Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (12): 147-153    DOI: 10.13995/j.cnki.11-1802/ts.026269
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于仿生胃肠道模型的发酵乳中益生菌存活率评价
伍鹏1*, 王娟2, 王晶晶2, 陈晓东1, 司徒文佑3,4, 段素芳3,4*
1(苏州大学 化工与环境工程学院,江苏 苏州,215123)
2(晓东宜健(苏州)仪器设备有限公司,江苏 苏州,215152)
3(内蒙古乳业技术研究院有限责任公司,内蒙古 呼和浩特,010110)
4(内蒙古伊利实业集团股份有限公司伊利母婴营养研究院,北京,100022)
Evaluation of probiotics viability in fermented milk based on a biomimetic gastrointestinal model
WU Peng1*, WANG Juan2, WANG Jingjing2, CHEN Xiaodong1, SZETO IGNATIUS Manyau3,4, DUAN Sufang3,4*
1(School of Chemical and Environmental Engineering, Soochow University, Suzhou 215123, China)
2(Xiao Dong Pro-health (Suzhou) Instrumentation Co.Ltd., Suzhou 215152, China)
3(Inner Mongolia Dairy Technology Research Institute Co.Ltd., Hohhot 010110, China)
4(Inner Mongolia Yili Industrial Group, Co.Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100022, China)
下载:  HTML  PDF (5172KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究旨在阐明酪蛋白/乳清蛋白比例及食物基质对益生菌胃肠道存活特性的影响及作用机制。以菌粉固体饮料为对照组,酪蛋白和乳清蛋白质量配比分别为4∶1、2∶1、1∶1、1∶1.5的益生菌发酵乳为实验组,分别测定了它们在动态体外仿生儿童胃肠道消化模型内连续消化2 h期间胃/肠pH值、表观聚集态结构及总乳酸菌(包含保加利亚乳杆菌、嗜热链球菌和嗜酸乳杆菌)、乳双歧杆菌存活率的变化。结果表明,在相同的消化环境下,菌粉饮料的胃pH最低而肠pH最高,发酵乳胃消化期间形成的凝聚物进入肠消化后逐渐消失;无论是总乳酸菌还是乳双歧杆菌在所有发酵乳样品中的胃肠存活率显著高于在菌粉饮料中的存活率(P<0.05);随着酪蛋白/乳清蛋白比例的增加,发酵乳中总乳酸菌在胃和小肠内存活率均显著提高(P<0.05),但乳双歧杆菌的存活率差异较小。酪蛋白胶束较强的pH缓冲能力以及胃酸环境下形成的凝聚物,对益生菌具有一定的保护作用,进而提高其胃肠道存活率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍鹏
王娟
王晶晶
陈晓东
司徒文佑
段素芳
关键词:  发酵乳  酪蛋白  乳清蛋白  益生菌  存活率  胃肠道消化模型  凝聚物    
Abstract: To elucidate the effects and mechanisms of casein/whey protein ratio and food matrixes on the gastrointestinal survival of probiotics in fermented milk, the probiotic fermented milk samples with different casein: whey protein mass ratio (4∶1, 2∶1, 1∶1 and 1∶1.5) were used as raw materials, with probiotics powder used as the control. An advanced dynamic in vitro gastrointestinal model was employed to mimic the stomach and small intestine digestive environments present in children. The changes of gastric/intestinal pH, gastric retention ratio, apparent aggregation structure, and survival rate of total lactic acid bacteria (including Lactobacillus bulgaricus, Streptococcus thermophilus and Lactobacillus acidophilus) and Bifidobacterium lactis during the simulated dynamic gastrointestinal digestion were measured. The probiotics powder showed remarkably lower gastric pH and higher intestinal pH during digestion compared to the fermented milk samples. The aggregates formed during the digestion of fermented milk in the stomach gradually disappeared in intestine. The gastrointestinal survival of both the total lactic acid bacteria and B. lactis in all fermented milk samples was significantly higher than that in the solid drink (P<0.05). With the increase of casein/whey protein ratio, the gastrointestinal survival rate of the total lactic acid bacteria was significantly increased (P<0.05), but the viability of the B. lactis was not remarkably affected. These results suggested that casein micelles in fermented milk might have higher buffering capacity than whey protein and tend to form denser coagula or aggregates in the stomach. These might generate certain protective effect on probiotics, thus improving the survival of probiotics during gastrointestinal digestion.
Key words:  fermented milk    casein    whey protein    probiotics    viability    gastrointestinal digestion model    coagulum
收稿日期:  2020-11-25      修回日期:  2020-12-10           出版日期:  2021-06-25      发布日期:  2021-07-22      期的出版日期:  2021-06-25
作者简介:  博士,讲师(伍鹏讲师和段素芳高级工程师为共同通讯作者,E-mail:p.wu@suda.edu.cn;duansufang@yili.com)
引用本文:    
伍鹏,王娟,王晶晶,等. 基于仿生胃肠道模型的发酵乳中益生菌存活率评价[J]. 食品与发酵工业, 2021, 47(12): 147-153.
WU Peng,WANG Juan,WANG Jingjing,et al. Evaluation of probiotics viability in fermented milk based on a biomimetic gastrointestinal model[J]. Food and Fermentation Industries, 2021, 47(12): 147-153.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026269  或          http://sf1970.cnif.cn/CN/Y2021/V47/I12/147
[1] 李楠, 刘振民.益生菌与功能发酵乳开发研究进展[J].乳业科学与技术, 2020, 43(3):31-38.LI N, LIU Z M.Probiotics and development of functional yogurt:A review of recent progress[J].Journal of Dairy Science and Technology, 2020, 43(3):31-38.
[2] VIJAYA KUMAR B, VIJAYENDRA S V N, REDDY O V S.Trends in dairy and non-dairy probiotic products-A review[J].Journal of Food Science and Technology, 2015, 52(10):6 112-6 124.
[3] ABD EL-SALAM M H, EL-SHIBINY S.Preparation and properties of milk proteins-based encapsulated probiotics:A review[J].Dairy Science & Technology, 2015, 95(4):393-412.
[4] IRAVANI S, KORBEKANDI H, MIRMOHAMMADI S V.Technology and potential applications of probiotic encapsulation in fermented milk products[J].Journal of Food Science and Technology, 2015, 52(8):4 679-4 696.
[5] TRIPATHI M K, GIRI S K.Probiotic functional foods:Survival of probiotics during processing and storage[J].Journal of Functional Foods, 2014, 9:225-241.
[6] YAO M, WU J, LI B, et al.Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota[J].Food Hydrocolloids, 2017, 72:228-236.
[7] YAO M, XIE J, DU H, et al.Progress in microencapsulation of probiotics:A review[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2):857-874.
[8] MILLETTE M, NGUYEN A, AMINE K M, et al.Gastrointestinal survival of bacteria in commercial probiotic products[J].International Journal of Probiotics and Prebiotics, 2013, 8:149-156.
[9] BURGAIN J, GAIANI C, CAILLIEZ-GRIMAL C, et al.Encapsulation of Lactobacillus rhamnosus GG in microparticles:Influence of casein to whey protein ratio on bacterial survival during digestion[J].Innovative Food Science & Emerging Technologies, 2013, 19:233-242.
[10] WU P, CHEN X D.On designing biomimic in vitro human and animal digestion track models:Ideas, current and future devices[J].Current Opinion in Food Science, 2020, 35:10-19.
[11] 伍鹏, 王晶晶, 董志忠, 等.体外仿生消化系统的研究进展——从静态到动态[J].生物产业技术, 2019, 6:26-41.WU P, WANG J J, DONG Z Z, et al.Advance in biomimetic in vitro digestion systems-from static to dynamic[J].Biotechnology & Business, 2019, 6:26-41.
[12] AFZAAL M, KHAN A U, SAEED F, et al.Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal conditions and in ice cream[J].Food Science & Nutrition, 2020, 8(3):1 649-1 656.
[13] MARCIAL-COBA M S, CIEPLAK T, CAHU' T B, et al.Viability of microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during freeze-drying, storage and in vitro simulated upper gastrointestinal tract passage[J].Food & Function, 2018, 9(11):5 868-5 879.
[14] KEMSAWASD V, CHAIKHAM P, RATTANASENA P.Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model[J].Food Bioscience, 2016, 16:37-43.
[15] VENEMA K, VERHOEVEN J, VERBRUGGEN S, et al.Probiotic survival during a multi-layered tablet development as tested in a dynamic, computer-controlled in vitro model of the stomach and small intestine (TIM-1)[J].Letters in Applied Microbiology, 2019, 69(5):325-332.
[16] MULET-CABERO A-I, TORCELLO-GÓMEZ A, SAHA S, et al.Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption[J].Food Chemistry, 2020, 319:126 514.
[17] YE A, CUI J, DALGLEISH D, et al.Formation of a structured clot during the gastric digestion of milk:Impact on the rate of protein hydrolysis[J].Food Hydrocolloids, 2016, 52:478-486.
[18] MINEKUS M, ALMINGER M, ALVITO P, et al.A standardised static in vitro digestion method suitable for food-an international consensus[J].Food & Function, 2014, 5(6):1 113-1 124.
[19] WANG J, WU P, LIU M, et al.An advanced near real dynamic in vitro human stomach system to study gastric digestion and emptying of beef stew and cooked rice[J].Food & Function, 2019, 10(5):2 914-2 925.
[20] HAVENAAR R, ANNEVELD B, HANFF L M, et al.In vitro gastrointestinal model (TIM) with predictive power, even for infants and children?[J].International Journal of Pharmaceutics, 2013, 457(1):327-332.
[21] BOURLIEU C, MÉNARD O, BOUZERZOUR K, et al.Specificity of infant digestive conditions:Some clues for developing relevant in vitro models[J].Critical Reviews in Food Science and Nutrition, 2014, 54(11):1 427-1 457.
[22] HODGKINSON A J, WALLACE O A M, BOGGS I, et al.Gastric digestion of cow and goat milk:Impact of infant and young child in vitro digestion conditions[J].Food Chemistry, 2018, 245:275-281.
[23] LEITER A, RAU S, WINGER S, et al.Influence of heating temperature, pressure and pH on recrystallization inhibition activity of antifreeze protein type Ⅲ[J].Journal of Food Engineering, 2016, 187:53-61.
[24] VASBINDER A J, DE KRUIF C G.Casein-whey protein interactions in heated milk:The influence of pH[J].International Dairy Journal, 2003, 13(8):669-677.
[25] YE A, CUI J, DALGLEISH D, et al.The formation and breakdown of structured clots from whole milk during gastric digestion[J].Food & Function, 2016, 7(10):4 259-4 266.
[26] YE A, LIU W, CUI J, et al.Coagulation behaviour of milk under gastric digestion:Effect of pasteurization and ultra-high temperature treatment[J].Food Chemistry, 2019, 286:216-225.
[27] MULET-CABERO A I, TORCELLO-GÓMEZ A, SAHA S, et al.Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption[J].Food Chemistry, 2020, 319:126 514.
[28] ZIARNO M, ZARȨ, BA D.Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions[J].Microbial Ecology in Health and Disease, 2015, 27:27 812.
[29] WANG J, HUANG S, FU N, et al.Thermal aggregation of calcium-fortified skim milk enhances probiotic protection during convective droplet drying[J].Journal of Agricultural and Food Chemistry, 2016, 64(30):6 003-6 010.
[1] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[2] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[3] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[4] 孙媛媛, 崔树茂, 唐鑫, 毛丙永, 赵建新, 陈卫. 发酵乳杆菌的生长限制性因素分析及高密度培养工艺优化[J]. 食品与发酵工业, 2021, 47(6): 1-10.
[5] 王楠, 田晗, 张文晓, 白筱翠, 肖纯凌. 两株具有潜在益生作用的人源链球菌的安全性评价[J]. 食品与发酵工业, 2021, 47(5): 12-16.
[6] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[7] 李霞, 陈海鸥, 韩淑芳, 陆凤莹, 周玉恒, 单杨, 李静. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业, 2021, 47(2): 45-50.
[8] 王东旭, 尹成男, 叶华, 郭元新. 热灭活鼠李糖乳杆菌HN001对DSS诱导的小鼠结肠炎保护作用[J]. 食品与发酵工业, 2021, 47(13): 30-35.
[9] 张林奇, 王晓蕊, 史畅, 彭禹熙, 杜丽平. 益生菌粉中活菌稳定性及其耐受模拟胃肠液的研究[J]. 食品与发酵工业, 2021, 47(13): 36-42.
[10] 孙盛, 陈作国, 俞赟霞, 曲冬梅, 余腾斐, 李言郡, 陈苏. 产胞外多糖植物乳杆菌WHH589的免疫活性及其在发酵乳中的应用[J]. 食品与发酵工业, 2021, 47(13): 43-50.
[11] 王博, 张维清, 杨国红, 于景华. 我国牦牛乳制品开发现状与前景[J]. 食品与发酵工业, 2021, 47(13): 318-324.
[12] 徐倩, 付瑞燕. 分光光度计比浊法测定乳酸杆菌胁迫存活率[J]. 食品与发酵工业, 2021, 47(12): 257-261.
[13] 石阳阳, 江远智, 李瑞, 严利文, 赵建新, 陈卫, 张灏, 杭锋. 协同发酵生产植物乳杆菌发酵乳及其特性研究[J]. 食品与发酵工业, 2021, 47(11): 8-13.
[14] 陈大卫, 梁娇娇, 程月, 瞿恒贤, 陈春萌, 任晨瑜, 张臣臣, 关成冉, 马文龙, 陈霞, 李启明, 顾瑞霞. 鼠李糖乳杆菌hsryfm 1301发酵乳在非酒精性脂肪肝细胞模型中对人肝细胞L-02的益生作用[J]. 食品与发酵工业, 2021, 47(11): 61-67.
[15] 马静, 孙璐. 蛋白质组学技术在牦牛乳研究中的应用[J]. 食品与发酵工业, 2021, 47(10): 285-290.
[1] MA Zhenfeng, XU Meijuan, YANG Taowei, ZHANG Xian, SHAO Minglong, NAKANISHI Hideki, RAO Zhiming. Recombinant Corynebacterium glutamicum produced 2-pyrrolidone from glucose[J]. Food and Fermentation Industries, 2020, 46(11): 1 -8 .
[2] SHEN Yang, LYU Xueqin, LIN Lu, LI Jianghua, DU Guocheng, LIU Long. Semi-rational design of sucrose phosphorylase and optimization of conditionsfor α-arbutin production[J]. Food and Fermentation Industries, 2020, 46(13): 1 -9 .
[3] LIANG Peng, ZHANG Huadan, LIN Xianming. Teaching reform and practice of "Course Ideological and Political" in Food Technology[J]. Food and Fermentation Industries, 2020, 46(16): 290 -295 .
[4] WANG Junqi, HUANG Weihong, LI Shuangtong, YUAN Jianjun, CHEN Hongbin, MA Yinglun, ZHANG Qiufang. Dynamic changes of bacterial and fungal diversities in Yongchun aged vinegar during production and storage[J]. Food and Fermentation Industries, 2021, 47(2): 38 -44 .
[5] LI Dandan, XIE Shengli, MA Liang, HOU Yong, FU Yu, ZHANG Yuhao. The functional analysis of water-soluble silkworm pupa protein[J]. Food and Fermentation Industries, 2021, 47(4): 7 -14 .
[6] WANG Qiaoli, KONG Zixuan, TAN Qiangfei, YUN Jianmin, ZHANG Wenwei, ZHAO Fengyun. Effects of strain degradation on the activities of related enzymes in tissue separation and subculture of Volvariella volvacea[J]. Food and Fermentation Industries, 2021, 47(8): 1 -5 .
[7] CHEN Dunwu, LIU Cuicui, CHEN Xiong, DAI Jun, WANG Zhi, YAO Juan, LI Pei, LI Xin. Physiological responses of different food yeasts to glucose feeding strength and heating stress[J]. Food and Fermentation Industries, 2021, 47(8): 21 -26 .
[8] ZHU Juncheng, FENG Xin, LI Lusi, MA Liang, DAI Hongjie, FU Yu, HUANG Shaolin, ZHANG Yuhao. The effect of different drying methods on properties of gelatin[J]. Food and Fermentation Industries, 2021, 47(8): 34 -39 .
[9] ZHENG Ouyang, SUN Qinxiu, LIU Shucheng, PAN Yanmo. The effect of spice extracts on the quality and biogenic amines of dry sausage[J]. Food and Fermentation Industries, 2021, 47(8): 90 -95 .
[10] GUO Jia, LI Yunfei, LI Shijia, GUAN Hongxia, CHEN Xiaoguang. Anti-aging activity of physalis calyx and its mechanism[J]. Food and Fermentation Industries, 2021, 47(8): 140 -144 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn