Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (16): 66-71    DOI: 10.13995/j.cnki.11-1802/ts.027000
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于高通量扩增子测序技术解析中高温大曲微生物来源
周天慈1, 何宏魁2, 周庆伍2, 曹润洁2, 马叶胜2, 杜海1*, 徐岩1*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(安徽古井贡酒股份有限公司,安徽瑞思威尔科技有限公司,安徽 亳州,236800)
Exploring the source of microbiota in medium-high temperature Daqu based on high-throughput amplicon sequencing
ZHOU Tianci1, HE Hongkui2, ZHOU Qingwu2, CAO Runjie2, MA Yesheng2, DU Hai1*, XU Yan1*
1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
2(Anhui RiseWellTechnology Co.Ltd., Anhui GujingGongjiu Co.Ltd., Bozhou 236800, China)
下载:  HTML  PDF (4015KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于高通量测序技术分析中高温大曲及其制作环境的微生物群落结构,利用微生物溯源追踪技术对发酵开始时大曲中的微生物来源进行分析。研究结果表明,从曲室外到曲室内环境样品中的微生物逐渐被选择、富集。从大曲发酵开始到结束,细菌群落的多样性增加,而真菌群落的多样性降低。发酵开始时大曲中细菌以魏斯氏菌属(Weissella)为主,发酵结束大曲中细菌以乳杆菌属(Lactobacillus)为主;在发酵开始和结束时大曲中的真菌以曲霉属(Aspergillus)和根霉属(Rhizopus)为主。发酵开始的大曲中细菌89.3%来自于原料,5.6%来自于室内草席;大曲中53.7%真菌来自于室外地面,23%真菌来自于室内屋顶。该研究解析了中高温大曲微生物的来源,为优化制曲工艺提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周天慈
何宏魁
周庆伍
曹润洁
马叶胜
杜海
徐岩
关键词:  中高温大曲  微生物溯源  高通量测序  环境微生物  固态发酵    
Abstract: High throughput sequencing was applied to analyze the microbial community structure of Daqu and its production environment. Microbial source tracking was further applied to analyze the origins of microbiota in new Daqu. The results showed that microorganisms in environmental samples from outdoor to indoor were gradually selected and enriched. From new Daqu to mature Daqu, the diversity of bacterial communities increased, while the diversity of fungal communities decreased. The main bacteria in the new Daqu were Weissella, while the bacteria in the mature Daqu were mainly Lactobacillus. Aspergillus and Rhizopus were the predominant fungi in both the new Daqu and the mature Daqu. Raw materials (89.3%) were the main contributor of bacterial in new Daqu, followed by straw mats (5.6%). Outdoor ground (55.18%) was the main contributor for fungi in new Daqu, followed by indoor roof (23%). This study analyzed the source of the medium-high temperature Daqu microbiota and provided a theoretical basis for optimizing the Daqu making process.
Key words:  medium-high temperature Daqu    microbial source tracking    high-throughput sequencing    environmental microbiota    solid-state fermentation
收稿日期:  2021-02-05      修回日期:  2021-02-24                发布日期:  2021-09-10      期的出版日期:  2021-08-25
基金资助: 江苏省自然科学基金项目(BK20201341);国家科技攻关计划项目(2018YFC1604100)
作者简介:  硕士研究生(杜海副教授与徐岩教授为共同通讯作者,E-mail:duhai88@126.com;yxu@jiangnan.edu.cn)
引用本文:    
周天慈,何宏魁,周庆伍,等. 基于高通量扩增子测序技术解析中高温大曲微生物来源[J]. 食品与发酵工业, 2021, 47(16): 66-71.
ZHOU Tianci,HE Hongkui,ZHOU Qingwu,et al. Exploring the source of microbiota in medium-high temperature Daqu based on high-throughput amplicon sequencing[J]. Food and Fermentation Industries, 2021, 47(16): 66-71.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027000  或          http://sf1970.cnif.cn/CN/Y2021/V47/I16/66
[1] 独活. 2019年度白酒品牌排行[J].互联网周刊, 2020 (4):60-61.
DU H.2019 Baijiu brand ranking[J].China Internet Week, 2020 (4):60-61.
[2] TAN Y W, ZHONG H P, ZHAO D, et al.Succession rate of microbial community causes flavor difference in strong-aroma Baijiu making process[J].International Journal of Food Microbiology, 2019, 311:108 350.
[3] WANG B W, WU Q, XU Y, et al.Specific volumetric weight-driven shift in microbiota compositions with saccharifying activity change in starter for Chinese Baijiu fermentation[J].Frontiers in Microbiology, 2018, 9:2 349.
[4] 彭璐, 明红梅, 董异, 等.不同曲层中高温大曲质量差异性研究[J].食品与发酵工业, 2020, 46(3):58-64.
PENG L, MING H M, DONG Y, et al.Study on the quality of medium-high temperature Daqu in different curved layers[J].Food and Fermentation Industries, 2020, 46(3):58-64.
[5] HUANG Y H, YI Z L, JIN Y L, et al.Metatranscriptomics reveals the functions and enzyme profiles of the microbial community in Chinese nong-flavor liquor starter[J].Frontiers in Microbiology, 2017, 8:1 747.
[6] LIU J J, CHEN J Y, FAN Y, et al.Biochemical characterisation and dominance of different hydrolases in different types of Daqu-a Chinese industrial fermentation starter[J].Journal of the Science of Food and Agriculture, 2018, 98(1):113-121.
[7] 杨旭, 马歌丽, 王光路, 等.高通量测序解析白酒中高温大曲细菌和真菌群落结构[J].中国酿造, 2020, 39(6):119-123.
YANG X, MA G L, WANG G L, et al.Analysis of bacterial and fungal community structure in medium-high temperature Daqu of Baijiu by high-throughput sequencing[J].China Brewing, 2020, 39(6):119-123.
[8] 李静心, 王艳丽, 何宏魁, 等.基于高通量测序技术解析高温大曲和中高温大曲的真菌群落结构[J].食品与发酵工业, 2018, 44(12):52-59.
LI J X, WANG Y L, HE H K, et al.High-throughput sequencing revealed fungal community structures at high temperature Daqu and medium temperature Daqu[J].Food and Fermentation Industries, 2018, 44(12):52-59.
[9] DU H, WANG X S, ZHANG Y H, et al.Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter[J].International Journal of Food Microbiology, 2019, 297:32-40.
[10] SONG Z W, DU H, ZHANG Y, et al.Unraveling core functional microbiota in traditional solid-state fermentation by high-throughput amplicons and metatranscriptomics sequencing[J].Frontiers in Microbiology, 2017, 8:1 294.
[11] HERTZ M, JENSEN I R, JENSEN L Ø, et al.The fungal community changes over time in developing wheat heads[J].International Journal of Food Microbiology, 2016, 222:30-39.
[12] KNIGHTS D, KUCZYNSKI J, CHARLSON E S, et al.Bayesian community-wide culture-independent microbial source tracking[J].Nature Methods, 2011, 8(9):761-763.
[13] JIN G Y, ZHU Y, XU Y.Mystery behind Chinese liquor fermentation[J].Trends in Food Science & Technology, 2017, 63:18-28.
[14] LI X R, MA E B, YAN L Z, et al.Bacterial and fungal diversity in the starter production process of Fen liquor, a traditional Chinese liquor[J].Journal of Microbiology, 2013, 51(4):430-438.
[15] ZHANG H M, HE H K, YU X J, et al.Employment of near full-length ribosome gene TA-cloning and Primer-Blast to detect multiple species in a natural complex microbial community using species-specific primers designed with their genome sequences[J].Molecular Biotechnology, 2016, 58(11):729-737.
[16] XIAO C, LU Z M., ZHANG X J, et al.Bio-heat is a key environmental driver shaping the microbial community of medium-temperature Daqu[J].Applied and Environmental Microbiology, 2017, 83(23).DOI:10.1128/AEM.01550-17.
[17] YAN S B, CHEN X S, GUANG J Q.Bacterial and fungal diversity in the traditional Chinese strong flavour liquor Daqu[J].Journal of the Institute of Brewing, 2019, 125(4):443-452.
[18] GAO W J, FAN W L, XU Y.Characterization of the key odorants in light aroma type Chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies[J].Journal of Agricultural and Food Chemistry, 2014, 62(25):5 796-5 804.
[19] WANG X S, DU H, ZHANG Y, et al.Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation[J].Applied and Environmental Microbiology, 2018, 84(4).DOI:10.1128/AEM.02369-17.
[20] LI P, LIN W F, LIU X, et al.Effect of bioaugmented inoculation on microbiota dynamics during solid-state fermentation of Daqu starter using autochthonous of Bacillus, Pediococcus, Wickerhamomyces and Saccharomycopsis[J].Food Microbiology, 2017, 61:83-92.
[21] LI H, HUANG J, LIU X P, et al.Characterization of interphase microbial community in Luzhou-flavored liquor manufacturing pits of various ages by polyphasic detection methods[J].Journal of Microbiology and Biotechnology, 2017, 27(1):130-140.
[22] PATEL J K, ARCHANA G.Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat[J].Plant and Soil, 2017, 417(1-2):99-116.
[1] 徐霞, 倪逸凡, 周绪霞, 丁玉庭. 猪皮毛霉固态发酵过程中营养及挥发性风味的动态变化[J]. 食品与发酵工业, 2021, 47(6): 49-55.
[2] 刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
[3] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[4] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[5] 张梅娟, 钱朋智, 董力青, 韩杨, 汲广习, 冯镇. 一株哈茨木霉的鉴定及固态发酵产木聚糖酶条件研究[J]. 食品与发酵工业, 2021, 47(3): 43-48.
[6] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[7] 赵志军, 张艳珠, 刘延波, 周平平, 葛少华, 孙西玉. 高产酯化酶细菌的复合诱变选育及固态发酵条件优化[J]. 食品与发酵工业, 2021, 47(2): 174-181.
[8] 吴力亚, 吴天祥, 汪玲. 天麻参与灰树花固态发酵对基质主要活性成分的影响[J]. 食品与发酵工业, 2021, 47(16): 40-45.
[9] 刘晓宁, 钱高飞, 傅曼琼, 付杰, 戴海民, 张薄博. 红曲菌9901利用柚子囊固态发酵产Monacolin K[J]. 食品与发酵工业, 2021, 47(15): 142-149.
[10] 杨放晴, 何丽英, 杨丹, 申梦园, 王福, 刘友平, 胡媛. 不同陈化时间广陈皮表面细菌和真菌多样性变化分析[J]. 食品与发酵工业, 2021, 47(15): 267-275.
[11] 张二豪, 赵润东, 禄亚洲, 尹秀, 蔡皓, 罗章. 藏东南产区葡萄和根际土壤细菌群落多样性[J]. 食品与发酵工业, 2021, 47(14): 100-106.
[12] 赵改名, 李珊珊, 崔文明, 祝超智, 王晗, 银峰, 焦阳阳, 李佳麒, 韩明山. 不同来源腊肉中细菌菌群结构与风味相关性分析[J]. 食品与发酵工业, 2021, 47(13): 246-253.
[13] 赵昱, 李静媛, 解万翠, 赵宏伟. 四个不同产区酿酒葡萄果皮微生物多样性的研究[J]. 食品与发酵工业, 2021, 47(11): 53-60.
[14] 吴震, 吴煜樟, 陈莉, 汪沙, 李荣源, 卢红梅. 桑葚果渣固态发酵醋有机酸及风味特征分析[J]. 食品与发酵工业, 2021, 47(10): 103-108.
[15] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn