Please wait a minute...
 
 
Food and Fermentation Industries    2022, Vol. 48 Issue (11) : 324-331     DOI: 10.13995/j.cnki.11-1802/ts.029171
|
Research advances in quick-freezing preservation technologies of aquatic products
JIA Shiliang1,2,3, DING Jiaojiao1,2,3, YANG Yue1,2,3, ZHOU Xuxia1,2,3,4, SHI Shengqi5, CHEN Yunyun5, DING Yuting1,2,3,4*
1(College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China)
2(Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China)
3(National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China)
4(Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China)
5(China Aquatic Products Zhoushan Marine Fisheries Corporation., Zhoushan 316000, China)
Download: PDF(1695 KB)   HTML 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  Quick freezing technology enables aquatic products to pass through the maximum ice crystal generation zone quickly, and facilitates the formation and even distribution of small ice crystals in food tissue. It could improve the quality of food and has been widely used in aquatic products transportation and storage. Quick freezing technologies including liquid nitrogen freezing, liquid carbon dioxide freezing, physical field-assisted freezing methods (high pressure freezing, electromagnetic wave-assisted freezing, ultrasound-assisted freezing), impingement freezing, immersion freezing, and other freezing technologies based on antifreeze proteins and ice nucleation proteins. The principal and mechanism are introduced, and the applications of these quick-freezing technologies in aquatic products are summarized. The future development direction of quick-freezing technology is also prospected.
Keywords aquatic products      quick-freezing technologies      ice crystal      quality     
Issue Date: 23 June 2022
URL:  
http://sf1970.cnif.cn/EN/10.13995/j.cnki.11-1802/ts.029171     OR     http://sf1970.cnif.cn/EN/Y2022/V48/I11/324
[1] 农业部渔业局. 中国渔业年鉴[M].北京:中国农业出版社, 2002.Ministry of Agriculture and Rural Affairs of the People's Republic of China.China Fishery Statistical Yearbook[M].Beijing:China Agriculture Press, 2002.
[2] 孙国皓. 食品冷冻技术研究现状及进展[J].食品安全导刊, 2021(12):177-179.SUN G H.Research status and progress of food freezing technology[J].China Food Safety Magazine, 2021(12):177-179.
[3] CHENG L N, SUN D W, ZHU Z W, et al.Emerging techniques for assisting and accelerating food freezing processes:A review of recent research progresses[J].Critical Reviews in Food Science and Nutrition, 2017, 57(4):769-781.
[4] 唐君言, 邵双全, 徐洪波, 等.食品速冻方法与模拟技术研究进展[J].制冷学报, 2018, 39(6):1-9.TANG J Y, SHAO S Q, XU H B, et al.Progress in research on the food quick-freezing method and simulation technology[J].Journal of Refrigeration, 2018, 39(6):1-9.
[5] 中国国家质量监督检验检疫总局, 1101速冻食品生产许可证审查细则(2006 版)[S].北京, 2006.Administration of Quality Supervision, Inspection and Quarantine, 1101Review of Quick-frozen Food Production License Rules (Version 2006)[S].Beijing, 2006.
[6] 程丽娜, 余元善, 吴炜俊, 等.气/液态氮在食品加工技术中的应用机制和研究进展[J].食品与发酵工业, 2020, 46(13):299-304.CHENG L N, YU Y S, WU W J, et al.Application mechanism and research progress of gaseous and liquid nitrogen in food processing[J].Food and Fermentation Industries, 2020, 46(13):299-304.
[7] HU Y M, ZHANG N H, WANG H, et al.Effects of pre-freezing methods and storage temperatures on the qualities of crucian carp (Carassius auratus var.Pengze) during frozen storage[J].Journal of Food Processing and Preservation, 2021, 45(2):e15139.
[8] 张洪杰, 于刚, 杨少玲, 等.船上液氮速冻技术对金枪鱼保鲜质量的影响[J].广东农业科学, 2014, 41(4):122-125;135.ZHANG H J, YU G, YANG S L, et al.Effect on the tuna quality with liquid nitrogen quickfreezing technology on fishing vessels[J].Guangdong Agricultural Sciences, 2014, 41(4):122-125;135.
[9] 于丽霞. 冻结方式和冻藏条件对罗氏沼虾品质的影响研究[D].无锡:江南大学, 2018.YU L X.Study on the effects of freezing methods and frozen conditions on the quality of Macrobrachium rosenbergii[D].Wuxi:Jiangnan University, 2018.
[10] 张登科, 陈姣, 吴林洁, 等.液氮冷冻处理对养殖大黄鱼保鲜品质及菌群结构的影响[J].食品工业科技, 2018, 39(14):252-257;263.ZHANG D K, CHEN J, WU L J, et al.Effect of liquid nitrogen frozen treatment on fresh-keeping quality and colony structure of cultured large yellow croaker[J].Science and Technology of Food Industry, 2018, 39(14):252-257;263.
[11] 郭丽萍, 张丽敏, 母昌考, 等.液氮冻结软壳青蟹在冻藏期间的营养物质变化[J].核农学报, 2021, 35(5):1 136-1 146.GUO L P, ZHANG L M, MU C K, et al.Effect of liquid nitrogen freezing on changes in nutrients of soft-shell crabs of Scylla paramamosain during its frozen storage[J].Journal of Nuclear Agricultural Sciences, 2021, 35(5):1 136-1 146.
[12] 雷萌萌, 骆震, 艾志录, 等.液氮间歇式冻结对鱼丸品质影响的研究[J].食品科技, 2020, 45(5):112-117.LEI M M, LUO Z, AI Z L, et al.Study on the effect of liquid nitrogen interval freezing process on fish balls quality[J].Food Science and Technology, 2020, 45(5):112-117.
[13] 鲁珺. 液氮深冷速冻对带鱼和银鲳品质及其肌肉组织的影响[D].杭州:浙江大学, 2015.LU J.Effect of cryogenic freezing by liquid nitrogen on the quality and microstructure of hairtail and silver pomfret[D].Hangzhou:Zhejiang University, 2015.
[14] LUO X Y, LI J L, YAN W L, et al.Physicochemical changes of MTGase cross-linked surimi gels subjected to liquid nitrogen spray freezing[J].International Journal of Biological Macromolecules, 2020, 160:642-651.
[15] 鲁珺, 余海霞, 杨水兵, 等.液氮深冷速冻对三疣梭子蟹品质和微观组织结构的影响[J].中国食品学报, 2016, 16(9):87-94.LU J, YU H X, YANG S B, et al.Effect of cryogenic freezing by liquid nitrogen on the quality and microstructure of Portunus trituberculatus[J].Journal of Chinese Institute of Food Science and Technology, 2016, 16(9):87-94.
[16] RODEZNO L A E, SUNDARARAJAN S, SOLVAL K M, et al.Cryogenic and air blast freezing techniques and their effect on the quality of catfish fillets[J].LWT-Food Science and Technology, 2013, 54(2):377-382.
[17] 张瑞宇. 二氧化碳在现代食品领域中的技术应用与进展[J].低温与特气, 2003, 21(3):4-8.ZHANG R Y.Technological applications and progresses of carbon dioxide in modern food technology field[J].Low Temperature and Specialty Gases, 2003, 21(3):4-8.
[18] NIU B L, ZHANG Y F.Experimental study of the refrigeration cycle performance for the R744/R290 mixtures[J].International Journal of Refrigeration, 2007, 30(1):37-42.
[19] LI B, SUN D W.Novel methods for rapid freezing and thawing of foods-A review[J].Journal of Food Engineering, 2002, 54(3):175-182.
[20] CHEVALIER D, BAIL A L, GHOUL M.Freezing and ice crystals formed in a cylindrical food model:Part II.Comparison between freezing at atmospheric pressure and pressure-shift freezing[J].Journal of Food Engineering, 2000, 46(4):287-293.
[21] THAKUR N, RAIGOND P, SINGH Y, et al.Recent updates on bioaccessibility of phytonutrients[J].Trends in Food Science & Technology, 2020, 97:366-380.
[22] CHENG L N, SUN D W, ZHU Z W, et al.Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis)[J].Food Chemistry, 2017, 229:252-259.
[23] SU G M, RAMASWAMY H S, ZHU S M, et al.Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method[J].Innovative Food Science & Emerging Technologies, 2014, 26:40-50.
[24] 崔燕, 宣晓婷, 林旭东, 等.超高压协同冷冻辅助脱壳对南美白对虾肌原纤维蛋白理化性质的影响[J].现代食品科技, 2019, 35(2):32-39.CUI Y, XUAN X T, LIN X D, et al.Effect of high hydrostatic pressure combined with freezing treatment on shucking and physicochemical properties of myofibrillar protein of Penaeus vannamei[J].Modern Food Science and Technology, 2019, 35(2):32-39.
[25] CARTAGENA L, PUÉRTOLAS E, MARAÑÓN I M.Application of high pressure processing after freezing (before frozen storage) or before thawing in frozen albacore tuna (Thunnus alalunga)[J].Food and Bioprocess Technology, 2020, 13(10):1 791-1 800.
[26] WU X F, ZHANG M, ADHIKARI B, et al.Recent developments in novel freezing and thawing technologies applied to foods[J].Critical Reviews in Food Science and Nutrition, 2017, 57(17):3 620-3 631.
[27] SALZMANN C G.Advances in the experimental exploration of water's phase diagram[J].The Journal of Chemical Physics, 2019, 150(6):060901.
[28] 蔡迎红, 唐君言, 司春强, 等.微波/射频辅助食品冻结的研究进展[J].冷藏技术, 2018, 41(4):7-12.CAI Y H, TANG J Y, SI C Q, et al.Research progress of microwave/radiofrequency assisted food freezing[J].Journal of Refrigeration Technology, 2018, 41(4):7-12.
[29] XANTHAKIS E, HUEN J, ELIASSON L, et al.Evaluation of microwave assisted freezing impact on meat and fish matrices[C].Beijing:Chinese Association of Refrigeration, 2018:176-181.
[30] XANTHAKIS E, LE-BAIL A, RAMASWAMY H.Development of an innovative microwave assisted food freezing process[J].Innovative Food Science & Emerging Technologies, 2014, 26:176-181.
[31] SADOT M, CURET S, ROUAUD O, et al.Numerical modelling of an innovative microwave assisted freezing process[J].International Journal of Refrigeration, 2017, 80:66-76.
[32] ANESE M, MANZOCCO L, PANOZZO A, et al.Effect of radiofrequency assisted freezing on meat microstructure and quality[J].Food Research International, 2012, 46(1):50-54.
[33] MOADAB N H, HAMDAMI N, DALVI-ISFAHAN M, et al.Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss) fillet[J].Innovative Food Science & Emerging Technologies, 2018, 47:81-87.
[34] KISS A A, GEERTMAN R, WIERSCHEM M, et al.Ultrasound-assisted emerging technologies for chemical processes[J].Journal of Chemical Technology & Biotechnology, 2018, 93(5):1 219-1 227.
[35] SHI Z J, ZHONG S Y, YAN W J, et al.The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella)[J].LWT, 2019, 111:301-308.
[36] SUN Q X, ZHAO X X, ZHANG C, et al.Ultrasound-assisted immersion freezing accelerates the freezing process and improves the quality of common carp (Cyprinus carpio) at different power levels[J].LWT, 2019, 108:106-112.
[37] SUN Q X, SUN F D, XIA X F, et al.The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage[J].Ultrasonics Sonochemistry, 2019, 51:281-291.
[38] JAMES C, PURNELL G, JAMES S J.A review of novel and innovative food freezing technologies[J].Food and Bioprocess Technology, 2015, 8(8):1 616-1 634.
[39] SARKAR A, SINGH R P.Modeling flow and heat transfer during freezing of foods in forced airstreams[J].Journal of Food Science, 2004, 69(9):E488-E496.
[40] 舒志涛. 冲击式速冻装置中虾仁冻结过程的数值模拟与实验研究[D].上海:上海海洋大学, 2020.SHU Z T.Numerical simulation and experimental study on freezing process of shrimp in impingement quick freezer[D].Shanghai:Shanghai Ocean University, 2020.
[41] 李晓燕, 陈杰, 樊博玮, 等.浸渍式冷冻技术的研究进展[J].食品与发酵工业, 2020, 46(15):307-312.LI X Y, CHEN J, FAN B W, et al.Research progress on immersion chilling and freezing[J].Food and Fermentation Industries, 2020, 46(15):307-312.
[42] 杨贤庆, 侯彩玲, 刁石强, 等.浸渍式快速冻结技术的研究现状及发展前景[J].食品工业科技, 2012, 33(12):434-437.YANG X Q, HOU C L, DIAO S Q, et al.Research status and prospects of immersion chilling and freezing[J].Science and Technology of Food Industry, 2012, 33(12):434-437.
[43] 王雪松, 谢晶.不同冻结方式对竹荚鱼品质的影响[J].食品与发酵工业, 2020, 46(11):184-190.WANG X S, XIE J.Effects of different freezing methods on the quality of horse mackerel[J].Food and Fermentation Industries, 2020, 46(11):184-190.
[44] 刘会省, 迟海, 杨宪时, 等.冻结方式对南极磷虾品质的影响[J].现代食品科技, 2013, 29(7):1 601-1 605.LIU H X, CHI H, YANG X S, et al.Effects of freezing methods on the quality of Antarctic krill (Euphausia superba)[J].Modern Food Science and Technology, 2013, 29(7):1 601-1 605.
[45] YANG F, JING D T, DIAO Y D, et al.Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish (Takifugu obscurus) fillets[J].LWT, 2020, 118:108762.
[46] 刘书来, 张振宇, 唐文燕, 等.不冻液冻结乌鳢块冻藏过程中品质变化[J].食品科学, 2019, 40(1):256-262.LIU S L, ZHANG Z Y, TANG W Y, et al.Effect of immersion freezing on quality changes of snakehead blocks during frozen storage[J].Food Science, 2019, 40(1):256-262.
[47] 马晓斌, 林婉玲, 杨贤庆, 等.浸渍式快速冷冻液的优化及冻结技术对脆肉鲩品质的影响[J].食品工业科技, 2014, 35(18):338-341;346.MA X B, LIN W L, YANG X Q, et al.Optimization of immersion solution for quick freezing and the effect of freezing technology on the quality characteristics of crisp grass carp[J].Science and Technology of Food Industry, 2014, 35(18):338-341;346.
[48] 于晶, 扈莹莹, 温荣欣, 等.植物源抗冻蛋白作用机制及其在食品中的应用[J].食品科学, 2019, 40(23):305-312.YU J, HU Y Y, WEN R X, et al.A review of the mechanism of action of plant antifreeze proteins and their application in food[J].Food Science, 2019, 40(23):305-312.
[49] DAVIES P L.Ice-binding proteins:A remarkable diversity of structures for stopping and starting ice growth[J].Trends in Biochemical Sciences, 2014, 39(11):548-555.
[50] 年琳玉. 鲱鱼抗冻蛋白对真鲷品质特性的影响及抗冻机制研究[D].锦州:渤海大学, 2019.NIAN L Y.Study on the antifreeze mechanism and effect on quality characteristics of red sea bream(Pagrosomus major) by herring antifreeze protein[D].Jinzhou:Bohai University, 2019.
[51] LIN J, HONG H, ZHANG L T, et al.Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi[J].Food Chemistry, 2019, 298:124868.
[1] WANG Huihui, WANG Yuxiang, ZHANG Ying, CAO Wei, PENG Deju, LIU Qingqing. Quality and antioxidant activity of goat milk yogurt with Camellia sinensis bee pollen addition during fermentation and refrigeration[J]. Food and Fermentation Industries, 2022, 48(9): 97-104.
[2] ZHANG Ting, LIU Xiao, XIONG Yuanyuan, WANG Xiaoping, HUANG Fan, WANG Yun, LI Chunhua, TANG Xiaobo, GUO Chengyi. Correlation between main quality components and teasoup color of Sichuan dark tea during post-fermentation[J]. Food and Fermentation Industries, 2022, 48(9): 154-162.
[3] ZHANG Jun, ZHANG Sanshan, YU Mengling, YE Dan, LEI Ji. Preparation and quality improvement of germinated sorghum gluten-free cake[J]. Food and Fermentation Industries, 2022, 48(9): 186-194.
[4] YANG Na, ZHOU Yuyi, HUANG Wenzhe, WANG Ganyi, ZHANG Jingping, BAI Ying, WEI Jian, ZHOU Sijian, XU Xueming. Effects of static magnetic field-assisted preservation on the postharvest quality of Volvariella volvacea[J]. Food and Fermentation Industries, 2022, 48(9): 195-200.
[5] WANG Feng, ZHAO Qifeng, ZHANG Xiaoping, YANG Qingzhen. Effect of chitosan-nano-ZnO-melatonin composite coating on cucumber chilling injury and mechanism[J]. Food and Fermentation Industries, 2022, 48(9): 201-207.
[6] XU Chao, ZHAO Yaqi, WANG Qing, ZUO Jinhua, YUAN Shuzhi, LIU Jie, YAN Ruihe, FENG Bihong. Shelf quality changes of fresh-cut potatoes during storage[J]. Food and Fermentation Industries, 2022, 48(9): 208-215.
[7] WANG Weizhe, WANG Bini, ZHANG Fuxin, LIU Yufang, JIA Rong, HE Chao, LIU Yingying. Research status and development tendency of fresh cheese at home and abroad[J]. Food and Fermentation Industries, 2022, 48(9): 303-310.
[8] BULIGEN·Jialengbieke, MA Aixia, REN Jianye, FAN Lijun, HU Xiaodong, LI Xuewen, WANG Wei. Effect of jujube polysaccharide coating combined with near-freezing temperature on postharvest storage quality of apricot fruits[J]. Food and Fermentation Industries, 2022, 48(8): 37-42.
[9] XIAO Xiao, WANG Peng, SHAO Tong, MA Xinyi, GU Ruixia, CHEN Xia. Effect of hemp seed meal protein hydrolysate on the quality and antioxidant activity of fermented milk[J]. Food and Fermentation Industries, 2022, 48(8): 43-47.
[10] WANG Yiyue, JIANG Zhumao, QIAN Jing, DAI Junjian, ZHANG Jianhao, YAN Wenjing. Effect of cold plasma on microbial decontamination and storage quality of fish fillets[J]. Food and Fermentation Industries, 2022, 48(8): 166-172.
[11] ZHAO Yuhan, YUAN Lixue, WANG Min, SUN Fei, HAN Cong, CHEN Qingmin, YUE Fengli, CUI Bo, FU Maorun. Effects of different drying methods on quality attributes of celery leaves[J]. Food and Fermentation Industries, 2022, 48(8): 205-211.
[12] DAI Xiaona, LU Yikuan, CAI Yangyang, SUN Hong, LU Ying, XIE Jing. Study on rapid detection of anesthetic tricaine for fish by magnetic immunochromatographic test strips[J]. Food and Fermentation Industries, 2022, 48(8): 245-253.
[13] WANG Yan, LI Demei, SUN Zhiwen, WANG Zongyi, ZHAO Bingyan, WANG Yingying. Phenolics compounds in Cabernet Sauvignon wine and their correlation with astringency[J]. Food and Fermentation Industries, 2022, 48(7): 91-96.
[14] ZHANG Mengmeng, ZHAO Xueni, SHUANG Quan, ZHANG Fengmei. Dynamic analysis of nutritional quality and functional characteristics of mare's milk during fermentation[J]. Food and Fermentation Industries, 2022, 48(7): 103-109.
[15] JIN Tingxiang, WANG Guanghong, PENG Yuhang, MA Yucong, ZHANG Pan, CAO Shuang. Effect of different pretreatment on the quality of carrot heat pump drying[J]. Food and Fermentation Industries, 2022, 48(7): 173-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Food and Fermentation Industries, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd