Please wait a minute...
Food and Fermentation Industries    2022, Vol. 48 Issue (20) : 15-21     DOI: 10.13995/j.cnki.11-1802/ts.032744
Optimization and application of the genetic transformation system based on electroshock strategy for Blakeslea trispora
SHEN Siqiao1, YANG Peilong2, QU Yinbo3, YU Xiaobin1, LUO Wei1*
1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
2(Key Laboratory of Feed Biotechnology, the Ministry of Agriculture of People's Republic of China, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China)
3(State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China)
Download: PDF(3371 KB)   HTML 
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  Electroshock is a rapid and effective transformation method that can be widely used in microbial genetic manipulation. In order to establish an efficient and applicable genetic transformation technique for Blakeslea trispora, this study optimized its protoplast transformation based on the electroshock strategy. The enzymatic digestion time, voltage and electric pulse time, buffer type, nucleic acid concentration and regeneration incubation time for the preparation of protoplasts were first optimized as single factors. Then orthogonal design tests showed that the highest transformation efficiency of 35.1 CFU/μg was achieved at a voltage of 0.4 kV and an electrical pulse time of 2 ms, followed by regeneration incubation for 3 h. Subsequently, taking the expression vector of recombinant gene btwc-1c as an example, it was electrotransformed with a transformation efficiency of approximately 30 CFU/μg. When compared with the wild-type bacteria, the expression level of btwc-1c and the synthesis level of β-carotene in the transformed bacteria by fluorescence PCR and phenotypic analyses increased by 2.5-fold and 2.1-fold, respectively. This indicated that the electrotransformation method established in this study could achieve efficient uptake of exogenous vector by the recipient bacteria and lay a good foundation for the study of the functions of key regulatory genes in B. trispora.
Keywords Blakeslea trispora      electrotransformation      protoplast      transformation efficiency     
Issue Date: 18 November 2022
URL:     OR
[1] PAPAIOANNOU E H, LIAKOPOULOU K M.Substrate contribution on carotenoids production in Blakeslea trispora cultivations[J].Food Bioprod Process, 2010, 88(C2-3):305-311.
[2] LUO W, GONG Z Y, LI N, et al.A negative regulator of carotenogenesis in Blakeslea trispora[J].Applied and Environmental Microbiology,2020, 86(6):e02462-e02419.
[3] LUO W, XUE C, ZHAO Y, et al.Blakeslea trispora photoreceptors:Identification and functional analysis[J].Applied and Environmental Microbiology, 2020, 86(8):e02962-e02919.
[4] SILVA F, TORRES MARTíNEZ S, GARRE V.Distinct white collar-1 genes control specific light responses in Mucor circinelloides[J].Molecular Microbiology, 2006, 61(4):1 023-1 037.
[5] 李娜, 曲音波, 杨培龙, 等.三孢布拉霉遗传转化体系的构建及应用[J].食品与生物技术学报, 2021, 40(9):33-39.LI N, QU Y B,YANG P L, et al.Construction and application of genetic transformation system in Blakeslea trispora[J].Journal of Food Science and Biotechnology, 2021,40(9):33-39.
[6] 巩尊洋, 罗玮, 杜瑶, 等.crgA调控三孢布拉霉合成类胡萝卜素[J].微生物学报, 2017, 57(10):1 527-1 535.GONG Z Y, LUO W, DU Y et al.Regulation effect of crgA on carotenoid production in Blakeslea trispora[J].Acta Microbiologica Sinica, 2017, 57(10):1 527-1 535.
[7] WANG Y L, PANG J, ZHENG Y M, et al.Genetic manipulation of the bifunctional gene, carRA, to enhance lycopene content in Blakeslea trispora[J].Biochemical Engineering Journal, 2017, 119(15):27-33.
[8] LI D D, TANG Y, LIN J, et al.Methods for genetic transformation of filamentous fungi[J].Microbial Cell Factories, 2017, 16(1):168-181.
[9] HAN G M, SHAO Q, LI C, et al.An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus[J].The Journal of Microbiology, 2018, 56(5):356-364.
[10] 刘建雨, 张美彦, 张丹, 等.电击法转化金针菇菌丝碎片表达报告基因eGFP及GUS的研究[J].食用菌学报, 2018, 25(2):23-28.LIU J Y, ZHANG M Y, ZHANG D, et al.Electroporation of mycelial fragments to express reporter genes eGFP and GUS in Flammulina velutipes[J].Acta Edulis Fungi, 2018, 25(2):23-28.
[11] 沈慧敏, 李超, 高利 等.原生质体法介导真菌遗传转化的研究进展[J].植物保护, 2017, 43(2):25-28;42.SHEN H M, LI C, GAO L, et al.Research progress in transformation of fungi mediated by protoplasts[J].Plant Protection, 2017, 43(2):25-28;42.
[12] KATAYAMA T, NAKAMURA H, ZHANG Y, et al.Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae[J].Applied and Environmental Microbiology, 2019, 85(3):e01896-e01818.
[13] 董雪田. 三孢布拉霉中光照对类胡萝卜素生物合成的影响及其部分调控元件的初步挖掘[D].无锡:江南大学, 2022.DONG X T.The effect of light on carotenoid biosynthesis and the preliminary exploration of some regulatory elements in Blakeslea trispora[D].Wuxi:Jiangnan University, 2022.
[14] YOSHIMI A, MIYAZAWA K, ABE K.Function and biosynthesis of cell wall alpha-1,3-glucan in Fungi[J].J Fungi, 2017, 3(4):E63.
[15] ARANDA M A, LOPEZ M F, LOPEZ L L V.Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan[J].Journal of Basic Microbiol, 2016, 56(10):1 059-1 070.
[16] RUIZ HERRERA J, ORTIZ CASTELLANOS L.Cell wall glucans of fungi.A review[J].The Cell Surface, 2019, 5:100022.
[17] GARCIA -RUBIO R, DE OLIVEIRA H C, RIVERA J, et al.The fungal cell wall:Candida, Cryptococcus, and Aspergillus species[J].Frontiers in Microbiology, 2020, 10(13):2993.
[18] 董雪田, 朱恺丽, 曲音波, 等.一种快速提取三孢布拉霉基因组的方法[J].食品与生物技术学报, 2021, 40(10):63-71.DONG X T, ZHU K L, QU Y B, et al.Rapid method of genome extraction of Blakeslea trispora[J].Journal of Food Science and Biotechnology, 2021, 40(10):63-71.
[19] 李晔. RNA干扰三孢布拉氏霉菌番茄红素环化酶基因的研究[D].北京:北京化工大学, 2009.LI Y.Study on silencing of the carra gene by RNA interfetrnce in filamentous fungus Blakeslea trispora[D].Beijing:Beijing University of Chemical Technology, 2009.
[20] WEAVER J C.Electroporation of biological membranes from multicellular to nano scales[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5):754-768.
[21] PALOMINO M M, ALLIEVI M C, PRADO A M, et al.New method for electroporation of Lactobacillus species grown in high salt[J].Journal of Microbiol Methods, 2010, 83(2):164-167.
[22] 于建宁, 宋小敬, 王公金, 等.乳酸乳球菌电转化方法的优化[J].江苏农业科学, 2013, 41(8):34-36.YU J N, SONG X J, WANG G J, et al.Optimization of electrotransformation method of Lactococcus lactis[J].Jiangsu Agricultural Sciences, 2013, 41(8):34-36.
[23] ZHOU J L, LIU X B, YUAN F W, et al.Biocatalysis of heterogenously-expressed chitosanase for the preparation of desirable chitosan oligosaccharides applied against phytopathogenic fungi[J].ACS Sustainable Chemistry & Engineering, 2020, 8(12):4 781-4 791.
[24] SCHMIDT A D, HEINEKAMP T, MATUSCHEK M, et al.Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR[J].Applied Microbiology and Biotechnology, 2005, 67(4):549-555.
[25] MATSU URA T, BAEK M, KWON J, et al.Efficient gene editing in Neurospora crassa with CRISPR technology[J].Fungal Biology and Biotechnology, 2015, 2(4).DOI:10.1186/S40694-015-0015-1.
[26] POHL C, KIEL J A K W, DRIESSEN A J M, et al.CRISPR/Cas9 Based genome editing of Penicillium chrysogenum[J].ACS Synthetic Biology, 2016, 5(7):754-764.
[27] ZHENG Y M, LIN F L, GAO H, et al.Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology[J].Scientific Reports, 2017, 7(1):9250.
[1] LI Cen, LIU Song, DU Guocheng. Optimization of Aspergillus niger transformation system and efficient screening of recombinant strains[J]. Food and Fermentation Industries, 2022, 48(3): 1-8.
[2] LUO Xue, SHI Xu, SHI Haisu, DU Anan, CHEN Qian, WU Rina, WU Junrui. Electroporation condition for genetic transformation of Streptococcus thermophilus[J]. Food and Fermentation Industries, 2019, 45(6): 65-69.
[3] DU Lin-na et al. Optimization of protoplast preparation conditions of Paceilomyces tenuipes RCEF4339[J]. Food and Fermentation Industries, 2018, 44(7): 69-75.
[4] WANG Wei-jie, LI Hong-mei, XUE Fang, GAO Lu-jiao, HUANG Yan-qing. Construction and characterization of Lactobacillus brevis fusion strains producing thymidine phosphorylase[J]. Food and Fermentation Industries, 2013, 39(08): 20-25.
[5] WANG Yuan-shan, NIU Xin-miao, ZHENG Yu-guo. Protoplast mutagenesis for improving acarbose production of Actinoplanes[J]. Food and Fermentation Industries, 2013, 39(05): 37-43.
[6] Wang Ling, Huang He, Kuang Yu. Mutation Breeding of Yeast of Customize Pineapple Wine[J]. Food and Fermentation Industries, 2012, 38(11): 96-100.
[7] Liu Chun-mei, Li Shu, Dong Chuan-liang, Zhao Fu-lin, Mao Zhong-gui. Genome Shuffling Enhanced ε-poly-L-lysine Production of a Recombinant Streptomyces sp. Feel-1[J]. Food and Fermentation Industries, 2012, 38(08): 36-41.
[8] Wan Cui-xiang, Zhang Zhao-lin, Wang Bao-gui, Wei Hua, Gan Yan-yun. Prepareation and Transformation of Bifidobacteria Protoplast[J]. Food and Fermentation Industries, 2012, 38(06): 61-65.
[9] Liu Xue, Xu Yang, Li Yan-ping, Tu Zhui, Lei Da. Mass Preparation and Regeneration Conditions of Protoplast from Aspergillus oryzae AS 3.951 and RIB40[J]. Food and Fermentation Industries, 2012, 38(04): 57-61.
[10] Li Wen, Wang Tao, Li Tong-xiang. Breeding of Phytase High-producing Aspergillus niger Using Protoplasts by Lithium Chloride Mutagenesis[J]. Food and Fermentation Industries, 2012, 38(02): 69-73.
[11] Dai Xing-huan, Cai Ai-hua, Zhang Hou-rui, Qin Xiang-xiang. The Technology of Genome Shuffling and Its Application in Improvement of Industrial Microbiology[J]. Food and Fermentation Industries, 2011, 37(07): 142-147.
[12] Cui Xiu-yun, Shao Qian-fei. Fermentation of 1,3-propanediol Production by Fusant[J]. Food and Fermentation Industries, 2010, 36(09): 56-59.
Full text



Copyright © Food and Fermentation Industries, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd