯y=16 071.269 3x-7170.995 210.540.0070.02111二嗪磷y=24 240.249 4x-7920.997 560.780.0090.02712delta-666y=21 825.293 1x-1 2060.996 070.110.0050.01513百菌清y=2 453.084 5x-600.948 330.690.0130.03914乙烯菌核利y=33 203.876 6x-1 0470.996 720.880.0080.02415甲基对硫磷y=15 725.612 5x-9900.997 820.750.0160.04816异丙甲草胺y=240.245 6x-330.952 450.680.0130.03917甲霜灵y=38 874.479 5x-6600.998 990.480.0170.05118杀螟硫磷y=19 456.493 3x-1 3090.996 590.380.0080.02419马拉硫磷y=58 619.695 5x-3 1020.997 650.590.0070.02120甲拌磷砜y=73 220.627 4x-3 2230.995 640.860.0110.03321毒死蜱y=26 825.487 9x-1 2270.996 150.260.0050.01522苯氟磺胺y=193.294 3x-230.986 930.610.0090.02723甲拌磷亚砜y=61 302.907 1x-3 2450.996 140.870.0080.02424对硫磷y=55 426.517 7x-3 1610.996 650.450.0070.02125三唑酮y=35 476.130 7x-1 0440.998 210.370.0070.02126三氯杀螨醇y=28 205.118x-2 1150.995 270.420.0080.02427水胺硫磷y=9 500.935 1x-6700.995 430.760.0050.01528甲基异柳磷y=57 900.591x-2 5530.996 590.790.0090.02729乙酰甲胺磷y=212.493 9x-40.995 751.060.0200.06030嘧菌环胺y=16 390.225 3x-6320.9970.520.0110.03331蝇毒磷y=361.738 9x-220.994 930.490.0060.01832二甲戊乐灵y=29 677.284 4x-1 1330.996 270.660.0150.04533氟虫腈硫醚y=72 053.155 6x-2 0780.998 010.760.0070.02134戊菌唑y=63 091.523 3x-2 4820.996 830.340.0090.02735甲苯氟磺胺y=20 504.455 7x-1 0550.998 970.660.0070.02136氟虫腈y=20 367.456 7x-1 0020.997 010.890.0110.03337氟甲腈y=635.735x-260.998 81.220.0140.04238三唑醇y=5 791.700 1x-3980.996940.660.0130.039

续表1

序号化合物名称校准曲线相关系数R2基质效应LOD/(mg·kg-1)LOQ/(mg·kg-1)39克菌丹y=589.661 7x-450.995 160.470.0160.04840腐霉利y=27 361.585 3x-1 0190.998 130.250.0060.01841杀扑磷y=14 315.645 4x-1 1210.995 760.660.0080.02442己唑醇y=2 450.586 9x-300.995 950.740.0080.02443丙溴磷y=5 552.543x-3870.996 260.710.0070.02144咯菌腈y=3 466.722 7x-1490.998 190.250.0080.02445腈菌唑y=42 111.356 9x-1 7130.997 260.610.0070.02146氟虫腈砜y=5 538.798x-1840.998 170.990.0130.03947氟硅唑y=16 734.422 3x-5630.998 630.430.0060.01848虫螨腈y=6 384.898 9x-1710.998 090.520.0140.04249三唑磷y=11 070.226 2x-8410.995 470.230.0070.02150苯霜灵y=49 314.316 2x-8580.998 360.880.0100.03051丙环唑-1y=28 946.182 8x-1 5150.996 450.430.0090.02752喹氧灵y=109 518.597 7x-3 1230.998 960.380.0090.02753丙环唑-2y=38 250.462 9x-1 4600.996 780.460.0080.02454戊唑醇y=91 243.486 1x-3 4480.997 270.360.0090.02755氟环唑y=37 700.311 2x-9760.996 240.560.0070.02156异菌脲y=823.731 4x-610.995 790.590.0090.02757联苯菊酯y=6 960.182 1x-310.995 290.990.0050.01558溴螨酯y=2 983.376 2x-1390.997 960.640.0070.02159亚胺硫磷y=8 375.800 7x-6320.996 050.850.0060.01860邻苯基苯酚y=2 142.868 5x-1520.996 040.790.0150.04561联苯肼酯y=1 985.100 8x-1240.996 790.990.0080.02462甲氰菊酯y=57 525.057 1x-2 7600.995 630.640.0090.02763伏杀硫磷y=27 961.900 6x-2 2250.995 540.520.0070.02164吡丙醚y=50 089.445x-2 0600.997 470.380.0050.01565高效氯氟氰菊酯y=9 635.887 8x-4530.998 070.230.0050.01566双甲脒y=78 227.772 8x-4 3750.995 570.990.0090.02767氯苯嘧啶醇y=48 671.956 5x-2 3010.995 980.590.0080.02468氯菊酯-1y=11 267.791 7x-3100.998 260.870.0100.03069氯菊酯-2y=43 222.410 1x-2 3030.995 890.790.0110.03370咪鲜胺y=384.167 3x-290.995 441.120.0180.05471氟氯氰菊酯-1y=779.171 6x-370.994 810.740.0120.03672氟氯氰菊酯-2y=7 232.470 4x-4200.997 60.760.0110.03373氟氯氰菊酯-3y=11 471.890 5x-7060.996 980.780.0150.04574氟氯氰菊酯-4y=14 775.268 2x-8810.997 260.770.0140.04275氯氰菊酯-1y=3 975.756x-2030.995 20.690.0130.03976氯氰菊酯-2y=7 738.500 4x-4480.997 70.680.0110.03377氯氰菊酯-4y=13 684.679 2x-1 5000.975 280.710.0120.03678氯氰菊酯-3y=14 458.501 6x-1 6140.995 260.660.0110.03379氟氰戊菊酯-1y=19 110.215 8x-1 2780.995 860.810.0090.02780醚菊酯y=91 158.146 7x-3 6500.998 10.750.0160.04881氟氰戊菊酯-2y=14 833.185 3x-1 0770.995 580.820.0120.03682氰戊菊酯y=9 777.301 3x-6430.996 840.880.0120.03683吡唑醚菌酯y=3 079.019 8x-2430.996 431.130.0190.05784氟胺氰菊酯-1y=1 826.945 3x-1330.996 570.660.0130.03985氟胺氰菊酯-2y=1 723.073 1x-1000.998 150.690.0120.03686苯醚甲环唑-1y=5 723.519 7x-3760.996 291.110.0080.02487苯醚甲环唑-2y=10 435.445 2x-7750.995 321.090.0080.02488溴氰菊酯y=8 455.541 8x-6210.995 60.760.0060.018

2.5.2 加标回收和精密度

向空白样品中分别加0.01、0.05、0.1 mg/kg的混合标准溶液,依1.3.3处理样品,每个水平做5个平行。按上述优化好的方法进行测定,基质匹配外标法定量,计算平均回收率和精密度。结果所有农药的回收率均为71.6%~107.5%,精密度<11.2%,方法回收率和精密度符合农药残留分析要求,如表2所示。

表2 在3个水平下的农药回收率及精密度(n=5) 单位:%

Table 2 Recoveries and repeat abilities of the pesticides spiked at three levels (n=5)

序号化合物名称0.01 mg/kg0.05 mg/kg0.10 mg/kg回收率RSD回收率RSD回收率RSD1敌敌畏912.3923.1921.62甲胺磷866.7877.5886.03氧乐果768.1758.9777.44敌百虫865.2876.0874.55甲拌磷903.8914.6933.16Alpha-666962.6973.4951.97乐果876.7887.5896.08Beta-666990.6981.4960.89gamma-666990.91001.71010.210五氯硝基苯912.1922.9931.411二嗪磷833.7844.5853.012delta-666985.4996.2994.713百菌清7710.47611.2749.714乙烯菌核利866.4877.2855.715甲基对硫磷927.1937.9946.416异丙甲草胺875.1865.9884.417甲霜灵948.4959.2957.718杀螟硫磷959.1949.9928.419马拉硫磷967.2978.0976.520甲拌磷砜878.1888.9867.421毒死蜱984.3995.1993.622苯氟磺胺896.2887.0895.523甲拌磷亚砜844.2855.0873.524对硫磷883.1873.9882.425三唑酮885.4896.2914.726三氯杀螨醇944.3955.1963.627水胺硫磷955.3946.1924.628甲基异柳磷877.9878.7897.229乙酰甲胺磷738.1748.9727.430嘧菌环胺8210.18110.9829.431蝇毒磷865.7876.5855.032二甲戊乐灵968.1958.9967.433氟虫腈硫醚864.6875.4883.934戊菌唑854.9845.7864.235甲苯氟磺胺796.1806.9815.436氟虫腈846.7837.5846.037氟甲腈868.1878.9857.438三唑醇948.5939.3947.839克菌丹987.9998.71007.240腐霉利954.6945.4943.941杀扑磷878.2889.0897.542己唑醇936.7927.5946.043丙溴磷1045.91056.71065.244咯菌腈966.2977.0985.545腈菌唑944.6935.4943.946氟虫腈砜858.2869.0847.547氟硅唑916.9927.7936.248虫螨腈878.5869.3867.849三唑磷859.68610.4878.950苯霜灵901.2912.0890.551丙环唑-1911.3902.1910.6

续表2

序号化合物名称0.01 mg/kg0.05 mg/kg0.10 mg/kg回收率RSD回收率RSD回收率RSD52喹氧灵920.6931.4951.653丙环唑-2920.9931.7940.554戊唑醇1033.41044.21052.755氟环唑946.1936.9915.456异菌脲865.2876.0884.557联苯菊酯960.8951.6950.758溴螨酯860.7871.5881.659亚胺硫磷882.4893.2901.760邻苯基苯酚792.6783.4791.961联苯肼酯855.3866.1884.662甲氰菊酯929.1939.9948.463伏杀硫磷941.3932.1940.664吡丙醚936.3947.1955.665高效氯氟氰菊酯942.4943.2951.766双甲脒822.6833.4851.967氯苯嘧啶醇913.2924.0932.568氯菊酯-1903.5914.3922.869氯菊酯-2925.3936.1944.670咪鲜胺806.1796.9805.471氟氯氰菊酯-1935.8946.6945.172氟氯氰菊酯-2916.7907.5916.073氟氯氰菊酯-31025.11035.91044.474氟氯氰菊酯-41014.91025.71034.275氯氰菊酯-11036.91027.71046.276氯氰菊酯-21027.51038.31046.877氯氰菊酯-41047.61038.41046.978氯氰菊酯-31015.31026.11034.679氟氰戊菊酯-11004.21015.01013.580醚菊酯860.9871.7880.381氟氰戊菊酯-21043.61034.41042.982氰戊菊酯1062.61073.41081.983吡唑醚菌酯907.8918.6927.184氟胺氰菊酯-11024.71035.51044.085氟胺氰菊酯-21044.61035.41053.986苯醚甲环唑-11065.11075.91084.487苯醚甲环唑-21082.51073.31081.888溴氰菊酯1013.61004.41012.9

2.6 实际样品测定

应用该分析方法和GB 23200.113—2018方法对市场采购的皮亚曼石榴,喀什甜石榴、喀什酸石榴进行检测。在1个石榴样品中检出氯氰菊酯农药残留,其余均未检出。对2种加标样品结果表明2种方法的检测结果相近。

3 结论

建立了气相色谱串联三重四极杆质谱法测定石榴中农药残留的方法,与国家标准GB 23200.113—2018和通用的方法相比,由于目标化合物组分较多,为了在大批量检测工作中节省时间,故选用柱容量更大的内径为0.32 mm的中等极性色谱柱,选用外标法进行试验。此外优化了净化步骤和单离子检测扫描模式,从而能减少了基质干扰,提高方法灵敏度。由于部分农药在乙腈中不太稳定,仅用乙腈作为提取溶剂时,发现平均回收率比加入1.0%(体积分数)的乙酸低,因此溶剂中加入了1.0%的乙酸。本方法准确、便捷,为同类产品的安全生产、有机产品申请和新疆本土特色食品名牌打造提供技术支持。

参考文献

[1] TEIXEIRA DA SILVA J A, RANA T S, NARZARY D, et al.Pomegranate biology and biotechnology:A review[J].Scientia Horticulturae, 2013, 160:85-107.

[2] 贾晓辉, 张鑫楠, 刘艳, 等.石榴的营养、功效及应用[J].果树实用技术与信息, 2021(4):46-47.

JIA X H, ZHANG X N, LIU Y, et al.Nutrition, efficacy and application of pomegranate[J].Practical Techniques and Information on Fruit Trees, 2021(4):46-47.

[3] 梁智, 邹耀湘.新疆南疆石榴树平衡施肥技术试验研究[J].新疆农业科学, 2010, 47(2):345-350.

LIANG Z, ZOU Y X.Effect of balanced fertilization on pomegranate tree in southern area of Xinjiang[J].Xinjiang Agricultural Sciences, 2010, 47(2):345-350.

[4] 郝庆, 吴名武, 陈先荣.新疆石榴栽培与内地的差异[J].新疆农业科学, 2005,42(S1):41-44.

HAO Q, WU M W, CHEN X R.The difference of pomegranate cultivation between Xinjiang and the interior of China[J].Xinjiang Agricultural Sciences, 2005,42(S1):41-44.

[5] 薛晓珍. 新疆石榴的营养成分及用途[J].仪器仪表与分析监测, 2002(3):44-45.

XUE X Z.Nutritional components and uses of Xinjiang pomegranate[J].Instrumentation Analysis Monitoring, 2002(3):44-45.

[6] 刘文江. 新疆石榴(Punica L.)资源及其开发利用[J].干旱区研究, 2007,24(2):219-222.

LIU W J.Resources of Punica granatum Linn.and its exploitation and utilization in Xinjiang[J].Arid Zone Research,2007,24(2):219-222.

[7] 常占瑛, 刘桂花, 王梅, 等.新疆石榴皮HPLC指纹图谱研究[J].中国中医药信息杂志, 2019, 26(4):74-77.

CHANG Z Y, LIU G H, WANG M, et al.Study on HPLC fingerprints of granati pericarpium[J].Chinese Journal of Information on Traditianal Chinese Medicine, 2019, 26(4):74-77.

[8] 孟新涛, 潘俨, 许铭强, 等.随机质心映射优化法(RCO)提取皮亚曼石榴皮中黄酮类化合物[J].食品工业科技, 2016, 37(2):276-280;286.

MENG X T, PAN Y, XU M Q, et al.Random centroid optimization of flavonoids extraction from Pierman pomegranate[J].Science and Technology of Food Industry, 2016, 37(2):276-280;286.

[9] 陈芸, 詹建立, 阿依西古丽·外力, 等.南疆石榴主栽品种调查及果实品质初步鉴定[J].黑龙江农业科学, 2016(1):83-86.

CHEN Y, ZHAN J L, WALI A, et al.Main cultivars investigation and fruit quality identification of Punica granatum L.in south Xinjiang[J].Heilongjiang Agricultural Sciences, 2016(1):83-86.

[10] 尹燕雷, 任建辉, 何天明, 等.新疆的石榴栽培状况[J].落叶果树, 2006,38(6):15-16.

YIN Y L, REN J H, HE T M, et al.Culture status of pomegranate in Xinjiang[J].Deciduous Fruits, 2006,38(6):15-16.

[11] 买合木提·买买提, 热比耶姆·毛拉托合提, 吐逊古丽·撒塔尔, 等.传统维药石榴皮的化学成分及药理作用研究进展[J].中国民族医药杂志, 2017, 23(1):54-57.

MAIHEMUTI M, MAIBIYEMU M, TUSUNGULI S, et al.Research progress on chemical constituents and pharmacological effects of traditional uygur medicine pomegranate peel[J].Journal of Medicine and Pharmacy of Chinese Minorities, 2017, 23(1):54-57.

[12] 刘宇, 蔡霞, 曾勇, 等.石榴药理研究新进展[J].世界科学技术-中医药现代化, 2015, 17(3):679-686.

LIU Y, CAI X, ZENG Y, et al.New development on pharmacological effects of Punica granatum L.[J].Modernization of Traditional Chinese Medicine and World Science and Technology, 2015, 17(3):679-686.

[13] DAHANE S, GIL GARCA M D, UCLÉS MORENO A, et al.Determination of eight pesticides of varying polarity in surface waters using solid phase extraction with multiwalled carbon nanotubes and liquid chromatography-linear ion trap mass spectrometry[J].Microchimica Acta,2015, 182(1-2):95-103.

[14] MNYANDU H M, MAHLAMBI P N.Optimization and application of QuEChERS and SPE methods followed by LC-PDA for the determination of triazines residues in fruits and vegetables from Pietermaritzburg local supermarkets[J].Food Chemistry, 2021, 360:129818.

[15] ZHOU Q Z, LIU Z Q, LIU F M, et al.Determination of desmedipham residue in 21 foods by HPLC-MS/MS combined with a modified QuEChERS and mixed-mode SPE clean-up method[J].Journal of Food Composition and Analysis, 2021, 102:104004.

[16] JADHAV M, THEKKUMPURATH A S, NAKADE M, et al.Multiresidue method for targeted screening of pesticide residues in spice cardamom (Elettaria cardamomum) by liquid chromatography with tandem mass spectrometry[J].Journal of AOAC INTERNATIONAL, 2019, 100(3):603-609.

[17] NAVICKIENE S, SANTOS L F S,DOS REISSILVA A, et al.Use of magnesium silicate as a new type of adsorbent for dispersive solid-phase extraction cleanup of the quick, cheap, effective, rugged, and safe method for pesticides during analysis of lager beer by gas chromatography-tandem mass spectrometry[J].Journal of AOAC INTERNATIONAL, 2019, 102(2):619-624.

[18] 张艳峰, 徐鹏, 王会利.QuEChERS技术结合气相色谱-串联质谱法筛查花椒中115种农药残留[J].农药学学报, 2020, 22(3):493-503.

ZHANG Y F, XU P, WANG H L.Screening of 115 pesticide residues in Chinese prickly ash by QuEChERS-gas chromatography-tandem mass spectrometry[J].Chinese Journal of Pesticide Science, 2020, 22(3):493-503.

[19] 徐炎炎, 李森, 张芹, 等.气质联用和液质联用中基质效应的分析和总结[J].农药, 2017, 56(3):162-167.

XU Y Y, LI S, ZHANG Q, et al.Analysis and summary of matrix effects in GC-MS and LC-MS[J].Agrochemicals, 2017, 56(3):162-167.

[20] 熊颖, 李纯, 侯惠婵, 等.QuEChERS-GC-MS/MS测定化橘红65种农药残留[J].中国现代中药, 2021, 23(6):1 043-1 050.

XIONG Y, LI C, HOU H C, et al.Determination of 65 pesticide residues in citri grandis exocarpium by QuEChERS-GC-MS/MS[J].Modern Chinese Medicine, 2021, 23(6):1 043-1 050.

[21] 鲍忠赞. 气相色谱法探究果蔬中有机氯和拟除虫菊酯类农药残留的基质效应[J].农药, 2018, 57(12):890-894.

BAO Z Z.Matrix effects of organochlorine and pyrethroid pesticides in fruits and vegetables using gas chromatography[J].Agrochemicals, 2018, 57(12):890-894.

[22] 国家卫生健康委员会,农业农村部,国家市场监督管理总局. 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法:GB 23200.113—2018[S].北京:中国标准出版社, 2019.

National Health Commission of the People′s Republic of China,Ministry of Agriculture and Rural Affairs of the People′s Republic of China, State Administration of Market Regulation.GB 23200.113—2018 National food safety standard determination of 208 pesticides and their metabolites residues in plant-derived foods gas chromatography-mass spectrometry[S].Beijing:Standards Press of China, 2019.

[23] 杨芳. QuEChERS联合GC-MS/MS和LC-MS/MS建立生姜及其制品中88种农药残留的检测方法及应用[D].南昌:江西农业大学, 2018.

YANG F.The detection method and application of 88 peslticide residues of ginger and its products established by QuEChERS-GC-MS/MS and QuEChERS-LC-MS/MS[D].Nanchang:Jiangxi Agricultural University, 2018.

[24] 汪霞, 滕岳臻.气质联用法测定蔬菜中44种农药多残留的QuECHERS方法研究[J].中国医药指南, 2017, 15(14):30-32.

WANG X, TENG Y Z.QuECHERS method for determination of 44 pesticide residues in vegetables by GC-MS[J].Guide of China Medicine, 2017, 15(14):30-32.

Determination of 70 kinds of pesticide residues in Kashi pomegranate by QuEChERS-gas chromatography-triple quadrupole mass spectrometry

YUMAIER Abulimiti1,CAO Xu2,CUI Zhichao1,YUSUF Abdullah1*

1(College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University, Kashi 844000, China)2(Xinjiang Academy of Analysis and Testing, Urumqi 830000, China)

ABSTRACT To establish a method for the simultaneous determination of 70 kinds of pesticide residues in three varieties of Kashi pomegranate by QuEChERS-gas chromatography-triple quadrupole mass spectrometry.Three varieties of Kashi pomegranate were extracted and purified by optimized QuEChERS procedure, gas-mass spectrometry conditions were established based on the characteristic fragment ions of 70 pesticide residues.The detection was carried out in multiple reaction monitoring mode, and the matrix matching external standard method was used for quantitative analysis.The results showed that the 70 kinds of pesticide residues had a good linear relationship in the range of 0-1.0 μg/kg, and the correlation coefficient was greater than 0.995.The limit of detection was 0.005-0.02 mg/kg. Totally 70 pesticide residues ranged from 76.4% to 108% in 0.01mg/kg; ranged from 75.4%-107%in 0.05 mg/kg; ranged from 71.6%-108%in 0.1mg/kg. The relative standard deviation (RSD) was 0.2%-11.2% (n=5) and the difference was statistically significant (P<0.05).This method is easy, simple, fast, efficient and has good repeatability and stability, which can be used for the quantitative detection and qualitative identification of pesticide residues in multi pigment sample such as Kashi pomegranate with high sugar content and large interference.

Key words kashi pomegranate; QuEChERS; gas chromatography-triple quadrupole mass spectrometry; pesticide residues

第一作者:硕士,讲师(阿卜杜拉·玉苏普副教授为通信作者,E-mail:kashidaxue_abudula@163.com)

基金项目:新疆特色药食用植物资源化学实验室2020年度开放课题(KSUZDSYS202005)

收稿日期:2022-02-17,改回日期:2022-03-18

DOI:10.13995/j.cnki.11-1802/ts.031175

引用格式:阿不力米提·玉麦尔,曹续,崔智超,等.QuEChERS-气质联用仪测定喀什石榴中70种农药残留[J].食品与发酵工业,2022,48(14):263-271.YUMAIER Abulimiti,CAO Xu,CUI Zhichao, et al.Determination of 70 kinds of pesticide residues in Kashi pomegranate by QuEChERS-gas chromatography-triple quadrupole mass spectrometry[J].Food and Fermentation Industries,2022,48(14):263-271.