Spatial distribution of microbial community during Chinese light-flavor liquor fermentation

  • WANG Xue-shan ,
  • DU Hai ,
  • XU Yan
Expand
  • 1(Key Laboratory of Industrial Biotechnology of Ministry, Education, Center for Brewing Science and Enzyme School of Biotechnology, Jiangnan University,Technology, Wuxi 214122,China)
    2(Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China)

Received date: 2018-03-21

  Online published: 2018-10-30

Abstract

High-throughput sequencing was utilized to analyze the microbial community structure and succession in fermented grains at different sites. Results showed that, during Chinese light-flavor liquor fermentation, the dominant bacterial communities contained Lactobacillus, Weissella, Kroppenstedtia, Pseudomonas, Leuconostoc, Bacillus and Pediococcus, and the dominant fungal communities contained Pichia, Candida, Aspergillus, Saccharomycopsis and Kazachstania. When fermented for 4-8 days, there were obvious differences among the microbial community structure in fermented grains at different sites. Meanwhile, the microbial successional rate at the top layer of fermented grains was lower than those at middle and bottom layer, which led to the lower ethanol production rate at the top layer of fermented grains. Thus, monitoring the microbial community in fermented grains at different sites was helpful for the controllability of Chinese liquor fermentation.

Cite this article

WANG Xue-shan , DU Hai , XU Yan . Spatial distribution of microbial community during Chinese light-flavor liquor fermentation[J]. Food and Fermentation Industries, 2018 , 44(9) : 1 -8 . DOI: 10.13995/j.cnki.11-1802/ts.017334

References

[1] 徐岩. 基于风味导向技术的中国白酒微生物及其代谢调控研究[J]. 酿酒科技, 2015(2): 1-11.
[2] 杜海. 产土味素菌群对白酒酿造的影响机制及监测控制[D].无锡: 江南大学, 2013.
[3] 陈林. 酱香型白酒发酵过程中微生物群落结构分析[D].北京: 北京林业大学, 2012.
[4] 胡峰, 钟方达, 胡建锋.等. 酱香型白酒窖内不同层次酒醅微生物与酒体风格的研究[J]. 酿酒科技, 2014(9): 48-52.
[5] 吴衍庸, 薛堂荣, 陈昭蓉.等. 五粮液老窖厌氧菌群的分布及其作用的研究[J]. 微生物学报, 1991, (4): 299-307.
[6] WANG Chuan-dong, CHEN Qi, WANG Qian, et al. Long-term batch brewing accumulates adaptive microbes, which comprehensively produce more flavorful Chinese liquors[J]. Food Research International, 2014, 62: 894-901.
[7] 韩莎, 雷振河, 李琦.等. 汾酒酿造过程中可培养微生物的群落结构与代谢规律研究[J]. 食品与发酵工业, 2009, 35(1): 9-13.
[8] LI Xiao-ran, MA En-bo, YAN Liang-zhen, et al. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process[J]. International Journal of Food Microbiology, 2011, 146(1): 31-37.
[9] 雷振河. 采用高通量测序技术分析清香型白酒酿造微生物[J]. 食品与发酵工业, 2015, 41(9): 164-167.
[10] WANG Xue-shan, DU Hai, XU Yan. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor[J]. International Journal of Food Microbiology, 2017, 244: 27-35.
[11] WU Qun, CHEN Liang-qiang, XU Yan. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor[J]. International Journal of Food Microbiology, 2013, 166(2): 323-330.
[12] 杜海, 杜小威, 赵景龙.等. 贮存过程中大曲原核微生物多样性及土味素含量变化规律[J]. 食品与发酵工业, 2017, 43(4): 1-6.
[13] SOERGEL D A, DEY N, KNIGHT R, et al. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences[J]. ISME Journal, 2012, 6(7): 1 440-1 444.
[14] HERTZ M, JENSEN I R, JENSEN L ø, et al. The fungal community changes over time in developing wheat heads[J]. International Journal of Food Microbiology, 2016, 222: 30-39.
[15] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
[16] EDGAR R C, HAAS B J, CLEMENTE J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2 194-2 200.
[17] EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2 460-2 461.
[18] DESANTIS T Z, HUGENHOLTZ P, LARSEN N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5 069-5 072.
[19] KOLJALG U, LARSSON K H, ABARENKOV K, et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi[J]. New Phytologist, 2005, 166(3): 1 063-1 068.
[20] KUCZYNSKI J, STOMBAUGH J, WALTERS W A, et al.Using QIIME to analyze 16S rRNA gene sequences from Microbial Communities[M]. Current Protocols in Bioinformatics: John Wiley & Sons, Inc., 2011.
[21] WOLFE B E, BUTTON J E, SANTARELLI M, et al. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity[J]. Cell, 2014, 158(2): 422-433.
[22] LI Pan, LIN Wei-feng, LIU Xiong, et al. Environmental factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese Daqu starter[J]. Frontiers in Microbiology, 2016, 7: 1 237.
[23] XIAO Chen, LU Zhen-ming, ZHANG Xiao-juan, et al. Bio-heat is a key environmental driver shaping microbial community of medium-temperature Daqu[J]. Applied and Environmental Microbiology, 2017,83(23): AEM.01550-17.
[24] 王海燕. PCR-DGGE 技术对清香型汾酒微生物群落结构演变规律的研究[D].无锡: 江南大学, 2014.
[25] JUNG J Y, LEE S H, LEE H J, et al. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation[J]. International Journal of Food Microbiology, 2012, 153(3): 378-387.
[26] NAM Y D, LEE S Y, LIM S I. Microbial community analysis of Korean soybean pastes by next-generation sequencing[J]. International Journal of Food Microbiology, 2012, 155(1-2): 36-42.
[27] KEYLOCK C J. Simpson diversity and the shannon-wiener index as special cases of a generalized entropy[J]. Oikos, 2005, 109(1): 203-207.
[28] ZHANG Wen-xue, QIAO Zong-wei, SHIGEMATSU T, et al. Analysis of the bacterial community in zaopei during production of Chinese Luzhou‐flavor liquor[J]. Journal of the Institute of Brewing, 2005, 111(2): 215-222.
[29] WANG Hai-yan, ZHANG Xiao-jun, ZHAO Li-ping, et al. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(6): 603-609.
[30] WANG Li, WANG Ya-yu, WANG Di-qiang, et al. Dynamic changes in the bacterial community in Moutai liquor fermentation process characterized by deep sequencing[J]. Journal of the Institute of Brewing, 2015, 121(4): 603-608.
[31] ZHANG Wen-xue, QIAO Zong-wei, TANG Yue-qin, et al. Analysis of the fungal community in zaopei during the production of Chinese Luzhou‐flavour liquor[J]. Journal of the Institute of Brewing, 2007, 113(1): 21-27.
[32] WANG Zong-min, LU Zhen-ming, SHI Jin-song, et al. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar[J]. Scientific Reports, 2016, 26 818.
[33] LHOMME E, URIEN C, LEGRAND J, et al. Sourdough microbial community dynamics: An analysis during French organic bread-making processes[J]. Food Microbiology, 2014, 53(Pt A): 41-50.
[34] YAO Su, LIU Yang, LI Hui, et al. Bacterial communities during the process of high-temperature Daqu production of roasted sesame-like flavour liquor[J]. Journal of the Institute of Brewing, 2015, 121(3): 440-448.
[35] 吴建峰, 徐岩. 白酒细菌酒曲固态培养条件下B.subtilis S12产四甲基吡嗪的合成机制[J]. 食品与生物技术学报, 2014, 33(1): 8-15.
[36] CHEN Bi, WU Qun, XU Yan. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor[J]. International Journal of Food Microbiology, 2014, 179: 80-84.
[37] KONG Yu, WU Qun, ZHANG Yan, et al. In situ analysis of metabolic characteristics reveals the key yeast in the spontaneous and solid-state fermentation process of Chinese light-style liquor[J]. Applied and Environmental Microbiology, 2014, 80(12): 3 667-3 676.
[38] DUŠUÁKOVÁ M, KAMENÍK J, KARPÍŠKOVÁ R. Weissella viridescens in meat products-a review[J]. Acta Veterinaria Brno, 2013, 82(3): 237-241.
Outlines

/