麸皮为谷物加工副产物,一般用作动物饲料或酿酒原料而附加值较低,或作为农业废弃物直接丢弃而危害环境,如何实现麸皮高值化利用是亟待解决的重要课题。近年来,一些研究发现谷物中酚类物质具有重要的功能特性,在预防癌症、肥胖症、糖尿病和心血管疾病等慢性疾病方面存在潜在的应用价值。然而,麸皮酚类物质大多以结合态形式存在于细胞壁中,生物利用度比较低。目前,因其成本效益和环境优势,固态发酵技术在促进麸皮酚类物质释放发挥了重要作用。本文综述了固态发酵技术、微生物资源挖掘,新型固态发酵策略等方面的最新进展,以期为麸皮的高值化利用提供一定参考。
麸皮中富含具有生理活性的酚类物质,麸皮酚类物质通常以游离态和结合态形式存在(图1),大多数以不溶性形式结合在细胞壁结构中。游离酚一般不与其他分子发生物理和化学作用,通常易溶于极性水/有机溶剂,易于被人体肠道吸收。结合态多酚通常以酯键或醚键连接到细胞壁多糖上,或通过离子键嵌入食品基质大分子中。超过80%的阿魏酸在糊粉层和皮层中酯化成阿拉伯木聚糖和阿拉伯半乳聚糖,结合在细胞壁中;羟基苯甲酸通过羧基与细胞壁物质的羟基形成酯键。结合态形式存在的酚类物质,在消化道中的生物可及性较低,从而影响其生物活性。近年来,越来越多的研究表明,结合态形式存在的酚类物质其含量和抗氧化性能远高于游离态[1]。因此,如何促麸皮酚类物质的高效释放成为研究人员关注的热点。
图1 麸皮酚类化合物组成及其功能特性
Fig.1 Composition and functional properties of phenolic compounds in bran
由于麦麸中酚类活性物质在食品、化学和制药工业中的潜在应用,人们对提取活性物质的发酵工艺愈发关注。从发酵体系状态角度看,微生物发酵过程可分为2个类型:液态深层发酵(submerged fermentation,SMF),是基于微生物在含有营养物质的液体培养基中的培养;固态发酵技术(solid-state fermentation,SSF),包括微生物在无游离水(或接近无游离水)条件下在固体颗粒上的生长和产物形成。近年来,SSF可以实现农业废弃物的再利用,属于环境友好型的清洁生产技术,越来越受到研究人员的关注。由于其成本效益和环境优势,固态发酵法已被确定为麸皮酚类物质释放的有力工具[2]。YIN等[3]从麸皮中分离出一株黑曲霉菌株用于麸皮固态发酵,发现其显著提高了麦麸中结合态阿魏酸的释放,其抗氧化和抗炎活性明显优于游离阿魏酸。对于固态发酵过程,基质含水量一般在30%~85%,较低值可诱导微生物的孢子形成,而更高的水平可降低系统的孔隙率,限制氧的传递,并增加细菌污染的风险。
在固态发酵条件下,选择合适的微生物菌株非常重要,发酵微生物的选择直接决定最终SSF的效果。微生物发酵能够提高麸皮中酚类物质含量,主要源于微生物定殖后细胞壁发生结构性破坏,导致酚类物质释放;由于微生物在发酵过程中产生的不同木质素降解酶和水解酶的作用,结合的酚类物质被释放;此外,一些可溶性酚类化合物可能被微生物合成[4]。目前,包括细菌类、酵母类、霉菌类在内的多种微生物可用于SSF过程,如表1所示。纳豆杆菌(Bacillus natto)处理小米麸皮,纤维素和半纤维素降解,形成更多的多孔性疏松结构,总酚含量和DPPH自由基清除能力增加[5]。植物乳杆菌(Lactobacillus plantarum 423)发酵处理米糠和小麦麸皮,抗氧化活性明显增强,研究发现主要抗氧化活性成分为酸类(70.21%)和酮类(10.64%),同时增强了硫化物和芳香族化合物等风味物质[6]。活性干酵母发酵大麦麸皮,多酚含量随发酵时间延长而明显增加,发酵6 d达到最高为420.4 μg GAE/mL,抗氧化性能也明显提升[7]。相类似,酿酒酵母发酵米糠中酚类物质种类和含量增加,赋予米糠无麸饼干易接受的品质感观属性[8]。然而,由于发酵培养基中的低含水量,在SSF发酵体系中霉菌类一般是比较常用的微生物,特别是一些丝状菌的菌丝能够穿透麸皮介质,同时能够分泌丰富酶系如淀粉酶、果胶酶、木聚糖酶、纤维素酶、几丁质酶、蛋白酶、脂肪酶和β-半乳糖苷酶等,是生产酶制剂的优良细胞工厂。因此,丝状菌在SSF产生生物活性物质中具有巨大的潜力[9]。
表1 不同类型微生物用于麸皮发酵
Table 1 Different types of microorganisms used in bran fermentation
类型微生物基质发酵效果文献细菌类Enterococcus faecalis M2小麦麸皮酚类、黄酮类、烷基间苯二酚总比例以及抗氧化能力和自由基清除率均有显著提高,其中阿魏酸含量提高了5.5倍[13]Lactobacillus plantarum 423小麦麸皮,米糠抗氧化活性均明显增加,发酵米糠的自由基清除率明显高于发酵麸皮[6]Bacillus natto小米麸皮可溶性膳食纤维/不溶性膳食纤维比例从3.1%提高到19.9%。总酚含量和DPPH自由基清除能力显著增加[5]霉菌类Fomitopsis pinicola小麦麸皮发酵4 d时总抗氧化能力提高了4.73倍,6 d时总酚和烷基间苯二酚含量分别提高了4.91和0.55倍[14]Aspergillus niger小麦麸皮麸皮中分离的黑曲霉可以促进麸皮中结合型阿魏酸的释放,其抗氧化和抗炎活性优于游离阿魏酸[3]Aspergillus awamori、Aspergil-lus oryzae、Aspergillus niger小麦麸皮黑曲霉表现出最大的释放结合阿魏酸的能力,米曲霉和泡盛曲霉具有释放更多绿原酸和丁香酸的能力[15]Rhizopus oligosporus、Monascus purpureus米糠发酵米糠的酚类组成中阿魏酸、芥子酸、香草酸、咖啡酸、丁香酸和4-羟基苯甲酸含量显著增加[12]Aspergillus awamori、Aspergil-lus oryzae黑米糠泡盛曲霉和米曲霉固态发酵黑米糠,原儿茶酸和阿魏酸增加最显著,发酵3 d后达到最大值,泡盛曲霉发酵的米糠提取物为1 660.6 g/g[11]酵母类活性干酵母(active dry yeast)大麦麸皮多酚含量明显增加,发酵6 d达到最高,为420.4 μg GAE/mL,抗氧化性能明显提升[7]Saccharomyces cerevisiae米糠发酵米糠多酚种类和含量增加,抗氧化活性增加[8]
霉菌类如黑曲霉、米曲霉和泡盛曲霉等,普遍应用于发酵食品生产,通常被认为是食品级微生物[10]。泡盛曲霉(Aspergillus awamori ATCC 38854)和米曲霉(Aspergillus oryzae ATCC 22787)固态发酵提高了黑米糠醇提物的抗氧化活性;总酚含量增加,原儿茶酸和阿魏酸增加最显著,发酵3 d后达到最大值,泡盛曲霉发酵提取物为1 660.6 g/g[11]。ABD等[12]利用少孢根霉(Rhizopus oligosporus F0020)和红曲霉(Monascus purpureus F0061)固态发酵米糠,酚类组成发生明显变化,其中香草酸、咖啡酸和4-羟基苯甲酸发酵后显著增加。丝状类真菌发酵可以有效促进麸皮酚类物质的释放,但在发酵体系中,菌丝往往紧密缠绕在麸皮介质中,精准定量丝状菌的生物量相对困难,发酵过程菌体生长动态规律有待进一步阐明。我国传统酿造食品历史悠久,其中蕴藏着丰富的菌种资源库,挖掘具有我国知识产权的“风土”微生物资源,并评价其功能特性,有望获得促进麸皮酚类物质高效释放的菌种资源。
单一菌系处理麸皮往往存在发酵效率较低的缺陷,限制了其在麸皮发酵中的应用。菌种间的代谢协同有助于提升SSF效果,可以通过菌种混合培养来实现。混合培养发酵是指由2种或2种以上微生物组成的发酵过程,实现混合培养菌种代谢的协同效应。近年来,微生物混合菌系发酵具有一系列优势,可以通过菌种之间的分工来分配代谢负担,具备有效转化复杂底物的能力。SHAHAB等[16]构建了里氏木霉、兼性厌氧乳酸菌与专性厌氧乳酸菌共培养菌系,以纤维素与木糖混合底物发酵,获得了0.35 g丁酸/g碳水化合物,高于可溶性底物或添加商业纤维素分解酶的转化率。
丝状真菌黑曲霉和米曲霉在麦麸平板中共培养,2种菌株分布均匀,并且混合培养物比单一培养分泌更多的细胞壁降解酶[17]。与单菌系培养相比,米曲霉和枯草芽胞杆菌混合培养,显著提升了底物总酚含量,增强了底物营养特性[18]。红曲霉和枯草芽胞杆菌共培养,发酵燕麦的总酚含量是未发酵燕麦的23倍,游离酚和结合酚的抗氧化活性增强[19]。红曲霉(Monascus anka GIM 3.592)和酿酒酵母(Saccharomyces cerevisiae GIM 2.139)混合发酵石榴叶,石榴叶总酚含量特别是绿原酸、芦丁和槲皮素的释放明显提升,显示更强的DPPH自由基清除能力以及抗菌能力,提高了番石榴叶的药用价值[20]。因此,通过优化2种或多种微生物共培养发酵体系,可以有效改善单一菌种发酵效率低的缺陷。
目前,一些新兴的物理预处理方法如蒸汽爆破、超微粉碎、螺杆挤压和微波加热等技术,逐渐应用于纤维素辅助改性过程中,如表2所示。超微粉碎有助于增加麦麸颗粒表面积,提高其生物利用度,KONG等[21]采用蒸汽爆破辅助超细磨工艺,麸皮总酚含量明显增加,自由基清除活力明显增强。白酒产生的黄水预处理稻壳,显著降低了稻壳硬度,增强了稻壳骨架结构的弹性[22]。微波加热技术有助于破坏纤维结构而使其更易降解,DI等[23]研究了微波加热辅助FeCl3催化水解纤维素,葡萄糖产率为39.9 mol%。LI等[24]利用EBI处理米糠纤维,发现纤维素的结晶区断裂,木质素与半纤维素的连接断裂。麸皮致密的细胞壁结构,往往需要一定预处理手段进行辅助改性,有利于后续固态发酵。发酵前对黑米糠的预热处理显著增加了酚酸的含量,尤其是阿魏酸和原儿茶酸。随后的发酵进一步增加了黑米糠提取物中酚酸的含量;酚酸含量的增加导致抗氧化活性增加[11]。糙米经过螺杆挤压处理,经过乳酸菌(Lactobacillus fermentum GIM 1.985)与酿酒酵母(Saccharomyces cerevisiae GIM 2.213)混合发酵后,游离酚、共轭酚和结合酚均明显增加,酚类组成中阿魏酸、对香豆酸、肉桂酸、山奈酚和槲皮素的含量较高,并具有较高抗氧化活性[25]。因此,预处理耦合麸皮发酵是提升麸皮酚类物质释放的重要途径。
表2 不同预处理技术用于麸皮改性
Table 2 Different pretreatment used for wheat bran modification
预处理技术基质处理效果文献蒸汽爆破苦荞麸皮蒸汽爆破促进酚类物质的溶解,尤其是结合酚含量几乎增加了2倍,促进结合的焦性没食子酸、原儿茶酸和咖啡酸的释放。游离酚提取物的体外细胞抗氧化活性提高了215%[26]超声波燕麦麸皮超声波辅助提取结合酚含量下降,游离酚含量明显增加,同时β-葡聚糖产量比传统提取方法高约37%[27]高压蒸汽灭菌小麦麸皮和米糠小麦麸皮和米糠植酸含量降低了约96%,小麦和米糠样品中的总膳食纤维(45%小麦麸皮和71%大米麸皮)、总酚类化合物(17%小麦麸皮和4%大米麸皮)和抗氧化剂(12%小麦麸皮和2%大米麸皮)增加[28]蒸汽爆破辅助超微粉碎小麦麸皮蒸汽爆破具有破坏麸皮细胞壁的作用,辅助超微粉碎(<75 μm),总酚和总黄酮含量显著提高,DPPH自由基清除活性最强(87.68%)[21]石磨粉碎小麦麸皮立式石磨麦麸粉通过改善餐后血糖和调节宿主肠道微生物群的组成和功能配置,具有改善代谢紊乱(尤其是二型糖尿病)的潜力[29]双螺杆挤压米糠挤压后游离酚、结合酚和总酚含量分别提高了23.0%、50.7%、36.3%,挤压和发酵改变了8种酚类化合物的含量和分布,但不改变其组成。挤压处理使米糠的致密微结构变为疏松多孔结构[30]微波米糠微波预处理可以提高米糠总酚的得率及其抗氧化活性;此外微波预处理可以缩短总酚的提取时间,有利于工业化生产放大[31]
许多研究发现酚类物质的含量与α-淀粉酶、木聚糖酶和纤维素酶的活性有很好的相关性。α-淀粉酶处理燕麦,使没食子酸含量提高了2.6倍(0.38 mg/g燕麦),咖啡酸含量提高了2.4倍,其他酚类含量提高了1.0~1.8倍[32]。木聚糖酶和阿拉伯呋喃糖苷酶处理小麦麸皮,可溶性低聚木糖和酚酸含量增加,抗氧化能力增强[33]。纤维素酶处理显著提高了燕麦麸皮大多数酚类化合物的利用率,咖啡酸提高了97%,香兰素提高了28%,对香豆酸提高了105%,阿魏酸提高了914%[34]。LIU等[35]通过糊化、液化和复合酶水解连续处理米糠,与单独糊化相比,复合酶水解显著提高总酚、黄酮含量,分别提高46.24%、79.13%;阿魏酸释放量最大,其次是原儿茶酸,然后是槲皮素。然而,在发酵处理体系中,纤维素酶活性相对较低,这可能导致不溶性酚类物质不能充分释放[36]。为进一步提高麸皮中酚类物质含量和生物活性,需要酶促降解麸皮细胞壁以释放酚类物质,实现麦麸的菌酶协同发酵。
菌酶协同发酵技术,是在微生物发酵的同时添加复合酶制剂,可有效克服酶量分泌不足的缺陷。KATINA等[37]采用发酵法提高了黑麦麸皮总酚和游离阿魏酸的水平,在用天然谷物发酵麸皮的过程中,烷基间苯二酚含量略有增加,但在用去皮谷物发酵麸皮的过程中,烷基间苯二酚的含量有所下降,发现麸皮内源乳酸菌和谷物外层酶促进了发酵过程中麸皮的变化。植物乳杆菌(Lactobacillus plantarum CECT 748)发酵与葡聚糖酶的水解相结合,提高了小扁豆在抗氧化、抗高血压和降血糖方面的有益效果[38]。徐磊等[39]添加复合酶制剂(酸性蛋白酶、中性蛋白酶、木瓜蛋白酶、碱性蛋白酶和风味蛋白酶)协同干酪乳杆菌发酵薏米,多肽和总酚浓度显著提高,抗氧化性能明显高于单独菌种发酵方式。纤维素酶能从燕麦中释放出大量不溶性酚类物质,与传统发酵体系相比,酶解发酵体系进一步提高了可溶性和不溶性酚类物质的含量(分别提高了24.38%和31.05%),可溶性酚类物质中没食子酸、绿原酸和阿魏酸的含量分别提高了42.49%、85.79%和46.42%[40]。相类似地,LIU等[41]分析乳酸菌发酵和复合酶水解显著提高了α-淀粉酶蒸煮预处理米糠水溶液的总酚和抗氧化活性。因此,菌酶协同发酵技术也是实现麸皮高值化的重要途径,因为它能够通过增加生物活性化合物的含量和生物利用度来增强其营养特性。
我国传统发酵食品中蕴藏着丰富的菌种资源[42],可以从中挖掘食品级微生物资源并评价其功能特性用于麸皮固态发酵过程。尽管SSF是生态友好型的,基于更低的能量需求和更少的废水产生以及更低的细菌污染风险,在开发麸皮酚类物质中发挥了重要作用[43]。但SSF为三相非均相过程,包括固相、液相和气相,此类培养过程往往存在热量积聚、传质和传热不均一性等问题。因此,提升固态发酵过程传质和传热均一性,开发面向工业化的固态发酵反应器是未来麸皮固态发酵研究的重要方向。此外,结合新型固态发酵技术(图2)如复合菌系发酵技术、预处理耦合发酵技术和菌酶协同发酵技术等策略在麸皮酚类物质释放中的应用,为实现麸皮酚类物质工业化高效制备奠定基础。
图2 新型发酵策略在麸皮固态发酵中的应用
Fig.2 Novel fermentation strategies applied in solid-state fermentation of bran
[1] ZHANG J L, DING Y, DONG H Z, et al.Distribution of phenolic acids and antioxidant activities of different bran fractions from three pigmented wheat varieties[J].Journal of Chemistry,2018, 2018:6459243.
[2] 王宝石, 谭凤玲, 李林波, 等.不同预处理方法对改善麦类麸皮营养特性的研究进展[J].食品与发酵工业, 2020, 46(7):265-270.
WANG B S, TAN F L, LI L B, et al.Advances in pretreatment methods for improving nutritional properties of wheat bran[J].Food and Fermentation Industries, 2020, 46(7):265-270.
[3] YIN Z N, WU W J, SUN C Z, et al.Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger[J].Biomedical and Environmental Sciences, 2019, 32(1):11-21.
[4] BHANJA DEY T, CHAKRABORTY S, JAIN K K, et al.Antioxidant phenolics and their microbial production by submerged and solid state fermentation process:A review[J].Trends in Food Science & Technology, 2016, 53:60-74.
[5] CHU J X, ZHAO H Z, LU Z X, et al.Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto[J].Food Chemistry, 2019, 294:79-86.
[6] WANG M, LEI M, SAMINA N, et al.Impact of Lactobacillus plantarum 423 fermentation on the antioxidant activity and flavor properties of rice bran and wheat bran[J].Food Chemistry, 2020, 330:127156.
[7] 李秀利, 韩建春, 郭荣佳, 等.大麦麸皮发酵液的体外抗氧化活性研究[J].食品工业科技, 2014, 35(7):112-115.
LI X L, HAN J C, GUO R J, et al.Study in vitro antioxidant activity of barley bran fermentation liquid[J].Science and Technology of Food Industry, 2014, 35(7):112-115.
[8] CHRIST-RIBEIRO A, CHIATTONI L M, MAFALDO C R F, et al.Fermented rice-bran by Saccharomyces cerevisiae:Nutritious ingredient in the formulation of gluten-free cookies[J].Food Bioscience, 2021, 40:100859.
[9] MARTINS S, MUSSATTO S I, MARTíNEZ-AVILA G, et al.Bioactive phenolic compounds:Production and extraction by solid-state fermentation.A review[J].Biotechnology Advances, 2011, 29(3):365-373.
[10] DULF F V, VODNAR D C, DULF E H, et al.Total phenolic contents, antioxidant activities, and lipid fractions from berry pomaces obtained by solid-state fermentation of two sambucus species with Aspergillus niger[J].Journal of Agricultural and Food Chemistry, 2015, 63(13):3 489-3 500.
[11] SHIN H Y, KIM S M, LEE J H, et al.Solid-State fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae:Effects on phenolic acid composition and antioxidant activity of bran extracts[J].Food Chemistry, 2019, 272:235-241.
[12] ABD RAZAK D L, ABD RASHID N Y, JAMALUDDIN A, et al.Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus[J].Biocatalysis and Agricultural Biotechnology, 2015, 4(1):33-38.
[13] MAO M L, WANG P, SHI K X, et al.Effect of solidstate fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran[J].Journal of Cereal Science, 2020, 94:102997.
[14] TU J, ZHAO J, LIU G H, et al.Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products[J].Food Chemistry,2020, 328:127046.
[15] YIN Z N, WU W J, SUN C Z, et al.Comparison of releasing bound phenolic acids from wheat bran by fermentation of three Aspergillus species[J].International Journal of Food Science & Technology, 2018, 53(5):1 120-1 130.
[16] SHAHAB R L, BRETHAUER S, DAVEY M P, et al.A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose[J].Science,2020, 369(6 507):eabb1214.
[17] BENOIT-GELBER I, GRUNTJES T, VINCK A, et al.Mixed colonies of Aspergillus niger and Aspergillus oryzae cooperatively degrading wheat bran[J].Fungal Genetics and Biology, 2017, 102:31-37.
[18] ONG A, LEE C L K.Cooperative metabolism in mixed culture solid-state fermentation[J].LWT, 2021, 152:112300.
[19] CHEN G, LIU Y, ZENG J R, et al.Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis[J].Journal of Cereal Science, 2020, 93:102940.
[20] WANG L, WEI W H, TIAN X F, et al.Improving bioactivities of polyphenol extracts from Psidium guajava L.leaves through co-fermentation of Monascus anka GIM 3.592 and Saccharomyces cerevisiae GIM 2.139[J].Industrial Crops and Products, 2016, 94:206-215.
[21] KONG F, WANG L, GAO H F, et al.Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder[J].Powder Technology,2020, 371:154-160.
[22] FAN B Q, XIANG L P, YU Y G, et al.Solid-state fermentation with pretreated rice husk:Green technology for the distilled spirit (Baijiu) production[J].Environmental Technology & Innovation,2020, 20:101049.
[23] DI FIDIO N, FULIGNATI S, DE BARI I, et al.Optimisation of glucose and levulinic acid production from the cellulose fraction of giant reed (Arundo donax L.) performed in the presence of ferric chloride under microwave heating[J].Bioresource Technology,2020, 313:123650.
[24] LI T, WANG L, CHEN Z X, et al.Structural changes and enzymatic hydrolysis yield of rice bran fiber under electron beam irradiation[J].Food and Bioproducts Processing,2020, 122:62-71.
[25] KHAN S A, ZHANG M W, LIU L, et al.Co-culture submerged fermentation by Lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation[J].Food Chemistry,2020, 326:126985.
[26] LI W Z, ZHANG X L, HE X Q, et al.Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics[J].Food & Function,2020, 11(5):4 648-4 658.
[27] CHEN C, WANG L, WANG R, et al.Ultrasound-assisted extraction from defatted oat (Avena sativa L.) bran to simultaneously enhance phenolic compounds and β-glucan contents:Compositional and kinetic studies[J].Journal of Food Engineering,2018, 222:1-10.
[28] ÖZKAYA B, TURKSOY S, ÖZKAYA H, et al.Dephytinization of wheat and rice brans by hydrothermal autoclaving process and the evaluation of consequences for dietary fiber content, antioxidant activity and phenolics[J].Innovative Food Science & Emerging Technologies,2017, 39:209-215.
[29] LIU S, ZHAO L P, WANG L H, et al.Microstructure-modified products from stone-milled wheat bran powder improve glycemic response and sustain colonic fermentation[J].International Journal of Biological Macromolecules,2020, 153:1 193-1 201.
[30] CHEN Y X, MA Y X, DONG L H, et al.Extrusion and fungal fermentation change the profile and antioxidant activity of free and bound phenolics in rice bran together with the phenolic bioaccessibility[J].LWT,2019, 115:108461.
[31] WATANIYAKUL P, PAVASANT P, GOTO M, et al.Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water[J].Bioresource Technology,2012, 124:18-22.
[32] CHEN D F, SHI J L, HU X Z, et al.Alpha-amylase treatment increases extractable phenolics and antioxidant capacity of oat (Avena nuda L.) flour[J].Journal of Cereal Science,2015, 65:60-66.
[33] XUE Y M, CUI X B, ZHANG Z H, et al.Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans[J].Food Chemistry,2020, 302:125332.
[34] CHEN D F, SHI J L, HU X Z.Enhancement of polyphenol content and antioxidant capacity of oat (Avena nuda L.) bran by cellulase treatment[J].Applied Biological Chemistry,2016, 59(3):397-403.
[35] LIU L, WEN W, ZHANG R F, et al.Complex enzyme hydrolysis releases antioxidative phenolics from rice bran[J].Food Chemistry,2017, 214:1-8.
[36] BEI Q, CHEN G, LU F J, et al.Enzymatic action mechanism of phenolic mobilization in oats (Avena sativa L.) during solid-state fermentation with Monascus anka[J].Food Chemistry,2018, 245:297-304.
[37] KATINA K, LAITILA A, JUVONEN R, et al.Bran fermentation as a means to enhance technological properties and bioactivity of rye[J].Food Microbiology,2007, 24(2):175-186.
[38] BAUTISTA-EXPóSITO S, MARTíNEZ-VILLALUENGA C, DUEAS M, et al.Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil[J].Journal of Functional Foods,2018, 48:9-18.
[39] 徐磊, 王清爽, 高珊, 等.菌酶协同处理提高脱脂薏米水提取液营养价值[J].农业工程学报,2020, 36(12):303-309.
XU L, WANG Q S, GAO S, et al.Improving nutrition value of the defatted adlay water extract by using fermentation with enzyme[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12):303-309.
[40] BEI Q, CHEN G, LIU Y, et al.Improving phenolic compositions and bioactivity of oats by enzymatic hydrolysis and microbial fermentation[J].Journal of Functional Foods,2018, 47:512-520.
[41] LIU L, ZHANG R F, DENG Y Y, et al.Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase[J].Food Chemistry,2017, 221:636-643.
[42] 任聪, 杜海, 徐岩.中国传统发酵食品微生物组研究进展[J].微生物学报,2017, 57(6):885-898.
REN C, DU H, XU Y.Advances in microbiome study of traditional Chinese fermented foods[J].Acta Microbiologica Sinica, 2017, 57(6):885-898.
[43] THOMAS L, LARROCHE C, PANDEY A.Current developments in solid-state fermentation[J].Biochemical Engineering Journal,2013, 81:146-161.