Please wait a minute...
 
 
Food and Fermentation Industries    2022, Vol. 48 Issue (20) : 78-84     DOI: 10.13995/j.cnki.11-1802/ts.030775
|
Effect of curcumin co-crystal-mediated photodynamic inactivation on Vibrio parahaemolyticus biofilm
GU Weiming, MA Haoran, SUN Jianxia, LIU Dan*
(School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China)
Download: PDF(2610 KB)   HTML 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  Curcumin (CUR) is a natural diketone compound which is widely used as photosensitizer for photodynamic inactivation (PDI) due to its low toxicity and low cost. However, the main limitation of CUR in PDI application is its low solubility and low bioavailability. Co-crystallization is a novel process enables improvement in physicochemical properties of active ingredients by incidence of molecular interactions between active pharmaceutical ingredient and conformer. In this study, curcumin co-crystals were prepared by grinding, natural volatilization and spin evaporation. Among them, the curcumin D-Tyr co-crystals (CDC) prepared by natural volatilization had the highest solubility in ethanol (0.5% volume ratio), which was 8.35 times that of CUR. Compared with CUR, CDC also showed a different crystal structure. The minimum inhibitory concentration (MIC) of CDC was 0.005 0 g/L, while the MIC of CUR was 0.010 g/L. The inhibition rate of CDC-mediated PDI at 0.005 0 g/L on biofilm was 91.80%, while that of CUR at the same concentration was only 57.07%. With the increased solubility of CDC, CDC showed stronger inhibition effects on polysaccharides and proteins in extracellular polymers (EPS), which lead to reduced resistance of Vibrio parahaemolyticus biofilm to CDC-mediated PDI. This study provides a fundamental for further application of photodynamic technology in food safety control.
Keywords curcumin co-crystal      photodynamic inactivation      solubility      Vibrio parahaemolyticus      biofilm     
Issue Date: 18 November 2022
URL:  
http://sf1970.cnif.cn/EN/10.13995/j.cnki.11-1802/ts.030775     OR     http://sf1970.cnif.cn/EN/Y2022/V48/I20/78
[1] 苏泽红, 练高建, 佘美华, 等.脉冲高电压对副溶血性弧菌病原性的影响[J].现代食品科技, 2012, 28(7):743-745;795.SU Z H, LIAN G J, SHE M H, et al.Effect of pulse electric fields on the pathogenic of Vibrio parahaemolyticus[J].Modern Food Science and Technology, 2012, 28(7):743-745;795.
[2] 许愈, 张昭寰, 赵莉, 等.应用酸性电解水联合超声波杀灭副溶血性弧菌[J].上海海洋大学学报, 2020, 29(4):578-584.XU Y, ZHANG Z H, ZHAO L, et al.Combination of acidic electrolyzed water with ultrasonic for killing Vibrio parahaemolyticus[J].Journal of Shanghai Ocean University, 2020, 29(4):578-584.
[3] LIU D, GU W M, WANG L, et al.Photodynamic inactivation and its application in food preservation[J].Critical Reviews in Food Science and Nutrition, 2021:1-15.
[4] CORRÊA T Q, BLANCO K C, GARCIA É B, et al.Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety:A study in meat and fruit[J].Photodiagnosis and Photodynamic Therapy, 2020, 30:101678.
[5] HUANG J M, CHEN B W, LI H H, et al.Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes[J].Food Control, 2020, 108:106886.
[6] HEGER M, VAN GOLEN R F, BROEKGAARDEN M, et al.The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer[J].Pharmacological Reviews, 2013, 66(1):222-307.
[7] DALPIAZ A, PAVAN B, FERRETTI V.Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?[J].Drug Discovery Today, 2017, 22(8):1 134-1 138.
[8] SATHISARAN I, DALVI S V.Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers[J].Crystal Growth & Design, 2017, 17(7):3 974-3 988.
[9] 胡盛福, 宋胜杰, 丁泽杰, 等.药物共晶制备方法研究进展[J].浙江化工, 2018, 49(7):1-3;15.HU S F, SONG S J, DING Z J, et al.A review of the preparation method of pharmaceutical co-crystal[J].Zhejiang Chemical Industry, 2018,49(7):1-3;15.
[10] CAI Y, GUAN J W, WANG W, et al.pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity[J].Journal of Food Science, 2021, 86(8):3 550-3 562.
[11] 田会婷, 朱晔, 郭呈斌, 等.姜黄素-明胶纳米复合物改善药物水溶性和稳定性的研究[J].河南大学学报:医学版, 2019, 38(1):10-15.TIAN H T, ZHU Y, GUO C B, et al.Study on improvement on the solubility and stability of curcumin by nano complexation with gelatin[J].Journal of Henan University (Medical Science), 2019, 38(1):10-15.
[12] 刘红星, 陈福北, 黄初升, 等.紫外分光光度法在姜黄素类化合物提取中的应用[J].广西师范学院学报(自然科学版), 2008, 25(3):68-72.LIU H X, CHEN F B, HUANG C S, et al.UV-visible absorption and its application to extraction curcuminoids[J].Journal of Guangxi Teachers Education University (Natural Science Edition), 2008, 25(3):68-72.
[13] DING L J, WANG H, LIU D, et al.Bacteria capture and inactivation with functionalized multi-walled carbon nanotubes (MWCNTs)[J].Journal of Nanoscience and Nanotechnology, 2020, 20(4):2 055-2 062.
[14] 罗俊. 二氢杨梅素对金黄色葡萄球菌生物被膜的抑制与清除作用研究[D].广州:广东工业大学, 2021.LUO J.Study on the inhibition and removal of dihydromyricetin on Staphylococcus aureus biofilm[D].Guangzhou:Guangdong University of Technology, 2021.
[15] 曹凤娇. 芦荟大黄素抑制金黄色葡萄球菌生物被膜形成的分子机制研究[D].长春:吉林农业大学, 2017.CAO F J.The study on the molecular mechanism of inhibitory effect of Aloc-emodin on Staphylococcus aureus biofilm[D].Changchun:Jilin Agricultural University, 2017.
[16] 陈德, 刘意, 范凯燕, 等.姜黄素微球中药物存在形式与释药行为的关系研究[J].药学学报, 2016, 51(1):140-146.CHEN D, LIU Y, FAN K Y, et al.Relation between drug release and the drug status within curcumin-loaded microsphere[J].Acta Pharmaceutica Sinica, 2016, 51(1):140-146.
[17] 朱艳蕾. 细菌生长曲线测定实验方法的研究[J].微生物学杂志, 2016, 36(5):108-112.ZHU Y L.Experimental method of bacteria growth curve determination[J].Journal of Microbiology, 2016, 36(5):108-112.
[18] 闫昱文, 许涛, 徐大可, 等.D-氨基酸对细菌生物膜分散作用的研究进展[J].中国实用口腔科杂志, 2021, 14(1):115-117.YAN Y W, XU T, XU D K, et al.Research progress in the dispersion effect of D-amino acids on bacterial biofilms[J].Chinese Journal of Practical Stomatology, 2021, 14(1):115-117.
[19] DENG X, TANG S Z, WU Q, et al.Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue[J].Journal of the Science of Food and Agriculture, 2016, 96(5):1 601-1 608.
[20] 雷欢, 谢婷, 魏宇清, 等.4种防腐剂对副溶血弧菌生物膜形成的抑制作用[J].食品科学, 2017, 38(7):6-10.LEI H, XIE T, WEI Y Q, et al.Inhibitory effects of four kinds of food preservatives on biofilm formation by Vibrio parahaemolyticus[J].Food Science, 2017, 38(7):6-10.
[21] LU C R, LIU H, SHANGGUAN W D, et al.Antibiofilm activities of the cinnamon extract against Vibrio parahaemolyticus and Escherichia coli[J].Archives of Microbiology, 2021, 203(1):125-135.
[22] 马广立, 程翼宇.口服药物生物利用度预测研究进展[J].药学学报, 2006, 41(10):917-920.MA G L, CHENG Y Y.Recent advance in predicting oral bioavailability[J].Acta Pharmaceutica Sinica, 2006, 41(10):917-920.
[23] 王鹤龄, 齐华, 李保胜, 等.非标准D-氨基酸对细菌生物膜抑制作用的研究进展[J].吉林大学学报:医学版,2019, 45(2):445-449.WANG H L, QI H, LI B S, et al.Research progress in inhibitory effects of non-canonical D-amino acids on bacterial biofilm[J].Journal of Jilin University (Medicine Edition), 2019, 45(2):445-449.
[24] 吴谦. 副溶血弧菌生物菌膜形成特性及亚甲基蓝光动力灭活作用研究[D].广州:暨南大学, 2016.WU Q.Vibrio parahaemolyticus biofilm formation and inactivation with methylene blue photodynamic technology[D].Guangzhou:Jinan University, 2016.
[25] 董冬丽, 林少玲, 孙崇臻, 等.姜黄素光动力技术对水产食品霍利斯格里蒙特菌和溶藻弧菌的灭活作用[J].中国食品学报, 2022, 22(2):40-48.DONG D L, LIN S L, SUN C Z, et al.Inactivation of curcumin photodynamic technology on Grimontia hollisae and Vibrio alginolyticus in aquatic food[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(2):40-48.
[1] LI Jiaxun, CHEN Kaixin, JIANG Luhang, ZHANG Beining, WANG Youjing, LU Xuan, ZHANG Qiuxiang, ZHAO Jianxin. Effect of commercial beverages on cariogenicity of Streptococcus mutans and Candida albicans[J]. Food and Fermentation Industries, 2022, 48(9): 48-53.
[2] OUYANG Zhu, TAN Anqun, ZHOU Qi, YI Xin, CHENG Yujiao, HUANG Linhua, WANG Hua. Preparation of naringin-chitooligosaccharide complex and the analysis of its antioxidant and antibacterial activities[J]. Food and Fermentation Industries, 2022, 48(9): 123-131.
[3] FAN Kuanxiu, LI Qingming, WANG Feng, LI Wenjia, HE Ruiyang, SU Xiaojun. Effect of extrusion treatment on instant solubility and physicochemical properties of yam flour[J]. Food and Fermentation Industries, 2022, 48(6): 71-76.
[4] HU Yu, ZHANG Hong, ZHANG Huiling, XIE Han, LU Zhenming, CHAI Lijuan, ZHANG Xiaojuan, SHI Jinsong, XU Zhenghong. Physiological metabolism response mediated by Lactobacillus AI-2/LuxS system to environmental stress and its artificial regulation[J]. Food and Fermentation Industries, 2022, 48(19): 1-8.
[5] HAN Xiangpeng, HE Meishan, WU Jinsong, LI Yao, LIU Dan, ZHONG Qingping. The elimination effects of lavender essential oil on Vibrio parahaemolyticus biofilms formed under different temperatures[J]. Food and Fermentation Industries, 2022, 48(14): 68-74.
[6] WU Jia, ZHAO Luan, WEI Na, ZHAO Lei, WANG Liyu, XIA Yangyi. Effect of dynamic high-pressure microfluidization treatment on the solubility and structure of myofibril protein in low-salted system[J]. Food and Fermentation Industries, 2022, 48(11): 129-135.
[7] DENG Jisi, WANG Baihong, SHI Hui. Effect of different concentrations of mulberry leaf polyphenols on the browning of fresh-cut lettuce and inhibition of Pseudomonas spp.[J]. Food and Fermentation Industries, 2022, 48(10): 206-211.
[8] LIU Ting, YIN Qimeng, ZHOU Yanqing, ZHAO Shuaidong, JI Xu, ZHANG Xiaoyan, WANG Haopeng, WANG Liping, FAN Xianyuan. An antagonistic bacterial isolate against Vibrio parahaemolyticus: Screening, identification and antibacterial substance characterizing[J]. Food and Fermentation Industries, 2022, 48(1): 76-83.
[9] PENG Linyuan, LIN Hong, WANG Jingxue. Development and optimization of PMA-qPCR for the quantitative detection of viable but non-culturable Vibrio parahaemolyticus[J]. Food and Fermentation Industries, 2022, 48(1): 247-252.
[10] ZHANG Jian, ZHU Qiuhua, ZHANG Ming, WANG Liwei, DONG Hao, ZENG Xiantong, BAI Wutong, GUO Xiaohua, SHEN Zhaohua, SONG Gang, ZHANG Defu, LI Jianrong. Research progress of Vibrio parahaemolyticus virulence factors and drug resistance mechanism[J]. Food and Fermentation Industries, 2022, 48(1): 301-307.
[11] HU Lili, DONG Qingli, XIA Yang, ZHANG Shuaishuai, YANG Jingyuan, WANG Zhen, LIU Yangtai. Advances on the formation and regulation mechanism of Listeria monocytogenes biofilm[J]. Food and Fermentation Industries, 2021, 47(8): 276-282.
[12] ZHAO Yingying, LI Sanying, TIAN Jinfeng, FU Lei, JIA Fengxian, LI Ke, WU Lili, BAI Yanhong. Effect of ultrasound treatment on the solubility of myofibrillar protein under different salt concentrations[J]. Food and Fermentation Industries, 2021, 47(7): 197-202.
[13] JIANG Xin, WANG Xichang, PAN Fengtao, JI Zhongchun, SHI Wenzheng. Research progress of physical methods on modifying functional properties of fish meat protein[J]. Food and Fermentation Industries, 2021, 47(5): 288-295.
[14] LI Dandan, XIE Shengli, MA Liang, HOU Yong, FU Yu, ZHANG Yuhao. The functional analysis of water-soluble silkworm pupa protein[J]. Food and Fermentation Industries, 2021, 47(4): 7-14.
[15] SHANGGUAN Wendan, CHEN Song, HAN Xiangpeng, LIU Dan, LI Yao, ZHONG Qingping. Quorum sensing quenching effect of Lactobacillus rhamnosus MS1 on Vibrio parahaemolyticus[J]. Food and Fermentation Industries, 2021, 47(24): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Food and Fermentation Industries, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd